xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: cpu.c,v 1.90 2012/03/11 16:16:44 jym Exp $	*/
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
3 
4 /*-
5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by RedBack Networks Inc.
11  *
12  * Author: Bill Sommerfeld
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999 Stefan Grefen
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *      This product includes software developed by the NetBSD
50  *      Foundation, Inc. and its contributors.
51  * 4. Neither the name of The NetBSD Foundation nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.90 2012/03/11 16:16:44 jym Exp $");
70 
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h"		/* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76 
77 #include "lapic.h"
78 #include "ioapic.h"
79 
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90 
91 #include <uvm/uvm.h>
92 
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110 
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114 
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120 
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123 
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127 
128 static int	cpu_match(device_t, cfdata_t, void *);
129 static void	cpu_attach(device_t, device_t, void *);
130 static void	cpu_defer(device_t);
131 static int	cpu_rescan(device_t, const char *, const int *);
132 static void	cpu_childdetached(device_t, device_t);
133 static int	vcpu_match(device_t, cfdata_t, void *);
134 static void	vcpu_attach(device_t, device_t, void *);
135 static void	cpu_attach_common(device_t, device_t, void *);
136 void		cpu_offline_md(void);
137 
138 struct cpu_softc {
139 	device_t sc_dev;		/* device tree glue */
140 	struct cpu_info *sc_info;	/* pointer to CPU info */
141 	bool sc_wasonline;
142 };
143 
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 				      mp_cpu_start_cleanup };
148 
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151 
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153     vcpu_match, vcpu_attach, NULL, NULL);
154 
155 /*
156  * Statically-allocated CPU info for the primary CPU (or the only
157  * CPU, on uniprocessors).  The CPU info list is initialized to
158  * point at it.
159  */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 	.ci_dev = 0,
166 	.ci_self = &cpu_info_primary,
167 	.ci_idepth = -1,
168 	.ci_curlwp = &lwp0,
169 	.ci_curldt = -1,
170 	.ci_cpumask = 1,
171 #ifdef TRAPLOG
172 	.ci_tlog = &tlog_primary,
173 #endif
174 
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 	.ci_dev = 0,
178 	.ci_self = &phycpu_info_primary,
179 };
180 
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183 
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186 
187 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
188 			  *	[0] basic features %edx
189 			  *	[1] basic features %ecx
190 			  *	[2] extended features %edx
191 			  *	[3] extended features %ecx
192 			  *	[4] VIA padlock features
193 			  */
194 
195 bool x86_mp_online;
196 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
197 
198 #if defined(MULTIPROCESSOR)
199 void    	cpu_hatch(void *);
200 static void    	cpu_boot_secondary(struct cpu_info *ci);
201 static void    	cpu_start_secondary(struct cpu_info *ci);
202 #endif	/* MULTIPROCESSOR */
203 
204 static int
205 cpu_match(device_t parent, cfdata_t match, void *aux)
206 {
207 
208 	return 1;
209 }
210 
211 static void
212 cpu_attach(device_t parent, device_t self, void *aux)
213 {
214 	struct cpu_softc *sc = device_private(self);
215 	struct cpu_attach_args *caa = aux;
216 	struct cpu_info *ci;
217 	uintptr_t ptr;
218 	static int nphycpu = 0;
219 
220 	sc->sc_dev = self;
221 
222 	/*
223 	 * If we're an Application Processor, allocate a cpu_info
224 	 * If we're the first attached CPU use the primary cpu_info,
225 	 * otherwise allocate a new one
226 	 */
227 	aprint_naive("\n");
228 	aprint_normal("\n");
229 	if (nphycpu > 0) {
230 		struct cpu_info *tmp;
231 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
232 		    KM_SLEEP);
233 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
234 		ci->ci_curldt = -1;
235 
236 		tmp = phycpu_info_list;
237 		while (tmp->ci_next)
238 			tmp = tmp->ci_next;
239 
240 		tmp->ci_next = ci;
241 	} else {
242 		ci = &phycpu_info_primary;
243 	}
244 
245 	ci->ci_self = ci;
246 	sc->sc_info = ci;
247 
248 	ci->ci_dev = self;
249 	ci->ci_acpiid = caa->cpu_id;
250 	ci->ci_cpuid = caa->cpu_number;
251 	ci->ci_vcpu = NULL;
252 	ci->ci_index = nphycpu++;
253 
254 	if (!pmf_device_register(self, NULL, NULL))
255 		aprint_error_dev(self, "couldn't establish power handler\n");
256 
257 	(void)config_defer(self, cpu_defer);
258 }
259 
260 static void
261 cpu_defer(device_t self)
262 {
263 	cpu_rescan(self, NULL, NULL);
264 }
265 
266 static int
267 cpu_rescan(device_t self, const char *ifattr, const int *locators)
268 {
269 	struct cpu_softc *sc = device_private(self);
270 	struct cpufeature_attach_args cfaa;
271 	struct cpu_info *ci = sc->sc_info;
272 
273 	memset(&cfaa, 0, sizeof(cfaa));
274 	cfaa.ci = ci;
275 
276 	if (ifattr_match(ifattr, "cpufeaturebus")) {
277 
278 		if (ci->ci_frequency == NULL) {
279 			cfaa.name = "frequency";
280 			ci->ci_frequency = config_found_ia(self,
281 			    "cpufeaturebus", &cfaa, NULL);
282 		}
283 	}
284 
285 	return 0;
286 }
287 
288 static void
289 cpu_childdetached(device_t self, device_t child)
290 {
291 	struct cpu_softc *sc = device_private(self);
292 	struct cpu_info *ci = sc->sc_info;
293 
294 	if (ci->ci_frequency == child)
295 		ci->ci_frequency = NULL;
296 }
297 
298 static int
299 vcpu_match(device_t parent, cfdata_t match, void *aux)
300 {
301 	struct vcpu_attach_args *vcaa = aux;
302 	struct vcpu_runstate_info vcr;
303 	int error;
304 
305 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
306 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
307 					   vcaa->vcaa_caa.cpu_number,
308 					   &vcr);
309 		switch (error) {
310 		case 0:
311 			return 1;
312 		case -ENOENT:
313 			return 0;
314 		default:
315 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
316 		}
317 	}
318 
319 	return 0;
320 }
321 
322 static void
323 vcpu_attach(device_t parent, device_t self, void *aux)
324 {
325 	struct vcpu_attach_args *vcaa = aux;
326 
327 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
328 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
329 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
330 
331 	if (!pmf_device_register(self, NULL, NULL))
332 		aprint_error_dev(self, "couldn't establish power handler\n");
333 }
334 
335 static int
336 vcpu_is_up(struct cpu_info *ci)
337 {
338 	KASSERT(ci != NULL);
339 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
340 }
341 
342 static void
343 cpu_vm_init(struct cpu_info *ci)
344 {
345 	int ncolors = 2, i;
346 
347 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
348 		struct x86_cache_info *cai;
349 		int tcolors;
350 
351 		cai = &ci->ci_cinfo[i];
352 
353 		tcolors = atop(cai->cai_totalsize);
354 		switch(cai->cai_associativity) {
355 		case 0xff:
356 			tcolors = 1; /* fully associative */
357 			break;
358 		case 0:
359 		case 1:
360 			break;
361 		default:
362 			tcolors /= cai->cai_associativity;
363 		}
364 		ncolors = max(ncolors, tcolors);
365 	}
366 
367 	/*
368 	 * Knowing the size of the largest cache on this CPU, potentially
369 	 * re-color our pages.
370 	 */
371 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
372 	uvm_page_recolor(ncolors);
373 }
374 
375 static void
376 cpu_attach_common(device_t parent, device_t self, void *aux)
377 {
378 	struct cpu_softc *sc = device_private(self);
379 	struct cpu_attach_args *caa = aux;
380 	struct cpu_info *ci;
381 	uintptr_t ptr;
382 	int cpunum = caa->cpu_number;
383 	static bool again = false;
384 
385 	sc->sc_dev = self;
386 
387 	/*
388 	 * If we're an Application Processor, allocate a cpu_info
389 	 * structure, otherwise use the primary's.
390 	 */
391 	if (caa->cpu_role == CPU_ROLE_AP) {
392 		aprint_naive(": Application Processor\n");
393 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
394 		    KM_SLEEP);
395 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
396 		memset(ci, 0, sizeof(*ci));
397 #ifdef TRAPLOG
398 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
399 #endif
400 	} else {
401 		aprint_naive(": %s Processor\n",
402 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
403 		ci = &cpu_info_primary;
404 	}
405 
406 	ci->ci_self = ci;
407 	sc->sc_info = ci;
408 	ci->ci_dev = self;
409 	ci->ci_cpuid = cpunum;
410 
411 	KASSERT(HYPERVISOR_shared_info != NULL);
412 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
413 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
414 
415 	KASSERT(ci->ci_func == 0);
416 	ci->ci_func = caa->cpu_func;
417 
418 	/* Must be called before mi_cpu_attach(). */
419 	cpu_vm_init(ci);
420 
421 	if (caa->cpu_role == CPU_ROLE_AP) {
422 		int error;
423 
424 		error = mi_cpu_attach(ci);
425 
426 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
427 		if (error != 0) {
428 			aprint_normal("\n");
429 			aprint_error_dev(self,
430 			    "mi_cpu_attach failed with %d\n", error);
431 			return;
432 		}
433 
434 	} else {
435 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
436 	}
437 
438 	KASSERT(ci->ci_cpuid == ci->ci_index);
439 	ci->ci_cpumask = (1 << cpu_index(ci));
440 	pmap_reference(pmap_kernel());
441 	ci->ci_pmap = pmap_kernel();
442 	ci->ci_tlbstate = TLBSTATE_STALE;
443 
444 	/*
445 	 * Boot processor may not be attached first, but the below
446 	 * must be done to allow booting other processors.
447 	 */
448 	if (!again) {
449 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
450 		/* Basic init. */
451 		cpu_intr_init(ci);
452 		cpu_get_tsc_freq(ci);
453 		cpu_init(ci);
454 		pmap_cpu_init_late(ci);
455 
456 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
457 		xen_ipi_init();
458 
459 		/* Make sure DELAY() is initialized. */
460 		DELAY(1);
461 		again = true;
462 	}
463 
464 	/* further PCB init done later. */
465 
466 	switch (caa->cpu_role) {
467 	case CPU_ROLE_SP:
468 		atomic_or_32(&ci->ci_flags, CPUF_SP);
469 		cpu_identify(ci);
470 		x86_cpu_idle_init();
471 
472 		break;
473 
474 	case CPU_ROLE_BP:
475 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
476 		cpu_identify(ci);
477 		x86_cpu_idle_init();
478 
479 		break;
480 
481 	case CPU_ROLE_AP:
482 		atomic_or_32(&ci->ci_flags, CPUF_AP);
483 
484 		/*
485 		 * report on an AP
486 		 */
487 
488 #if defined(MULTIPROCESSOR)
489 		/* interrupt handler stack */
490 		cpu_intr_init(ci);
491 
492 		/* Setup per-cpu memory for gdt */
493 		gdt_alloc_cpu(ci);
494 
495 		pmap_cpu_init_late(ci);
496 		cpu_start_secondary(ci);
497 
498 		if (ci->ci_flags & CPUF_PRESENT) {
499 			struct cpu_info *tmp;
500 
501 			cpu_identify(ci);
502 			tmp = cpu_info_list;
503 			while (tmp->ci_next)
504 				tmp = tmp->ci_next;
505 
506 			tmp->ci_next = ci;
507 		}
508 #else
509 		aprint_error(": not started\n");
510 #endif
511 		break;
512 
513 	default:
514 		aprint_normal("\n");
515 		panic("unknown processor type??\n");
516 	}
517 
518 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
519 
520 #ifdef MPVERBOSE
521 	if (mp_verbose) {
522 		struct lwp *l = ci->ci_data.cpu_idlelwp;
523 		struct pcb *pcb = lwp_getpcb(l);
524 
525 		aprint_verbose_dev(self,
526 		    "idle lwp at %p, idle sp at 0x%p\n",
527 		    l,
528 #ifdef i386
529 		    (void *)pcb->pcb_esp
530 #else /* i386 */
531 		    (void *)pcb->pcb_rsp
532 #endif /* i386 */
533 		);
534 
535 	}
536 #endif /* MPVERBOSE */
537 }
538 
539 /*
540  * Initialize the processor appropriately.
541  */
542 
543 void
544 cpu_init(struct cpu_info *ci)
545 {
546 
547 	/*
548 	 * If we have FXSAVE/FXRESTOR, use them.
549 	 */
550 	if (cpu_feature[0] & CPUID_FXSR) {
551 		lcr4(rcr4() | CR4_OSFXSR);
552 
553 		/*
554 		 * If we have SSE/SSE2, enable XMM exceptions.
555 		 */
556 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
557 			lcr4(rcr4() | CR4_OSXMMEXCPT);
558 	}
559 
560 #ifdef __x86_64__
561 	/* No user PGD mapped for this CPU yet */
562 	ci->ci_xen_current_user_pgd = 0;
563 #endif
564 #if defined(__x86_64__) || defined(PAE)
565 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
566 #endif
567 
568 	atomic_or_32(&cpus_running, ci->ci_cpumask);
569 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
570 }
571 
572 
573 #ifdef MULTIPROCESSOR
574 
575 void
576 cpu_boot_secondary_processors(void)
577 {
578 	struct cpu_info *ci;
579 	u_long i;
580 	for (i = 0; i < maxcpus; i++) {
581 		ci = cpu_lookup(i);
582 		if (ci == NULL)
583 			continue;
584 		if (ci->ci_data.cpu_idlelwp == NULL)
585 			continue;
586 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
587 			continue;
588 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
589 			continue;
590 		cpu_boot_secondary(ci);
591 	}
592 
593 	x86_mp_online = true;
594 }
595 
596 static void
597 cpu_init_idle_lwp(struct cpu_info *ci)
598 {
599 	struct lwp *l = ci->ci_data.cpu_idlelwp;
600 	struct pcb *pcb = lwp_getpcb(l);
601 
602 	pcb->pcb_cr0 = rcr0();
603 }
604 
605 void
606 cpu_init_idle_lwps(void)
607 {
608 	struct cpu_info *ci;
609 	u_long i;
610 
611 	for (i = 0; i < maxcpus; i++) {
612 		ci = cpu_lookup(i);
613 		if (ci == NULL)
614 			continue;
615 		if (ci->ci_data.cpu_idlelwp == NULL)
616 			continue;
617 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
618 			continue;
619 		cpu_init_idle_lwp(ci);
620 	}
621 }
622 
623 static void
624 cpu_start_secondary(struct cpu_info *ci)
625 {
626 	int i;
627 
628 	aprint_debug_dev(ci->ci_dev, "starting\n");
629 
630 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
631 
632 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
633 		return;
634 	}
635 
636 	/*
637 	 * wait for it to become ready
638 	 */
639 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
640 		delay(10);
641 	}
642 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
643 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
644 #if defined(MPDEBUG) && defined(DDB)
645 		printf("dropping into debugger; continue from here to resume boot\n");
646 		Debugger();
647 #endif
648 	}
649 
650 	CPU_START_CLEANUP(ci);
651 }
652 
653 void
654 cpu_boot_secondary(struct cpu_info *ci)
655 {
656 	int i;
657 	atomic_or_32(&ci->ci_flags, CPUF_GO);
658 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
659 		delay(10);
660 	}
661 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
662 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
663 #if defined(MPDEBUG) && defined(DDB)
664 		printf("dropping into debugger; continue from here to resume boot\n");
665 		Debugger();
666 #endif
667 	}
668 }
669 
670 /*
671  * APs end up here immediately after initialisation and VCPUOP_up in
672  * mp_cpu_start().
673  * At this point, we are running in the idle pcb/idle stack of the new
674  * CPU.  This function jumps to the idle loop and starts looking for
675  * work.
676  */
677 extern void x86_64_tls_switch(struct lwp *);
678 void
679 cpu_hatch(void *v)
680 {
681 	struct cpu_info *ci = (struct cpu_info *)v;
682 	struct pcb *pcb;
683 	int s, i;
684 
685 	/* Setup TLS and kernel GS/FS */
686 	cpu_init_msrs(ci, true);
687 	cpu_init_idt();
688 	gdt_init_cpu(ci);
689 
690 	cpu_probe(ci);
691 
692 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
693 
694 	while ((ci->ci_flags & CPUF_GO) == 0) {
695 		/* Don't use delay, boot CPU may be patching the text. */
696 		for (i = 10000; i != 0; i--)
697 			x86_pause();
698 	}
699 
700 	/* Because the text may have been patched in x86_patch(). */
701 	x86_flush();
702 	tlbflushg();
703 
704 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
705 
706 	pcb = lwp_getpcb(curlwp);
707 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
708 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
709 
710 	xen_ipi_init();
711 
712 	xen_initclocks();
713 
714 #ifdef __x86_64__
715 	fpuinit(ci);
716 #endif
717 
718 	lldt(GSEL(GLDT_SEL, SEL_KPL));
719 
720 	cpu_init(ci);
721 	cpu_get_tsc_freq(ci);
722 
723 	s = splhigh();
724 	x86_enable_intr();
725 	splx(s);
726 
727 	aprint_debug_dev(ci->ci_dev, "running\n");
728 
729 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
730 
731 	panic("switch to idle_loop context returned!\n");
732 	/* NOTREACHED */
733 }
734 
735 #if defined(DDB)
736 
737 #include <ddb/db_output.h>
738 #include <machine/db_machdep.h>
739 
740 /*
741  * Dump CPU information from ddb.
742  */
743 void
744 cpu_debug_dump(void)
745 {
746 	struct cpu_info *ci;
747 	CPU_INFO_ITERATOR cii;
748 
749 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
750 	for (CPU_INFO_FOREACH(cii, ci)) {
751 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
752 		    ci,
753 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
754 		    (long)ci->ci_cpuid,
755 		    ci->ci_flags, ci->ci_ipis,
756 		    ci->ci_curlwp,
757 		    ci->ci_fpcurlwp);
758 	}
759 }
760 #endif /* DDB */
761 
762 #endif /* MULTIPROCESSOR */
763 
764 extern void hypervisor_callback(void);
765 extern void failsafe_callback(void);
766 #ifdef __x86_64__
767 typedef void (vector)(void);
768 extern vector Xsyscall, Xsyscall32;
769 #endif
770 
771 /*
772  * Setup the "trampoline". On Xen, we setup nearly all cpu context
773  * outside a trampoline, so we prototype and call targetip like so:
774  * void targetip(struct cpu_info *);
775  */
776 
777 static void
778 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
779 {
780 	int i;
781 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
782 
783 		frames[i] = ((paddr_t) xpmap_ptetomach(
784 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
785 			>> PAGE_SHIFT;
786 
787 		/* Mark Read-only */
788 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
789 		    PG_RW);
790 	}
791 }
792 
793 #ifdef __x86_64__
794 extern char *ldtstore;
795 
796 static void
797 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
798 			struct vcpu_guest_context *initctx,
799 			void targetrip(struct cpu_info *))
800 {
801 	/* page frames to point at GDT */
802 	extern int gdt_size;
803 	paddr_t frames[16];
804 	psize_t gdt_ents;
805 
806 	struct lwp *l;
807 	struct pcb *pcb;
808 
809 	volatile struct vcpu_info *vci;
810 
811 	KASSERT(ci != NULL);
812 	KASSERT(ci != &cpu_info_primary);
813 	KASSERT(initctx != NULL);
814 	KASSERT(targetrip != NULL);
815 
816 	memset(initctx, 0, sizeof *initctx);
817 
818 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
819 	KASSERT(gdt_ents <= 16);
820 
821 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
822 
823 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
824 
825 	l = ci->ci_data.cpu_idlelwp;
826 
827 	KASSERT(l != NULL);
828 	pcb = lwp_getpcb(l);
829 	KASSERT(pcb != NULL);
830 
831 	/* resume with interrupts off */
832 	vci = ci->ci_vcpu;
833 	vci->evtchn_upcall_mask = 1;
834 	xen_mb();
835 
836 	/* resume in kernel-mode */
837 	initctx->flags = VGCF_in_kernel | VGCF_online;
838 
839 	/* Stack and entry points:
840 	 * We arrange for the stack frame for cpu_hatch() to
841 	 * appear as a callee frame of lwp_trampoline(). Being a
842 	 * leaf frame prevents trampling on any of the MD stack setup
843 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
844 	 */
845 
846 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
847 	initctx->user_regs.rip = (vaddr_t) targetrip;
848 
849 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
850 
851 	initctx->user_regs.rflags = pcb->pcb_flags;
852 	initctx->user_regs.rsp = pcb->pcb_rsp;
853 
854 	/* Data segments */
855 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
856 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
857 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
858 
859 	/* GDT */
860 	memcpy(initctx->gdt_frames, frames, sizeof frames);
861 	initctx->gdt_ents = gdt_ents;
862 
863 	/* LDT */
864 	initctx->ldt_base = (unsigned long) ldtstore;
865 	initctx->ldt_ents = LDT_SIZE >> 3;
866 
867 	/* Kernel context state */
868 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
869 	initctx->kernel_sp = pcb->pcb_rsp0;
870 	initctx->ctrlreg[0] = pcb->pcb_cr0;
871 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
872 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
873 	/*
874 	 * Use pmap_kernel() L4 PD directly, until we setup the
875 	 * per-cpu L4 PD in pmap_cpu_init_late()
876 	 */
877 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
878 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
879 
880 
881 	/* Xen callbacks */
882 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
883 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
884 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
885 
886 	return;
887 }
888 #else /* i386 */
889 extern union descriptor *ldt;
890 extern void Xsyscall(void);
891 
892 static void
893 xen_init_i386_vcpuctxt(struct cpu_info *ci,
894 			struct vcpu_guest_context *initctx,
895 			void targeteip(struct cpu_info *))
896 {
897 	/* page frames to point at GDT */
898 	extern int gdt_size;
899 	paddr_t frames[16];
900 	psize_t gdt_ents;
901 
902 	struct lwp *l;
903 	struct pcb *pcb;
904 
905 	volatile struct vcpu_info *vci;
906 
907 	KASSERT(ci != NULL);
908 	KASSERT(ci != &cpu_info_primary);
909 	KASSERT(initctx != NULL);
910 	KASSERT(targeteip != NULL);
911 
912 	memset(initctx, 0, sizeof *initctx);
913 
914 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
915 	KASSERT(gdt_ents <= 16);
916 
917 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
918 
919 	/*
920 	 * Initialise the vcpu context:
921 	 * We use this cpu's idle_loop() pcb context.
922 	 */
923 
924 	l = ci->ci_data.cpu_idlelwp;
925 
926 	KASSERT(l != NULL);
927 	pcb = lwp_getpcb(l);
928 	KASSERT(pcb != NULL);
929 
930 	/* resume with interrupts off */
931 	vci = ci->ci_vcpu;
932 	vci->evtchn_upcall_mask = 1;
933 	xen_mb();
934 
935 	/* resume in kernel-mode */
936 	initctx->flags = VGCF_in_kernel | VGCF_online;
937 
938 	/* Stack frame setup for cpu_hatch():
939 	 * We arrange for the stack frame for cpu_hatch() to
940 	 * appear as a callee frame of lwp_trampoline(). Being a
941 	 * leaf frame prevents trampling on any of the MD stack setup
942 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
943 	 */
944 
945 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
946 						      arg1 */
947 	{ /* targeteip(ci); */
948 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
949 		arg[1] = (uint32_t) ci; /* arg1 */
950 
951 	}
952 
953 	initctx->user_regs.eip = (vaddr_t) targeteip;
954 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
955 	initctx->user_regs.eflags |= pcb->pcb_iopl;
956 
957 	/* Data segments */
958 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
959 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
960 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
961 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
962 
963 	/* GDT */
964 	memcpy(initctx->gdt_frames, frames, sizeof frames);
965 	initctx->gdt_ents = gdt_ents;
966 
967 	/* LDT */
968 	initctx->ldt_base = (unsigned long) ldt;
969 	initctx->ldt_ents = NLDT;
970 
971 	/* Kernel context state */
972 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
973 	initctx->kernel_sp = pcb->pcb_esp0;
974 	initctx->ctrlreg[0] = pcb->pcb_cr0;
975 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
976 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
977 #ifdef PAE
978 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
979 #else /* PAE */
980 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
981 #endif /* PAE */
982 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
983 
984 
985 	/* Xen callbacks */
986 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
987 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
988 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
989 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
990 
991 	return;
992 }
993 #endif /* __x86_64__ */
994 
995 int
996 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
997 {
998 
999 	int hyperror;
1000 	struct vcpu_guest_context vcpuctx;
1001 
1002 	KASSERT(ci != NULL);
1003 	KASSERT(ci != &cpu_info_primary);
1004 	KASSERT(ci->ci_flags & CPUF_AP);
1005 
1006 #ifdef __x86_64__
1007 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1008 #else  /* i386 */
1009 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1010 #endif /* __x86_64__ */
1011 
1012 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
1013 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1014 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1015 		return hyperror;
1016 	}
1017 
1018 	/* Start it up */
1019 
1020 	/* First bring it down */
1021 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1022 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1023 		return hyperror;
1024 	}
1025 
1026 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1027 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1028 		return hyperror;
1029 	}
1030 
1031 	if (!vcpu_is_up(ci)) {
1032 		aprint_error(": did not come up\n");
1033 		return -1;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 void
1040 mp_cpu_start_cleanup(struct cpu_info *ci)
1041 {
1042 	if (vcpu_is_up(ci)) {
1043 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1044 	}
1045 	else {
1046 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1047 	}
1048 
1049 }
1050 
1051 void
1052 cpu_init_msrs(struct cpu_info *ci, bool full)
1053 {
1054 #ifdef __x86_64__
1055 	if (full) {
1056 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1057 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1058 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1059 	}
1060 #endif	/* __x86_64__ */
1061 
1062 	if (cpu_feature[2] & CPUID_NOX)
1063 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1064 
1065 }
1066 
1067 void
1068 cpu_offline_md(void)
1069 {
1070         int s;
1071 
1072         s = splhigh();
1073 #ifdef __i386__
1074         npxsave_cpu(true);
1075 #else
1076         fpusave_cpu(true);
1077 #endif
1078         splx(s);
1079 }
1080 
1081 void
1082 cpu_get_tsc_freq(struct cpu_info *ci)
1083 {
1084 	uint32_t vcpu_tversion;
1085 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1086 
1087 	vcpu_tversion = tinfo->version;
1088 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1089 
1090 	uint64_t freq = 1000000000ULL << 32;
1091 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1092 	if ( tinfo->tsc_shift < 0 )
1093 		freq = freq << -tinfo->tsc_shift;
1094 	else
1095 		freq = freq >> tinfo->tsc_shift;
1096 	ci->ci_data.cpu_cc_freq = freq;
1097 }
1098 
1099 void
1100 x86_cpu_idle_xen(void)
1101 {
1102 	struct cpu_info *ci = curcpu();
1103 
1104 	KASSERT(ci->ci_ilevel == IPL_NONE);
1105 
1106 	x86_disable_intr();
1107 	if (!__predict_false(ci->ci_want_resched)) {
1108 		idle_block();
1109 	} else {
1110 		x86_enable_intr();
1111 	}
1112 }
1113 
1114 /*
1115  * Loads pmap for the current CPU.
1116  */
1117 void
1118 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1119 {
1120 	KASSERT(pmap != pmap_kernel());
1121 
1122 #if defined(__x86_64__) || defined(PAE)
1123 	struct cpu_info *ci = curcpu();
1124 	uint32_t cpumask = ci->ci_cpumask;
1125 
1126 	mutex_enter(&ci->ci_kpm_mtx);
1127 	/* make new pmap visible to pmap_kpm_sync_xcall() */
1128 	atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
1129 #endif
1130 #ifdef i386
1131 #ifdef PAE
1132 	{
1133 		int i;
1134 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1135 		/* don't update the kernel L3 slot */
1136 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
1137 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1138 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1139 		}
1140 		tlbflush();
1141 	}
1142 #else /* PAE */
1143 	lcr3(pmap_pdirpa(pmap, 0));
1144 #endif /* PAE */
1145 #endif /* i386 */
1146 
1147 #ifdef __x86_64__
1148 	{
1149 		int i;
1150 		pd_entry_t *new_pgd;
1151 		paddr_t l4_pd_ma;
1152 
1153 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1154 
1155 		/*
1156 		 * Map user space address in kernel space and load
1157 		 * user cr3
1158 		 */
1159 		new_pgd = pmap->pm_pdir;
1160 		KASSERT(pmap == ci->ci_pmap);
1161 
1162 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1163 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
1164 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1165 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1166 				xpq_queue_pte_update(
1167 				   l4_pd_ma + i * sizeof(pd_entry_t),
1168 				    new_pgd[i]);
1169 			}
1170 		}
1171 
1172 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1173 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1174 
1175 		tlbflush();
1176 	}
1177 
1178 #endif /* __x86_64__ */
1179 #if defined(__x86_64__) || defined(PAE)
1180 	/* old pmap no longer visible to pmap_kpm_sync_xcall() */
1181 	atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
1182 	mutex_exit(&ci->ci_kpm_mtx);
1183 #endif
1184 }
1185 
1186  /*
1187   * pmap_cpu_init_late: perform late per-CPU initialization.
1188   * Short note about percpu PDIR pages:
1189   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1190   * tables. This is to get around Xen's pagetable setup constraints for
1191   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1192   * will refuse to pin a table setup this way.) and for multiple cpus
1193   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1194   *
1195   * What this means for us is that the PDIR of the pmap_kernel() is
1196   * considered to be a canonical "SHADOW" PDIR with the following
1197   * properties:
1198   * - Its recursive mapping points to itself
1199   * - per-cpu recursive mappings point to themselves on __x86_64__
1200   * - per-cpu L4 pages' kernel entries are expected to be in sync with
1201   *   the shadow
1202   */
1203 
1204 void
1205 pmap_cpu_init_late(struct cpu_info *ci)
1206 {
1207 #if defined(PAE) || defined(__x86_64__)
1208 	/*
1209 	 * The BP has already its own PD page allocated during early
1210 	 * MD startup.
1211 	 */
1212 
1213 #if defined(__x86_64__)
1214 	/* Setup per-cpu normal_pdes */
1215 	int i;
1216 	extern pd_entry_t * const normal_pdes[];
1217 	for (i = 0;i < PTP_LEVELS - 1;i++) {
1218 		ci->ci_normal_pdes[i] = normal_pdes[i];
1219 	}
1220 #endif /* __x86_64__ */
1221 
1222 	if (ci == &cpu_info_primary)
1223 		return;
1224 
1225 	KASSERT(ci != NULL);
1226 
1227 #if defined(PAE)
1228 	cpu_alloc_l3_page(ci);
1229 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
1230 
1231 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1232 	int i;
1233 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
1234 		ci->ci_pae_l3_pdir[i] =
1235 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1236 	}
1237 #endif /* PAE */
1238 
1239 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1240 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1241 
1242 	if (ci->ci_kpm_pdir == NULL) {
1243 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1244 		      __func__, cpu_index(ci));
1245 	}
1246 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1247 	KASSERT(ci->ci_kpm_pdirpa != 0);
1248 
1249 #if defined(__x86_64__)
1250 	/*
1251 	 * Copy over the pmap_kernel() shadow L4 entries
1252 	 */
1253 
1254 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1255 
1256 	/* Recursive kernel mapping */
1257 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1258 #elif defined(PAE)
1259 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1260 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1261 #endif /* __x86_64__ else PAE */
1262 
1263 	/* Xen wants R/O */
1264 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1265 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1266 	pmap_update(pmap_kernel());
1267 #if defined(PAE)
1268 	/* Initialise L3 entry 3. This mapping is shared across all
1269 	 * pmaps and is static, ie; loading a new pmap will not update
1270 	 * this entry.
1271 	 */
1272 
1273 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1274 
1275 	/* Mark L3 R/O (Xen wants this) */
1276 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1277 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1278 	pmap_update(pmap_kernel());
1279 
1280 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1281 
1282 #elif defined(__x86_64__)
1283 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1284 #endif /* PAE , __x86_64__ */
1285 #endif /* defined(PAE) || defined(__x86_64__) */
1286 }
1287 
1288 /*
1289  * Notify all other cpus to halt.
1290  */
1291 
1292 void
1293 cpu_broadcast_halt(void)
1294 {
1295 	xen_broadcast_ipi(XEN_IPI_HALT);
1296 }
1297 
1298 /*
1299  * Send a dummy ipi to a cpu.
1300  */
1301 
1302 void
1303 cpu_kick(struct cpu_info *ci)
1304 {
1305 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
1306 }
1307