xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision 9aa0541bdf64142d9a27c2cf274394d60182818f)
1 /*	$NetBSD: cpu.c,v 1.67 2011/10/06 06:56:30 mrg Exp $	*/
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
3 
4 /*-
5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by RedBack Networks Inc.
11  *
12  * Author: Bill Sommerfeld
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999 Stefan Grefen
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *      This product includes software developed by the NetBSD
50  *      Foundation, Inc. and its contributors.
51  * 4. Neither the name of The NetBSD Foundation nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.67 2011/10/06 06:56:30 mrg Exp $");
70 
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h"		/* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76 
77 #include "lapic.h"
78 #include "ioapic.h"
79 
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90 
91 #include <uvm/uvm.h>
92 
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110 
111 #include <xen/xen.h>
112 #include <xen/xen3-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114 
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120 
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123 
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127 
128 static int	cpu_match(device_t, cfdata_t, void *);
129 static void	cpu_attach(device_t, device_t, void *);
130 static void	cpu_defer(device_t);
131 static int	cpu_rescan(device_t, const char *, const int *);
132 static void	cpu_childdetached(device_t, device_t);
133 static int	vcpu_match(device_t, cfdata_t, void *);
134 static void	vcpu_attach(device_t, device_t, void *);
135 static void	cpu_attach_common(device_t, device_t, void *);
136 void		cpu_offline_md(void);
137 
138 struct cpu_softc {
139 	device_t sc_dev;		/* device tree glue */
140 	struct cpu_info *sc_info;	/* pointer to CPU info */
141 	bool sc_wasonline;
142 };
143 
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 				      mp_cpu_start_cleanup };
148 
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151 
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153     vcpu_match, vcpu_attach, NULL, NULL);
154 
155 /*
156  * Statically-allocated CPU info for the primary CPU (or the only
157  * CPU, on uniprocessors).  The CPU info list is initialized to
158  * point at it.
159  */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 	.ci_dev = 0,
166 	.ci_self = &cpu_info_primary,
167 	.ci_idepth = -1,
168 	.ci_curlwp = &lwp0,
169 	.ci_curldt = -1,
170 	.ci_cpumask = 1,
171 #ifdef TRAPLOG
172 	.ci_tlog = &tlog_primary,
173 #endif
174 
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 	.ci_dev = 0,
178 	.ci_self = &phycpu_info_primary,
179 };
180 
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183 
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186 
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189 
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 			  *	[0] basic features %edx
192 			  *	[1] basic features %ecx
193 			  *	[2] extended features %edx
194 			  *	[3] extended features %ecx
195 			  *	[4] VIA padlock features
196 			  */
197 
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200 
201 #if defined(MULTIPROCESSOR)
202 void    	cpu_hatch(void *);
203 static void    	cpu_boot_secondary(struct cpu_info *ci);
204 static void    	cpu_start_secondary(struct cpu_info *ci);
205 #endif	/* MULTIPROCESSOR */
206 
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210 
211 	return 1;
212 }
213 
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 	struct cpu_softc *sc = device_private(self);
218 	struct cpu_attach_args *caa = aux;
219 	struct cpu_info *ci;
220 	uintptr_t ptr;
221 	static int nphycpu = 0;
222 
223 	sc->sc_dev = self;
224 
225 	if (phycpus_attached == ~0) {
226 		aprint_error(": increase MAXCPUS\n");
227 		return;
228 	}
229 
230 	/*
231 	 * If we're an Application Processor, allocate a cpu_info
232 	 * If we're the first attached CPU use the primary cpu_info,
233 	 * otherwise allocate a new one
234 	 */
235 	aprint_naive("\n");
236 	aprint_normal("\n");
237 	if (nphycpu > 0) {
238 		struct cpu_info *tmp;
239 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 		    KM_SLEEP);
241 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 		ci->ci_curldt = -1;
243 
244 		tmp = phycpu_info_list;
245 		while (tmp->ci_next)
246 			tmp = tmp->ci_next;
247 
248 		tmp->ci_next = ci;
249 	} else {
250 		ci = &phycpu_info_primary;
251 	}
252 
253 	ci->ci_self = ci;
254 	sc->sc_info = ci;
255 
256 	ci->ci_dev = self;
257 	ci->ci_acpiid = caa->cpu_id;
258 	ci->ci_cpuid = caa->cpu_number;
259 	ci->ci_vcpu = NULL;
260 	ci->ci_index = nphycpu++;
261 	ci->ci_cpumask = (1 << cpu_index(ci));
262 
263 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264 
265 	if (!pmf_device_register(self, NULL, NULL))
266 		aprint_error_dev(self, "couldn't establish power handler\n");
267 
268 	(void)config_defer(self, cpu_defer);
269 }
270 
271 static void
272 cpu_defer(device_t self)
273 {
274 	cpu_rescan(self, NULL, NULL);
275 }
276 
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 	struct cpu_softc *sc = device_private(self);
281 	struct cpufeature_attach_args cfaa;
282 	struct cpu_info *ci = sc->sc_info;
283 
284 	memset(&cfaa, 0, sizeof(cfaa));
285 	cfaa.ci = ci;
286 
287 	if (ifattr_match(ifattr, "cpufeaturebus")) {
288 
289 		if (ci->ci_frequency == NULL) {
290 			cfaa.name = "frequency";
291 			ci->ci_frequency = config_found_ia(self,
292 			    "cpufeaturebus", &cfaa, NULL);
293 		}
294 	}
295 
296 	return 0;
297 }
298 
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 	struct cpu_softc *sc = device_private(self);
303 	struct cpu_info *ci = sc->sc_info;
304 
305 	if (ci->ci_frequency == child)
306 		ci->ci_frequency = NULL;
307 }
308 
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 	struct vcpu_attach_args *vcaa = aux;
313 	struct vcpu_runstate_info vcr;
314 	int error;
315 
316 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 					   vcaa->vcaa_caa.cpu_number,
319 					   &vcr);
320 		switch (error) {
321 		case 0:
322 			return 1;
323 		case -ENOENT:
324 			return 0;
325 		default:
326 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 		}
328 	}
329 
330 	return 0;
331 }
332 
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 	struct vcpu_attach_args *vcaa = aux;
337 
338 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341 
342 	if (!pmf_device_register(self, NULL, NULL))
343 		aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345 
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 	KASSERT(ci != NULL);
350 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352 
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 	int ncolors = 2, i;
357 
358 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 		struct x86_cache_info *cai;
360 		int tcolors;
361 
362 		cai = &ci->ci_cinfo[i];
363 
364 		tcolors = atop(cai->cai_totalsize);
365 		switch(cai->cai_associativity) {
366 		case 0xff:
367 			tcolors = 1; /* fully associative */
368 			break;
369 		case 0:
370 		case 1:
371 			break;
372 		default:
373 			tcolors /= cai->cai_associativity;
374 		}
375 		ncolors = max(ncolors, tcolors);
376 	}
377 
378 	/*
379 	 * Knowing the size of the largest cache on this CPU, potentially
380 	 * re-color our pages.
381 	 */
382 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
383 	uvm_page_recolor(ncolors);
384 }
385 
386 static void
387 cpu_attach_common(device_t parent, device_t self, void *aux)
388 {
389 	struct cpu_softc *sc = device_private(self);
390 	struct cpu_attach_args *caa = aux;
391 	struct cpu_info *ci;
392 	uintptr_t ptr;
393 	int cpunum = caa->cpu_number;
394 	static bool again = false;
395 
396 	sc->sc_dev = self;
397 
398 	/*
399 	 * If we're an Application Processor, allocate a cpu_info
400 	 * structure, otherwise use the primary's.
401 	 */
402 	if (caa->cpu_role == CPU_ROLE_AP) {
403 		aprint_naive(": Application Processor\n");
404 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
405 		    KM_SLEEP);
406 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
407 		memset(ci, 0, sizeof(*ci));
408 #ifdef TRAPLOG
409 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
410 #endif
411 	} else {
412 		aprint_naive(": %s Processor\n",
413 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
414 		ci = &cpu_info_primary;
415 	}
416 
417 	ci->ci_self = ci;
418 	sc->sc_info = ci;
419 	ci->ci_dev = self;
420 	ci->ci_cpuid = cpunum;
421 
422 	KASSERT(HYPERVISOR_shared_info != NULL);
423 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
424 
425 	KASSERT(ci->ci_func == 0);
426 	ci->ci_func = caa->cpu_func;
427 
428 	/* Must be called before mi_cpu_attach(). */
429 	cpu_vm_init(ci);
430 
431 	if (caa->cpu_role == CPU_ROLE_AP) {
432 		int error;
433 
434 		error = mi_cpu_attach(ci);
435 
436 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 		if (error != 0) {
438 			aprint_normal("\n");
439 			aprint_error_dev(self,
440 			    "mi_cpu_attach failed with %d\n", error);
441 			return;
442 		}
443 
444 	} else {
445 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
446 	}
447 
448 	ci->ci_cpumask = (1 << cpu_index(ci));
449 	pmap_reference(pmap_kernel());
450 	ci->ci_pmap = pmap_kernel();
451 	ci->ci_tlbstate = TLBSTATE_STALE;
452 
453 	/*
454 	 * Boot processor may not be attached first, but the below
455 	 * must be done to allow booting other processors.
456 	 */
457 	if (!again) {
458 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
459 		/* Basic init. */
460 		cpu_intr_init(ci);
461 		cpu_get_tsc_freq(ci);
462 		cpu_init(ci);
463 		pmap_cpu_init_late(ci); /* XXX: cosmetic */
464 
465 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
466 		xen_ipi_init();
467 		/* XXX: clock_init() */
468 
469 		/* Make sure DELAY() is initialized. */
470 		DELAY(1);
471 		again = true;
472 	}
473 
474 	/* further PCB init done later. */
475 
476 	switch (caa->cpu_role) {
477 	case CPU_ROLE_SP:
478 		atomic_or_32(&ci->ci_flags, CPUF_SP);
479 		cpu_identify(ci);
480 #if 0
481 		x86_errata();
482 #endif
483 		x86_cpu_idle_init();
484 
485 		break;
486 
487 	case CPU_ROLE_BP:
488 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
489 		cpu_identify(ci);
490 		cpu_init(ci);
491 #if 0
492 		x86_errata();
493 #endif
494 		x86_cpu_idle_init();
495 
496 		break;
497 
498 	case CPU_ROLE_AP:
499 		atomic_or_32(&ci->ci_flags, CPUF_AP);
500 
501 		/*
502 		 * report on an AP
503 		 */
504 
505 #if defined(MULTIPROCESSOR)
506 		/* interrupt handler stack */
507 		cpu_intr_init(ci);
508 
509 		/* Setup per-cpu memory for gdt */
510 		gdt_alloc_cpu(ci);
511 
512 		pmap_cpu_init_late(ci);
513 		cpu_start_secondary(ci);
514 
515 		if (ci->ci_flags & CPUF_PRESENT) {
516 			struct cpu_info *tmp;
517 
518 			cpu_identify(ci);
519 			tmp = cpu_info_list;
520 			while (tmp->ci_next)
521 				tmp = tmp->ci_next;
522 
523 			tmp->ci_next = ci;
524 		}
525 #else
526 		aprint_error(": not started\n");
527 #endif
528 		break;
529 
530 	default:
531 		aprint_normal("\n");
532 		panic("unknown processor type??\n");
533 	}
534 
535 	pat_init(ci);
536 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
537 
538 #if 0
539 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
540 		aprint_error_dev(self, "couldn't establish power handler\n");
541 #endif
542 
543 #ifdef MPVERBOSE
544 	if (mp_verbose) {
545 		struct lwp *l = ci->ci_data.cpu_idlelwp;
546 		struct pcb *pcb = lwp_getpcb(l);
547 
548 		aprint_verbose_dev(self,
549 		    "idle lwp at %p, idle sp at 0x%p\n",
550 		    l,
551 #ifdef i386
552 		    (void *)pcb->pcb_esp
553 #else /* i386 */
554 		    (void *)pcb->pcb_rsp
555 #endif /* i386 */
556 		);
557 
558 	}
559 #endif /* MPVERBOSE */
560 }
561 
562 /*
563  * Initialize the processor appropriately.
564  */
565 
566 void
567 cpu_init(struct cpu_info *ci)
568 {
569 
570 	/*
571 	 * On a P6 or above, enable global TLB caching if the
572 	 * hardware supports it.
573 	 */
574 	if (cpu_feature[0] & CPUID_PGE)
575 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
576 
577 #ifdef XXXMTRR
578 	/*
579 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
580 	 */
581 	if (cpu_feature[0] & CPUID_MTRR) {
582 		if ((ci->ci_flags & CPUF_AP) == 0)
583 			i686_mtrr_init_first();
584 		mtrr_init_cpu(ci);
585 	}
586 #endif
587 	/*
588 	 * If we have FXSAVE/FXRESTOR, use them.
589 	 */
590 	if (cpu_feature[0] & CPUID_FXSR) {
591 		lcr4(rcr4() | CR4_OSFXSR);
592 
593 		/*
594 		 * If we have SSE/SSE2, enable XMM exceptions.
595 		 */
596 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
597 			lcr4(rcr4() | CR4_OSXMMEXCPT);
598 	}
599 
600 #ifdef __x86_64__
601 	/* No user PGD mapped for this CPU yet */
602 	ci->ci_xen_current_user_pgd = 0;
603 #endif
604 
605 	atomic_or_32(&cpus_running, ci->ci_cpumask);
606 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
607 
608 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
609 }
610 
611 
612 #ifdef MULTIPROCESSOR
613 
614 void
615 cpu_boot_secondary_processors(void)
616 {
617 	struct cpu_info *ci;
618 	u_long i;
619 	for (i = 0; i < maxcpus; i++) {
620 		ci = cpu_lookup(i);
621 		if (ci == NULL)
622 			continue;
623 		if (ci->ci_data.cpu_idlelwp == NULL)
624 			continue;
625 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
626 			continue;
627 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
628 			continue;
629 		cpu_boot_secondary(ci);
630 	}
631 
632 	x86_mp_online = true;
633 }
634 
635 static void
636 cpu_init_idle_lwp(struct cpu_info *ci)
637 {
638 	struct lwp *l = ci->ci_data.cpu_idlelwp;
639 	struct pcb *pcb = lwp_getpcb(l);
640 
641 	pcb->pcb_cr0 = rcr0();
642 }
643 
644 void
645 cpu_init_idle_lwps(void)
646 {
647 	struct cpu_info *ci;
648 	u_long i;
649 
650 	for (i = 0; i < maxcpus; i++) {
651 		ci = cpu_lookup(i);
652 		if (ci == NULL)
653 			continue;
654 		if (ci->ci_data.cpu_idlelwp == NULL)
655 			continue;
656 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
657 			continue;
658 		cpu_init_idle_lwp(ci);
659 	}
660 }
661 
662 static void
663 cpu_start_secondary(struct cpu_info *ci)
664 {
665 	int i;
666 
667 	aprint_debug_dev(ci->ci_dev, "starting\n");
668 
669 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
670 
671 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
672 		return;
673 	}
674 
675 	/*
676 	 * wait for it to become ready
677 	 */
678 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
679 		delay(10);
680 	}
681 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
682 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
683 #if defined(MPDEBUG) && defined(DDB)
684 		printf("dropping into debugger; continue from here to resume boot\n");
685 		Debugger();
686 #endif
687 	}
688 
689 	CPU_START_CLEANUP(ci);
690 }
691 
692 void
693 cpu_boot_secondary(struct cpu_info *ci)
694 {
695 	int i;
696 	atomic_or_32(&ci->ci_flags, CPUF_GO);
697 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
698 		delay(10);
699 	}
700 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
701 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
702 #if defined(MPDEBUG) && defined(DDB)
703 		printf("dropping into debugger; continue from here to resume boot\n");
704 		Debugger();
705 #endif
706 	}
707 }
708 
709 /*
710  * APs end up here immediately after initialisation and VCPUOP_up in
711  * mp_cpu_start().
712  * At this point, we are running in the idle pcb/idle stack of the new
713  * CPU.  This function jumps to the idle loop and starts looking for
714  * work.
715  */
716 extern void x86_64_tls_switch(struct lwp *);
717 void
718 cpu_hatch(void *v)
719 {
720 	struct cpu_info *ci = (struct cpu_info *)v;
721 	struct pcb *pcb;
722 	int s, i;
723 
724 	/* Setup TLS and kernel GS/FS */
725 	cpu_init_msrs(ci, true);
726 	cpu_init_idt();
727 	gdt_init_cpu(ci);
728 
729 	cpu_probe(ci);
730 
731 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
732 
733 	while ((ci->ci_flags & CPUF_GO) == 0) {
734 		/* Don't use delay, boot CPU may be patching the text. */
735 		for (i = 10000; i != 0; i--)
736 			x86_pause();
737 	}
738 
739 	/* Because the text may have been patched in x86_patch(). */
740 	x86_flush();
741 	tlbflushg();
742 
743 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
744 
745 	pcb = lwp_getpcb(curlwp);
746 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
747 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
748 
749 	xen_ipi_init();
750 
751 	xen_initclocks();
752 
753 	/* XXX: lapic_initclocks(); */
754 
755 #ifdef __x86_64__
756 	fpuinit(ci);
757 #endif
758 
759 	lldt(GSEL(GLDT_SEL, SEL_KPL));
760 
761 	cpu_init(ci);
762 	cpu_get_tsc_freq(ci);
763 
764 	s = splhigh();
765 	x86_enable_intr();
766 	splx(s);
767 #if 0
768 	x86_errata();
769 #endif
770 
771 	aprint_debug_dev(ci->ci_dev, "running\n");
772 
773 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
774 
775 	panic("switch to idle_loop context returned!\n");
776 	/* NOTREACHED */
777 }
778 
779 #if defined(DDB)
780 
781 #include <ddb/db_output.h>
782 #include <machine/db_machdep.h>
783 
784 /*
785  * Dump CPU information from ddb.
786  */
787 void
788 cpu_debug_dump(void)
789 {
790 	struct cpu_info *ci;
791 	CPU_INFO_ITERATOR cii;
792 
793 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
794 	for (CPU_INFO_FOREACH(cii, ci)) {
795 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
796 		    ci,
797 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
798 		    (long)ci->ci_cpuid,
799 		    ci->ci_flags, ci->ci_ipis,
800 		    ci->ci_curlwp,
801 		    ci->ci_fpcurlwp);
802 	}
803 }
804 #endif /* DDB */
805 
806 #endif /* MULTIPROCESSOR */
807 
808 extern void hypervisor_callback(void);
809 extern void failsafe_callback(void);
810 #ifdef __x86_64__
811 typedef void (vector)(void);
812 extern vector Xsyscall, Xsyscall32;
813 #endif
814 
815 /*
816  * Setup the "trampoline". On Xen, we setup nearly all cpu context
817  * outside a trampoline, so we prototype and call targetip like so:
818  * void targetip(struct cpu_info *);
819  */
820 
821 static void
822 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
823 {
824 	int i;
825 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
826 
827 		frames[i] = ((paddr_t) xpmap_ptetomach(
828 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
829 			>> PAGE_SHIFT;
830 
831 		/* Mark Read-only */
832 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
833 		    PG_RW);
834 	}
835 }
836 
837 #ifdef __x86_64__
838 extern char *ldtstore; /* XXX: Xen MP todo */
839 
840 static void
841 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
842 			struct vcpu_guest_context *initctx,
843 			void targetrip(struct cpu_info *))
844 {
845 	/* page frames to point at GDT */
846 	extern int gdt_size;
847 	paddr_t frames[16];
848 	psize_t gdt_ents;
849 
850 	struct lwp *l;
851 	struct pcb *pcb;
852 
853 	volatile struct vcpu_info *vci;
854 
855 	KASSERT(ci != NULL);
856 	KASSERT(ci != &cpu_info_primary);
857 	KASSERT(initctx != NULL);
858 	KASSERT(targetrip != NULL);
859 
860 	memset(initctx, 0, sizeof *initctx);
861 
862 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
863 	KASSERT(gdt_ents <= 16);
864 
865 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
866 
867 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
868 
869 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
870 
871 	l = ci->ci_data.cpu_idlelwp;
872 
873 	KASSERT(l != NULL);
874 	pcb = lwp_getpcb(l);
875 	KASSERT(pcb != NULL);
876 
877 	/* resume with interrupts off */
878 	vci = ci->ci_vcpu;
879 	vci->evtchn_upcall_mask = 1;
880 	xen_mb();
881 
882 	/* resume in kernel-mode */
883 	initctx->flags = VGCF_in_kernel | VGCF_online;
884 
885 	/* Stack and entry points:
886 	 * We arrange for the stack frame for cpu_hatch() to
887 	 * appear as a callee frame of lwp_trampoline(). Being a
888 	 * leaf frame prevents trampling on any of the MD stack setup
889 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
890 	 */
891 
892 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
893 	initctx->user_regs.rip = (vaddr_t) targetrip;
894 
895 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
896 
897 	initctx->user_regs.rflags = pcb->pcb_flags;
898 	initctx->user_regs.rsp = pcb->pcb_rsp;
899 
900 	/* Data segments */
901 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
902 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
903 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
904 
905 	/* GDT */
906 	memcpy(initctx->gdt_frames, frames, sizeof frames);
907 	initctx->gdt_ents = gdt_ents;
908 
909 	/* LDT */
910 	initctx->ldt_base = (unsigned long) ldtstore;
911 	initctx->ldt_ents = LDT_SIZE >> 3;
912 
913 	/* Kernel context state */
914 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
915 	initctx->kernel_sp = pcb->pcb_rsp0;
916 	initctx->ctrlreg[0] = pcb->pcb_cr0;
917 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
918 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
919 	/*
920 	 * Use pmap_kernel() L4 PD directly, until we setup the
921 	 * per-cpu L4 PD in pmap_cpu_init_late()
922 	 */
923 	initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
924 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
925 
926 
927 	/* Xen callbacks */
928 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
929 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
930 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
931 
932 	return;
933 }
934 #else /* i386 */
935 extern union descriptor *ldt;
936 extern void Xsyscall(void);
937 
938 static void
939 xen_init_i386_vcpuctxt(struct cpu_info *ci,
940 			struct vcpu_guest_context *initctx,
941 			void targeteip(struct cpu_info *))
942 {
943 	/* page frames to point at GDT */
944 	extern int gdt_size;
945 	paddr_t frames[16];
946 	psize_t gdt_ents;
947 
948 	struct lwp *l;
949 	struct pcb *pcb;
950 
951 	volatile struct vcpu_info *vci;
952 
953 	KASSERT(ci != NULL);
954 	KASSERT(ci != &cpu_info_primary);
955 	KASSERT(initctx != NULL);
956 	KASSERT(targeteip != NULL);
957 
958 	memset(initctx, 0, sizeof *initctx);
959 
960 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
961 	KASSERT(gdt_ents <= 16);
962 
963 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
964 
965 	/*
966 	 * Initialise the vcpu context:
967 	 * We use this cpu's idle_loop() pcb context.
968 	 */
969 
970 	l = ci->ci_data.cpu_idlelwp;
971 
972 	KASSERT(l != NULL);
973 	pcb = lwp_getpcb(l);
974 	KASSERT(pcb != NULL);
975 
976 	/* resume with interrupts off */
977 	vci = ci->ci_vcpu;
978 	vci->evtchn_upcall_mask = 1;
979 	xen_mb();
980 
981 	/* resume in kernel-mode */
982 	initctx->flags = VGCF_in_kernel | VGCF_online;
983 
984 	/* Stack frame setup for cpu_hatch():
985 	 * We arrange for the stack frame for cpu_hatch() to
986 	 * appear as a callee frame of lwp_trampoline(). Being a
987 	 * leaf frame prevents trampling on any of the MD stack setup
988 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
989 	 */
990 
991 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
992 						      arg1 */
993 	{ /* targeteip(ci); */
994 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
995 		arg[1] = (uint32_t) ci; /* arg1 */
996 
997 	}
998 
999 	initctx->user_regs.eip = (vaddr_t) targeteip;
1000 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
1001 	initctx->user_regs.eflags |= pcb->pcb_iopl;
1002 
1003 	/* Data segments */
1004 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1005 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1006 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1007 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1008 
1009 	/* GDT */
1010 	memcpy(initctx->gdt_frames, frames, sizeof frames);
1011 	initctx->gdt_ents = gdt_ents;
1012 
1013 	/* LDT */
1014 	initctx->ldt_base = (unsigned long) ldt;
1015 	initctx->ldt_ents = NLDT;
1016 
1017 	/* Kernel context state */
1018 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1019 	initctx->kernel_sp = pcb->pcb_esp0;
1020 	initctx->ctrlreg[0] = pcb->pcb_cr0;
1021 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1022 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1023 	/*
1024 	 * Use pmap_kernel() L4 PD directly, until we setup the
1025 	 * per-cpu L4 PD in pmap_cpu_init_late()
1026 	 */
1027 	initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
1028 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
1029 
1030 
1031 	/* Xen callbacks */
1032 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1033 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1034 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1035 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1036 
1037 	return;
1038 }
1039 #endif /* __x86_64__ */
1040 
1041 int
1042 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1043 {
1044 
1045 	int hyperror;
1046 	struct vcpu_guest_context vcpuctx;
1047 
1048 	KASSERT(ci != NULL);
1049 	KASSERT(ci != &cpu_info_primary);
1050 	KASSERT(ci->ci_flags & CPUF_AP);
1051 
1052 #ifdef __x86_64__
1053 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1054 #else  /* i386 */
1055 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1056 #endif /* __x86_64__ */
1057 
1058 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
1059 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1060 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1061 		return hyperror;
1062 	}
1063 
1064 	/* Start it up */
1065 
1066 	/* First bring it down - the Xen documentation conveniently omits this slight detail. */
1067 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1068 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1069 		return hyperror;
1070 	}
1071 
1072 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1073 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1074 		return hyperror;
1075 	}
1076 
1077 	if (!vcpu_is_up(ci)) {
1078 		aprint_error(": did not come up\n");
1079 		return -1;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 void
1086 mp_cpu_start_cleanup(struct cpu_info *ci)
1087 {
1088 #if 0
1089 	/*
1090 	 * Ensure the NVRAM reset byte contains something vaguely sane.
1091 	 */
1092 
1093 	outb(IO_RTC, NVRAM_RESET);
1094 	outb(IO_RTC+1, NVRAM_RESET_RST);
1095 #endif
1096 	if (vcpu_is_up(ci)) {
1097 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1098 	}
1099 	else {
1100 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1101 	}
1102 
1103 }
1104 
1105 void
1106 cpu_init_msrs(struct cpu_info *ci, bool full)
1107 {
1108 #ifdef __x86_64__
1109 	if (full) {
1110 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1111 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1112 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1113 	}
1114 #endif	/* __x86_64__ */
1115 
1116 	if (cpu_feature[2] & CPUID_NOX)
1117 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1118 
1119 }
1120 
1121 void
1122 cpu_offline_md(void)
1123 {
1124         int s;
1125 
1126         s = splhigh();
1127 #ifdef __i386__
1128         npxsave_cpu(true);
1129 #else
1130         fpusave_cpu(true);
1131 #endif
1132         splx(s);
1133 }
1134 
1135 #if 0
1136 /* XXX joerg restructure and restart CPUs individually */
1137 static bool
1138 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1139 {
1140 	struct cpu_softc *sc = device_private(dv);
1141 	struct cpu_info *ci = sc->sc_info;
1142 	int err;
1143 
1144 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
1145 		return true;
1146 
1147 	cpufreq_suspend(ci);
1148 
1149 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1150 		return true;
1151 
1152 	if (ci->ci_data.cpu_idlelwp == NULL)
1153 		return true;
1154 
1155 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1156 
1157 	if (sc->sc_wasonline) {
1158 		mutex_enter(&cpu_lock);
1159 		err = cpu_setstate(ci, false);
1160 		mutex_exit(&cpu_lock);
1161 
1162 		if (err != 0)
1163 			return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 static bool
1170 cpu_resume(device_t dv, const pmf_qual_t *qual)
1171 {
1172 	struct cpu_softc *sc = device_private(dv);
1173 	struct cpu_info *ci = sc->sc_info;
1174 	int err = 0;
1175 
1176 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
1177 		return true;
1178 
1179 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1180 		goto out;
1181 
1182 	if (ci->ci_data.cpu_idlelwp == NULL)
1183 		goto out;
1184 
1185 	if (sc->sc_wasonline) {
1186 		mutex_enter(&cpu_lock);
1187 		err = cpu_setstate(ci, true);
1188 		mutex_exit(&cpu_lock);
1189 	}
1190 
1191 out:
1192 	if (err != 0)
1193 		return false;
1194 
1195 	cpufreq_resume(ci);
1196 
1197 	return true;
1198 }
1199 #endif
1200 
1201 void
1202 cpu_get_tsc_freq(struct cpu_info *ci)
1203 {
1204 	uint32_t vcpu_tversion;
1205 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1206 
1207 	vcpu_tversion = tinfo->version;
1208 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1209 
1210 	uint64_t freq = 1000000000ULL << 32;
1211 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1212 	if ( tinfo->tsc_shift < 0 )
1213 		freq = freq << -tinfo->tsc_shift;
1214 	else
1215 		freq = freq >> tinfo->tsc_shift;
1216 	ci->ci_data.cpu_cc_freq = freq;
1217 }
1218 
1219 void
1220 x86_cpu_idle_xen(void)
1221 {
1222 	struct cpu_info *ci = curcpu();
1223 
1224 	KASSERT(ci->ci_ilevel == IPL_NONE);
1225 
1226 	x86_disable_intr();
1227 	if (!__predict_false(ci->ci_want_resched)) {
1228 		idle_block();
1229 	} else {
1230 		x86_enable_intr();
1231 	}
1232 }
1233 
1234 /*
1235  * Loads pmap for the current CPU.
1236  */
1237 void
1238 cpu_load_pmap(struct pmap *pmap)
1239 {
1240 #ifdef i386
1241 #ifdef PAE
1242 	int i, s;
1243 	struct cpu_info *ci;
1244 
1245 	s = splvm(); /* just to be safe */
1246 	xpq_queue_lock();
1247 	ci = curcpu();
1248 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1249 	/* don't update the kernel L3 slot */
1250 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
1251 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1252 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1253 	}
1254 	xpq_queue_unlock();
1255 	splx(s);
1256 	tlbflush();
1257 #else /* PAE */
1258 	lcr3(pmap_pdirpa(pmap, 0));
1259 #endif /* PAE */
1260 #endif /* i386 */
1261 
1262 #ifdef __x86_64__
1263 	int i, s;
1264 	pd_entry_t *old_pgd, *new_pgd;
1265 	paddr_t addr;
1266 	struct cpu_info *ci;
1267 
1268 	/* kernel pmap always in cr3 and should never go in user cr3 */
1269 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1270 		ci = curcpu();
1271 		/*
1272 		 * Map user space address in kernel space and load
1273 		 * user cr3
1274 		 */
1275 		s = splvm();
1276 		new_pgd = pmap->pm_pdir;
1277 		old_pgd = pmap_kernel()->pm_pdir;
1278 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1279 		for (i = 0; i < PDIR_SLOT_PTE;
1280 		    i++, addr += sizeof(pd_entry_t)) {
1281 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1282 				xpq_queue_pte_update(addr, new_pgd[i]);
1283 		}
1284 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1285 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1286 		tlbflush();
1287 		splx(s);
1288 	}
1289 #endif /* __x86_64__ */
1290 }
1291 
1292 /*
1293  * Notify all other cpus to halt.
1294  */
1295 
1296 void
1297 cpu_broadcast_halt(void)
1298 {
1299 	xen_broadcast_ipi(XEN_IPI_HALT);
1300 }
1301 
1302 /*
1303  * Send a dummy ipi to a cpu.
1304  */
1305 
1306 void
1307 cpu_kick(struct cpu_info *ci)
1308 {
1309 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
1310 }
1311