xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: cpu.c,v 1.109 2017/02/11 14:11:24 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by RedBack Networks Inc.
10  *
11  * Author: Bill Sommerfeld
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Copyright (c) 1999 Stefan Grefen
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by the NetBSD
49  *      Foundation, Inc. and its contributors.
50  * 4. Neither the name of The NetBSD Foundation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.109 2017/02/11 14:11:24 maxv Exp $");
69 
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h"		/* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75 
76 #include "lapic.h"
77 #include "ioapic.h"
78 
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89 
90 #include <uvm/uvm.h>
91 
92 #include <machine/cpufunc.h>
93 #include <machine/cpuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/vmparam.h>
96 #include <machine/mpbiosvar.h>
97 #include <machine/pcb.h>
98 #include <machine/specialreg.h>
99 #include <machine/segments.h>
100 #include <machine/gdt.h>
101 #include <machine/mtrr.h>
102 #include <machine/pio.h>
103 
104 #include <x86/fpu.h>
105 
106 #include <xen/xen.h>
107 #include <xen/xen-public/vcpu.h>
108 #include <xen/vcpuvar.h>
109 
110 #if NLAPIC > 0
111 #include <machine/apicvar.h>
112 #include <machine/i82489reg.h>
113 #include <machine/i82489var.h>
114 #endif
115 
116 #include <dev/ic/mc146818reg.h>
117 #include <dev/isa/isareg.h>
118 
119 static int	cpu_match(device_t, cfdata_t, void *);
120 static void	cpu_attach(device_t, device_t, void *);
121 static void	cpu_defer(device_t);
122 static int	cpu_rescan(device_t, const char *, const int *);
123 static void	cpu_childdetached(device_t, device_t);
124 static int	vcpu_match(device_t, cfdata_t, void *);
125 static void	vcpu_attach(device_t, device_t, void *);
126 static void	cpu_attach_common(device_t, device_t, void *);
127 void		cpu_offline_md(void);
128 
129 struct cpu_softc {
130 	device_t sc_dev;		/* device tree glue */
131 	struct cpu_info *sc_info;	/* pointer to CPU info */
132 	bool sc_wasonline;
133 };
134 
135 int mp_cpu_start(struct cpu_info *, vaddr_t);
136 void mp_cpu_start_cleanup(struct cpu_info *);
137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 				      mp_cpu_start_cleanup };
139 
140 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
141     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
142 
143 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
144     vcpu_match, vcpu_attach, NULL, NULL);
145 
146 /*
147  * Statically-allocated CPU info for the primary CPU (or the only
148  * CPU, on uniprocessors).  The CPU info list is initialized to
149  * point at it.
150  */
151 #ifdef TRAPLOG
152 #include <machine/tlog.h>
153 struct tlog tlog_primary;
154 #endif
155 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
156 	.ci_dev = 0,
157 	.ci_self = &cpu_info_primary,
158 	.ci_idepth = -1,
159 	.ci_curlwp = &lwp0,
160 	.ci_curldt = -1,
161 #ifdef TRAPLOG
162 	.ci_tlog = &tlog_primary,
163 #endif
164 
165 };
166 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
167 	.ci_dev = 0,
168 	.ci_self = &phycpu_info_primary,
169 };
170 
171 struct cpu_info *cpu_info_list = &cpu_info_primary;
172 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
173 
174 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
175 			  *	[0] basic features %edx
176 			  *	[1] basic features %ecx
177 			  *	[2] extended features %edx
178 			  *	[3] extended features %ecx
179 			  *	[4] VIA padlock features
180 			  *	[5] structured extended features cpuid.7:%ebx
181 			  *	[6] structured extended features cpuid.7:%ecx
182 			  */
183 
184 bool x86_mp_online;
185 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
186 
187 #if defined(MULTIPROCESSOR)
188 void    	cpu_hatch(void *);
189 static void    	cpu_boot_secondary(struct cpu_info *ci);
190 static void    	cpu_start_secondary(struct cpu_info *ci);
191 #endif	/* MULTIPROCESSOR */
192 
193 static int
194 cpu_match(device_t parent, cfdata_t match, void *aux)
195 {
196 
197 	return 1;
198 }
199 
200 static void
201 cpu_attach(device_t parent, device_t self, void *aux)
202 {
203 	struct cpu_softc *sc = device_private(self);
204 	struct cpu_attach_args *caa = aux;
205 	struct cpu_info *ci;
206 	uintptr_t ptr;
207 	static int nphycpu = 0;
208 
209 	sc->sc_dev = self;
210 
211 	/*
212 	 * If we're an Application Processor, allocate a cpu_info
213 	 * If we're the first attached CPU use the primary cpu_info,
214 	 * otherwise allocate a new one
215 	 */
216 	aprint_naive("\n");
217 	aprint_normal("\n");
218 	if (nphycpu > 0) {
219 		struct cpu_info *tmp;
220 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
221 		    KM_SLEEP);
222 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
223 		ci->ci_curldt = -1;
224 
225 		tmp = phycpu_info_list;
226 		while (tmp->ci_next)
227 			tmp = tmp->ci_next;
228 
229 		tmp->ci_next = ci;
230 	} else {
231 		ci = &phycpu_info_primary;
232 	}
233 
234 	ci->ci_self = ci;
235 	sc->sc_info = ci;
236 
237 	ci->ci_dev = self;
238 	ci->ci_acpiid = caa->cpu_id;
239 	ci->ci_cpuid = caa->cpu_number;
240 	ci->ci_vcpu = NULL;
241 	ci->ci_index = nphycpu++;
242 
243 	if (!pmf_device_register(self, NULL, NULL))
244 		aprint_error_dev(self, "couldn't establish power handler\n");
245 
246 	(void)config_defer(self, cpu_defer);
247 }
248 
249 static void
250 cpu_defer(device_t self)
251 {
252 	cpu_rescan(self, NULL, NULL);
253 }
254 
255 static int
256 cpu_rescan(device_t self, const char *ifattr, const int *locators)
257 {
258 	struct cpu_softc *sc = device_private(self);
259 	struct cpufeature_attach_args cfaa;
260 	struct cpu_info *ci = sc->sc_info;
261 
262 	memset(&cfaa, 0, sizeof(cfaa));
263 	cfaa.ci = ci;
264 
265 	if (ifattr_match(ifattr, "cpufeaturebus")) {
266 
267 		if (ci->ci_frequency == NULL) {
268 			cfaa.name = "frequency";
269 			ci->ci_frequency = config_found_ia(self,
270 			    "cpufeaturebus", &cfaa, NULL);
271 		}
272 	}
273 
274 	return 0;
275 }
276 
277 static void
278 cpu_childdetached(device_t self, device_t child)
279 {
280 	struct cpu_softc *sc = device_private(self);
281 	struct cpu_info *ci = sc->sc_info;
282 
283 	if (ci->ci_frequency == child)
284 		ci->ci_frequency = NULL;
285 }
286 
287 static int
288 vcpu_match(device_t parent, cfdata_t match, void *aux)
289 {
290 	struct vcpu_attach_args *vcaa = aux;
291 	struct vcpu_runstate_info vcr;
292 	int error;
293 
294 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
295 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
296 		    vcaa->vcaa_caa.cpu_number, &vcr);
297 		switch (error) {
298 		case 0:
299 			return 1;
300 		case -ENOENT:
301 			return 0;
302 		default:
303 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
304 		}
305 	}
306 
307 	return 0;
308 }
309 
310 static void
311 vcpu_attach(device_t parent, device_t self, void *aux)
312 {
313 	struct vcpu_attach_args *vcaa = aux;
314 
315 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
316 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
317 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
318 
319 	if (!pmf_device_register(self, NULL, NULL))
320 		aprint_error_dev(self, "couldn't establish power handler\n");
321 }
322 
323 static int
324 vcpu_is_up(struct cpu_info *ci)
325 {
326 	KASSERT(ci != NULL);
327 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
328 }
329 
330 static void
331 cpu_vm_init(struct cpu_info *ci)
332 {
333 	int ncolors = 2, i;
334 
335 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
336 		struct x86_cache_info *cai;
337 		int tcolors;
338 
339 		cai = &ci->ci_cinfo[i];
340 
341 		tcolors = atop(cai->cai_totalsize);
342 		switch (cai->cai_associativity) {
343 		case 0xff:
344 			tcolors = 1; /* fully associative */
345 			break;
346 		case 0:
347 		case 1:
348 			break;
349 		default:
350 			tcolors /= cai->cai_associativity;
351 		}
352 		ncolors = max(ncolors, tcolors);
353 	}
354 
355 	/*
356 	 * Knowing the size of the largest cache on this CPU, potentially
357 	 * re-color our pages.
358 	 */
359 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
360 	uvm_page_recolor(ncolors);
361 	pmap_tlb_cpu_init(ci);
362 #ifndef __HAVE_DIRECT_MAP
363 	pmap_vpage_cpu_init(ci);
364 #endif
365 }
366 
367 static void
368 cpu_attach_common(device_t parent, device_t self, void *aux)
369 {
370 	struct cpu_softc *sc = device_private(self);
371 	struct cpu_attach_args *caa = aux;
372 	struct cpu_info *ci;
373 	uintptr_t ptr;
374 	int cpunum = caa->cpu_number;
375 	static bool again = false;
376 
377 	sc->sc_dev = self;
378 
379 	/*
380 	 * If we're an Application Processor, allocate a cpu_info
381 	 * structure, otherwise use the primary's.
382 	 */
383 	if (caa->cpu_role == CPU_ROLE_AP) {
384 		aprint_naive(": Application Processor\n");
385 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
386 		    KM_SLEEP);
387 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
388 		memset(ci, 0, sizeof(*ci));
389 #ifdef TRAPLOG
390 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
391 #endif
392 	} else {
393 		aprint_naive(": %s Processor\n",
394 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
395 		ci = &cpu_info_primary;
396 	}
397 
398 	ci->ci_self = ci;
399 	sc->sc_info = ci;
400 	ci->ci_dev = self;
401 	ci->ci_cpuid = cpunum;
402 
403 	KASSERT(HYPERVISOR_shared_info != NULL);
404 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
405 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
406 
407 	KASSERT(ci->ci_func == 0);
408 	ci->ci_func = caa->cpu_func;
409 	aprint_normal("\n");
410 
411 	/* Must be called before mi_cpu_attach(). */
412 	cpu_vm_init(ci);
413 
414 	if (caa->cpu_role == CPU_ROLE_AP) {
415 		int error;
416 
417 		error = mi_cpu_attach(ci);
418 
419 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
420 		if (error != 0) {
421 			aprint_error_dev(self,
422 			    "mi_cpu_attach failed with %d\n", error);
423 			return;
424 		}
425 
426 	} else {
427 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
428 	}
429 
430 	KASSERT(ci->ci_cpuid == ci->ci_index);
431 #ifdef __x86_64__
432 	/* No user PGD mapped for this CPU yet */
433 	ci->ci_xen_current_user_pgd = 0;
434 #endif
435 #if defined(__x86_64__) || defined(PAE)
436 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
437 #endif
438 	pmap_reference(pmap_kernel());
439 	ci->ci_pmap = pmap_kernel();
440 	ci->ci_tlbstate = TLBSTATE_STALE;
441 
442 	/*
443 	 * Boot processor may not be attached first, but the below
444 	 * must be done to allow booting other processors.
445 	 */
446 	if (!again) {
447 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
448 		/* Basic init. */
449 		cpu_intr_init(ci);
450 		cpu_get_tsc_freq(ci);
451 		cpu_init(ci);
452 		pmap_cpu_init_late(ci);
453 
454 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
455 		xen_ipi_init();
456 
457 		/* Make sure DELAY() is initialized. */
458 		DELAY(1);
459 		again = true;
460 	}
461 
462 	/* further PCB init done later. */
463 
464 	switch (caa->cpu_role) {
465 	case CPU_ROLE_SP:
466 		atomic_or_32(&ci->ci_flags, CPUF_SP);
467 		cpu_identify(ci);
468 		x86_cpu_idle_init();
469 		break;
470 
471 	case CPU_ROLE_BP:
472 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
473 		cpu_identify(ci);
474 		x86_cpu_idle_init();
475 		break;
476 
477 	case CPU_ROLE_AP:
478 		atomic_or_32(&ci->ci_flags, CPUF_AP);
479 
480 		/*
481 		 * report on an AP
482 		 */
483 
484 #if defined(MULTIPROCESSOR)
485 		/* interrupt handler stack */
486 		cpu_intr_init(ci);
487 
488 		/* Setup per-cpu memory for gdt */
489 		gdt_alloc_cpu(ci);
490 
491 		pmap_cpu_init_late(ci);
492 		cpu_start_secondary(ci);
493 
494 		if (ci->ci_flags & CPUF_PRESENT) {
495 			struct cpu_info *tmp;
496 
497 			cpu_identify(ci);
498 			tmp = cpu_info_list;
499 			while (tmp->ci_next)
500 				tmp = tmp->ci_next;
501 
502 			tmp->ci_next = ci;
503 		}
504 #else
505 		aprint_error_dev(ci->ci_dev, "not started\n");
506 #endif
507 		break;
508 
509 	default:
510 		panic("unknown processor type??\n");
511 	}
512 
513 #ifdef MPVERBOSE
514 	if (mp_verbose) {
515 		struct lwp *l = ci->ci_data.cpu_idlelwp;
516 		struct pcb *pcb = lwp_getpcb(l);
517 
518 		aprint_verbose_dev(self,
519 		    "idle lwp at %p, idle sp at 0x%p\n",
520 		    l,
521 #ifdef i386
522 		    (void *)pcb->pcb_esp
523 #else
524 		    (void *)pcb->pcb_rsp
525 #endif
526 		);
527 
528 	}
529 #endif /* MPVERBOSE */
530 }
531 
532 /*
533  * Initialize the processor appropriately.
534  */
535 
536 void
537 cpu_init(struct cpu_info *ci)
538 {
539 
540 	/*
541 	 * If we have FXSAVE/FXRESTOR, use them.
542 	 */
543 	if (cpu_feature[0] & CPUID_FXSR) {
544 		lcr4(rcr4() | CR4_OSFXSR);
545 
546 		/*
547 		 * If we have SSE/SSE2, enable XMM exceptions.
548 		 */
549 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
550 			lcr4(rcr4() | CR4_OSXMMEXCPT);
551 	}
552 
553 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
554 }
555 
556 
557 #ifdef MULTIPROCESSOR
558 
559 void
560 cpu_boot_secondary_processors(void)
561 {
562 	struct cpu_info *ci;
563 	u_long i;
564 	for (i = 0; i < maxcpus; i++) {
565 		ci = cpu_lookup(i);
566 		if (ci == NULL)
567 			continue;
568 		if (ci->ci_data.cpu_idlelwp == NULL)
569 			continue;
570 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
571 			continue;
572 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
573 			continue;
574 		cpu_boot_secondary(ci);
575 	}
576 
577 	x86_mp_online = true;
578 }
579 
580 static void
581 cpu_init_idle_lwp(struct cpu_info *ci)
582 {
583 	struct lwp *l = ci->ci_data.cpu_idlelwp;
584 	struct pcb *pcb = lwp_getpcb(l);
585 
586 	pcb->pcb_cr0 = rcr0();
587 }
588 
589 void
590 cpu_init_idle_lwps(void)
591 {
592 	struct cpu_info *ci;
593 	u_long i;
594 
595 	for (i = 0; i < maxcpus; i++) {
596 		ci = cpu_lookup(i);
597 		if (ci == NULL)
598 			continue;
599 		if (ci->ci_data.cpu_idlelwp == NULL)
600 			continue;
601 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
602 			continue;
603 		cpu_init_idle_lwp(ci);
604 	}
605 }
606 
607 static void
608 cpu_start_secondary(struct cpu_info *ci)
609 {
610 	int i;
611 
612 	aprint_debug_dev(ci->ci_dev, "starting\n");
613 
614 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
615 
616 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
617 		return;
618 	}
619 
620 	/*
621 	 * wait for it to become ready
622 	 */
623 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
624 		delay(10);
625 	}
626 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
627 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
628 #if defined(MPDEBUG) && defined(DDB)
629 		printf("dropping into debugger; continue from here to resume boot\n");
630 		Debugger();
631 #endif
632 	}
633 
634 	CPU_START_CLEANUP(ci);
635 }
636 
637 void
638 cpu_boot_secondary(struct cpu_info *ci)
639 {
640 	int i;
641 	atomic_or_32(&ci->ci_flags, CPUF_GO);
642 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
643 		delay(10);
644 	}
645 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
646 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
647 #if defined(MPDEBUG) && defined(DDB)
648 		printf("dropping into debugger; continue from here to resume boot\n");
649 		Debugger();
650 #endif
651 	}
652 }
653 
654 /*
655  * APs end up here immediately after initialisation and VCPUOP_up in
656  * mp_cpu_start().
657  * At this point, we are running in the idle pcb/idle stack of the new
658  * CPU.  This function jumps to the idle loop and starts looking for
659  * work.
660  */
661 extern void x86_64_tls_switch(struct lwp *);
662 void
663 cpu_hatch(void *v)
664 {
665 	struct cpu_info *ci = (struct cpu_info *)v;
666 	struct pcb *pcb;
667 	int s, i;
668 
669 	/* Setup TLS and kernel GS/FS */
670 	cpu_init_msrs(ci, true);
671 	cpu_init_idt();
672 	gdt_init_cpu(ci);
673 
674 	cpu_probe(ci);
675 
676 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
677 
678 	while ((ci->ci_flags & CPUF_GO) == 0) {
679 		/* Don't use delay, boot CPU may be patching the text. */
680 		for (i = 10000; i != 0; i--)
681 			x86_pause();
682 	}
683 
684 	/* Because the text may have been patched in x86_patch(). */
685 	x86_flush();
686 	tlbflushg();
687 
688 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
689 
690 	pcb = lwp_getpcb(curlwp);
691 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
692 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
693 
694 	xen_ipi_init();
695 
696 	xen_initclocks();
697 
698 #ifdef __x86_64__
699 	fpuinit(ci);
700 #endif
701 
702 	lldt(GSEL(GLDT_SEL, SEL_KPL));
703 
704 	cpu_init(ci);
705 	cpu_get_tsc_freq(ci);
706 
707 	s = splhigh();
708 	x86_enable_intr();
709 	splx(s);
710 
711 	aprint_debug_dev(ci->ci_dev, "running\n");
712 
713 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
714 
715 	idle_loop(NULL);
716 	KASSERT(false);
717 }
718 
719 #if defined(DDB)
720 
721 #include <ddb/db_output.h>
722 #include <machine/db_machdep.h>
723 
724 /*
725  * Dump CPU information from ddb.
726  */
727 void
728 cpu_debug_dump(void)
729 {
730 	struct cpu_info *ci;
731 	CPU_INFO_ITERATOR cii;
732 
733 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
734 	for (CPU_INFO_FOREACH(cii, ci)) {
735 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
736 		    ci,
737 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
738 		    (long)ci->ci_cpuid,
739 		    ci->ci_flags, ci->ci_ipis,
740 		    ci->ci_curlwp,
741 		    ci->ci_fpcurlwp);
742 	}
743 }
744 #endif /* DDB */
745 
746 #endif /* MULTIPROCESSOR */
747 
748 extern void hypervisor_callback(void);
749 extern void failsafe_callback(void);
750 #ifdef __x86_64__
751 typedef void (vector)(void);
752 extern vector Xsyscall, Xsyscall32;
753 #endif
754 
755 /*
756  * Setup the "trampoline". On Xen, we setup nearly all cpu context
757  * outside a trampoline, so we prototype and call targetip like so:
758  * void targetip(struct cpu_info *);
759  */
760 
761 static void
762 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
763 {
764 	int i;
765 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
766 		frames[i] = ((paddr_t)xpmap_ptetomach(
767 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
768 
769 		/* Mark Read-only */
770 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
771 		    PG_RW);
772 	}
773 }
774 
775 #ifdef __x86_64__
776 extern char *ldtstore;
777 
778 static void
779 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
780     void targetrip(struct cpu_info *))
781 {
782 	/* page frames to point at GDT */
783 	extern int gdt_size;
784 	paddr_t frames[16];
785 	psize_t gdt_ents;
786 
787 	struct lwp *l;
788 	struct pcb *pcb;
789 
790 	volatile struct vcpu_info *vci;
791 
792 	KASSERT(ci != NULL);
793 	KASSERT(ci != &cpu_info_primary);
794 	KASSERT(initctx != NULL);
795 	KASSERT(targetrip != NULL);
796 
797 	memset(initctx, 0, sizeof(*initctx));
798 
799 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
800 	KASSERT(gdt_ents <= 16);
801 
802 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
803 
804 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
805 
806 	l = ci->ci_data.cpu_idlelwp;
807 
808 	KASSERT(l != NULL);
809 	pcb = lwp_getpcb(l);
810 	KASSERT(pcb != NULL);
811 
812 	/* resume with interrupts off */
813 	vci = ci->ci_vcpu;
814 	vci->evtchn_upcall_mask = 1;
815 	xen_mb();
816 
817 	/* resume in kernel-mode */
818 	initctx->flags = VGCF_in_kernel | VGCF_online;
819 
820 	/* Stack and entry points:
821 	 * We arrange for the stack frame for cpu_hatch() to
822 	 * appear as a callee frame of lwp_trampoline(). Being a
823 	 * leaf frame prevents trampling on any of the MD stack setup
824 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
825 	 */
826 
827 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
828 	initctx->user_regs.rip = (vaddr_t) targetrip;
829 
830 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
831 
832 	initctx->user_regs.rflags = pcb->pcb_flags;
833 	initctx->user_regs.rsp = pcb->pcb_rsp;
834 
835 	/* Data segments */
836 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
837 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
838 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
839 
840 	/* GDT */
841 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
842 	initctx->gdt_ents = gdt_ents;
843 
844 	/* LDT */
845 	initctx->ldt_base = (unsigned long)ldtstore;
846 	initctx->ldt_ents = LDT_SIZE >> 3;
847 
848 	/* Kernel context state */
849 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
850 	initctx->kernel_sp = pcb->pcb_rsp0;
851 	initctx->ctrlreg[0] = pcb->pcb_cr0;
852 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
853 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
854 	/*
855 	 * Use pmap_kernel() L4 PD directly, until we setup the
856 	 * per-cpu L4 PD in pmap_cpu_init_late()
857 	 */
858 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
859 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
860 
861 	/* Xen callbacks */
862 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
863 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
864 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
865 
866 	return;
867 }
868 #else /* i386 */
869 extern union descriptor *ldtstore;
870 extern void Xsyscall(void);
871 
872 static void
873 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
874     void targeteip(struct cpu_info *))
875 {
876 	/* page frames to point at GDT */
877 	extern int gdt_size;
878 	paddr_t frames[16];
879 	psize_t gdt_ents;
880 
881 	struct lwp *l;
882 	struct pcb *pcb;
883 
884 	volatile struct vcpu_info *vci;
885 
886 	KASSERT(ci != NULL);
887 	KASSERT(ci != &cpu_info_primary);
888 	KASSERT(initctx != NULL);
889 	KASSERT(targeteip != NULL);
890 
891 	memset(initctx, 0, sizeof(*initctx));
892 
893 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
894 	KASSERT(gdt_ents <= 16);
895 
896 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
897 
898 	/*
899 	 * Initialise the vcpu context:
900 	 * We use this cpu's idle_loop() pcb context.
901 	 */
902 
903 	l = ci->ci_data.cpu_idlelwp;
904 
905 	KASSERT(l != NULL);
906 	pcb = lwp_getpcb(l);
907 	KASSERT(pcb != NULL);
908 
909 	/* resume with interrupts off */
910 	vci = ci->ci_vcpu;
911 	vci->evtchn_upcall_mask = 1;
912 	xen_mb();
913 
914 	/* resume in kernel-mode */
915 	initctx->flags = VGCF_in_kernel | VGCF_online;
916 
917 	/* Stack frame setup for cpu_hatch():
918 	 * We arrange for the stack frame for cpu_hatch() to
919 	 * appear as a callee frame of lwp_trampoline(). Being a
920 	 * leaf frame prevents trampling on any of the MD stack setup
921 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
922 	 */
923 
924 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
925 						      arg1 */
926 	{
927 		/* targeteip(ci); */
928 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
929 		arg[1] = (uint32_t)ci; /* arg1 */
930 	}
931 
932 	initctx->user_regs.eip = (vaddr_t)targeteip;
933 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
934 	initctx->user_regs.eflags |= pcb->pcb_iopl;
935 
936 	/* Data segments */
937 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
938 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
939 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
940 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
941 
942 	/* GDT */
943 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
944 	initctx->gdt_ents = gdt_ents;
945 
946 	/* LDT */
947 	initctx->ldt_base = (unsigned long)ldtstore;
948 	initctx->ldt_ents = NLDT;
949 
950 	/* Kernel context state */
951 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
952 	initctx->kernel_sp = pcb->pcb_esp0;
953 	initctx->ctrlreg[0] = pcb->pcb_cr0;
954 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
955 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
956 #ifdef PAE
957 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
958 #else
959 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
960 #endif
961 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
962 
963 	/* Xen callbacks */
964 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
965 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
966 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
967 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
968 
969 	return;
970 }
971 #endif /* __x86_64__ */
972 
973 int
974 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
975 {
976 	int hyperror;
977 	struct vcpu_guest_context vcpuctx;
978 
979 	KASSERT(ci != NULL);
980 	KASSERT(ci != &cpu_info_primary);
981 	KASSERT(ci->ci_flags & CPUF_AP);
982 
983 #ifdef __x86_64__
984 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
985 #else
986 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
987 #endif
988 
989 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
990 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
991 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
992 		return hyperror;
993 	}
994 
995 	/* Start it up */
996 
997 	/* First bring it down */
998 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
999 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1000 		return hyperror;
1001 	}
1002 
1003 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1004 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1005 		return hyperror;
1006 	}
1007 
1008 	if (!vcpu_is_up(ci)) {
1009 		aprint_error(": did not come up\n");
1010 		return -1;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 void
1017 mp_cpu_start_cleanup(struct cpu_info *ci)
1018 {
1019 	if (vcpu_is_up(ci)) {
1020 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1021 	} else {
1022 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1023 	}
1024 }
1025 
1026 void
1027 cpu_init_msrs(struct cpu_info *ci, bool full)
1028 {
1029 #ifdef __x86_64__
1030 	if (full) {
1031 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1032 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1033 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1034 	}
1035 #endif
1036 
1037 	if (cpu_feature[2] & CPUID_NOX)
1038 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1039 }
1040 
1041 void
1042 cpu_offline_md(void)
1043 {
1044 	int s;
1045 
1046 	s = splhigh();
1047 	fpusave_cpu(true);
1048 	splx(s);
1049 }
1050 
1051 void
1052 cpu_get_tsc_freq(struct cpu_info *ci)
1053 {
1054 	uint32_t vcpu_tversion;
1055 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1056 
1057 	vcpu_tversion = tinfo->version;
1058 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1059 
1060 	uint64_t freq = 1000000000ULL << 32;
1061 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1062 	if (tinfo->tsc_shift < 0)
1063 		freq = freq << -tinfo->tsc_shift;
1064 	else
1065 		freq = freq >> tinfo->tsc_shift;
1066 	ci->ci_data.cpu_cc_freq = freq;
1067 }
1068 
1069 void
1070 x86_cpu_idle_xen(void)
1071 {
1072 	struct cpu_info *ci = curcpu();
1073 
1074 	KASSERT(ci->ci_ilevel == IPL_NONE);
1075 
1076 	x86_disable_intr();
1077 	if (!__predict_false(ci->ci_want_resched)) {
1078 		idle_block();
1079 	} else {
1080 		x86_enable_intr();
1081 	}
1082 }
1083 
1084 /*
1085  * Loads pmap for the current CPU.
1086  */
1087 void
1088 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1089 {
1090 	KASSERT(pmap != pmap_kernel());
1091 
1092 #if defined(__x86_64__) || defined(PAE)
1093 	struct cpu_info *ci = curcpu();
1094 	cpuid_t cid = cpu_index(ci);
1095 
1096 	mutex_enter(&ci->ci_kpm_mtx);
1097 	/* make new pmap visible to xen_kpm_sync() */
1098 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1099 #endif
1100 
1101 #ifdef i386
1102 #ifdef PAE
1103 	{
1104 		int i;
1105 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1106 		/* don't update the kernel L3 slot */
1107 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
1108 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1109 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1110 		}
1111 		tlbflush();
1112 	}
1113 #else /* PAE */
1114 	lcr3(pmap_pdirpa(pmap, 0));
1115 #endif /* PAE */
1116 #endif /* i386 */
1117 
1118 #ifdef __x86_64__
1119 	{
1120 		int i;
1121 		pd_entry_t *new_pgd;
1122 		paddr_t l4_pd_ma;
1123 
1124 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1125 
1126 		/*
1127 		 * Map user space address in kernel space and load
1128 		 * user cr3
1129 		 */
1130 		new_pgd = pmap->pm_pdir;
1131 		KASSERT(pmap == ci->ci_pmap);
1132 
1133 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1134 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
1135 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1136 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1137 				xpq_queue_pte_update(
1138 				    l4_pd_ma + i * sizeof(pd_entry_t),
1139 				    new_pgd[i]);
1140 			}
1141 		}
1142 
1143 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1144 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1145 
1146 		tlbflush();
1147 	}
1148 #endif /* __x86_64__ */
1149 
1150 #if defined(__x86_64__) || defined(PAE)
1151 	/* old pmap no longer visible to xen_kpm_sync() */
1152 	if (oldpmap != pmap_kernel()) {
1153 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1154 	}
1155 	mutex_exit(&ci->ci_kpm_mtx);
1156 #endif
1157 }
1158 
1159 /*
1160  * pmap_cpu_init_late: perform late per-CPU initialization.
1161  *
1162  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1163  * have per-cpu PDIR tables, for two different reasons:
1164  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1165  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1166  *    this way).
1167  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1168  *    (see cpu_load_pmap()).
1169  *
1170  * What this means for us is that the PDIR of the pmap_kernel() is considered
1171  * to be a canonical "SHADOW" PDIR with the following properties:
1172  *  - its recursive mapping points to itself
1173  *  - per-cpu recursive mappings point to themselves on __x86_64__
1174  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
1175  *    the shadow
1176  */
1177 
1178 void
1179 pmap_cpu_init_late(struct cpu_info *ci)
1180 {
1181 #if defined(PAE) || defined(__x86_64__)
1182 	/*
1183 	 * The BP has already its own PD page allocated during early
1184 	 * MD startup.
1185 	 */
1186 
1187 #if defined(__x86_64__)
1188 	/* Setup per-cpu normal_pdes */
1189 	int i;
1190 	extern pd_entry_t * const normal_pdes[];
1191 	for (i = 0;i < PTP_LEVELS - 1;i++) {
1192 		ci->ci_normal_pdes[i] = normal_pdes[i];
1193 	}
1194 #endif /* __x86_64__ */
1195 
1196 	if (ci == &cpu_info_primary)
1197 		return;
1198 
1199 	KASSERT(ci != NULL);
1200 
1201 #if defined(PAE)
1202 	cpu_alloc_l3_page(ci);
1203 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
1204 
1205 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1206 	int i;
1207 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
1208 		ci->ci_pae_l3_pdir[i] =
1209 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1210 	}
1211 #endif /* PAE */
1212 
1213 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1214 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1215 
1216 	if (ci->ci_kpm_pdir == NULL) {
1217 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1218 		    __func__, cpu_index(ci));
1219 	}
1220 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1221 	KASSERT(ci->ci_kpm_pdirpa != 0);
1222 
1223 #if defined(__x86_64__)
1224 	extern pt_entry_t xpmap_pg_nx;
1225 
1226 	/* Copy over the pmap_kernel() shadow L4 entries */
1227 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1228 
1229 	/* Recursive kernel mapping */
1230 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1231 	    | PG_k | PG_V | xpmap_pg_nx;
1232 #elif defined(PAE)
1233 	/* Copy over the pmap_kernel() shadow L2 entries */
1234 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1235 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1236 #endif
1237 
1238 	/* Xen wants a RO pdir. */
1239 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1240 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1241 	pmap_update(pmap_kernel());
1242 #if defined(PAE)
1243 	/*
1244 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1245 	 * static, ie: loading a new pmap will not update this entry.
1246 	 */
1247 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1248 
1249 	/* Xen wants a RO L3. */
1250 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1251 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1252 	pmap_update(pmap_kernel());
1253 
1254 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1255 
1256 #elif defined(__x86_64__)
1257 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1258 #endif /* PAE , __x86_64__ */
1259 #endif /* defined(PAE) || defined(__x86_64__) */
1260 }
1261 
1262 /*
1263  * Notify all other cpus to halt.
1264  */
1265 
1266 void
1267 cpu_broadcast_halt(void)
1268 {
1269 	xen_broadcast_ipi(XEN_IPI_HALT);
1270 }
1271 
1272 /*
1273  * Send a dummy ipi to a cpu.
1274  */
1275 
1276 void
1277 cpu_kick(struct cpu_info *ci)
1278 {
1279 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
1280 }
1281