xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: cpu.c,v 1.103 2015/12/13 16:11:14 christos Exp $	*/
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
3 
4 /*-
5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by RedBack Networks Inc.
11  *
12  * Author: Bill Sommerfeld
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999 Stefan Grefen
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *      This product includes software developed by the NetBSD
50  *      Foundation, Inc. and its contributors.
51  * 4. Neither the name of The NetBSD Foundation nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.103 2015/12/13 16:11:14 christos Exp $");
70 
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h"		/* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76 
77 #include "lapic.h"
78 #include "ioapic.h"
79 
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90 
91 #include <uvm/uvm.h>
92 
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 
105 #include <x86/fpu.h>
106 
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110 
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116 
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119 
120 static int	cpu_match(device_t, cfdata_t, void *);
121 static void	cpu_attach(device_t, device_t, void *);
122 static void	cpu_defer(device_t);
123 static int	cpu_rescan(device_t, const char *, const int *);
124 static void	cpu_childdetached(device_t, device_t);
125 static int	vcpu_match(device_t, cfdata_t, void *);
126 static void	vcpu_attach(device_t, device_t, void *);
127 static void	cpu_attach_common(device_t, device_t, void *);
128 void		cpu_offline_md(void);
129 
130 struct cpu_softc {
131 	device_t sc_dev;		/* device tree glue */
132 	struct cpu_info *sc_info;	/* pointer to CPU info */
133 	bool sc_wasonline;
134 };
135 
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 				      mp_cpu_start_cleanup };
140 
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143 
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145     vcpu_match, vcpu_attach, NULL, NULL);
146 
147 /*
148  * Statically-allocated CPU info for the primary CPU (or the only
149  * CPU, on uniprocessors).  The CPU info list is initialized to
150  * point at it.
151  */
152 #ifdef TRAPLOG
153 #include <machine/tlog.h>
154 struct tlog tlog_primary;
155 #endif
156 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
157 	.ci_dev = 0,
158 	.ci_self = &cpu_info_primary,
159 	.ci_idepth = -1,
160 	.ci_curlwp = &lwp0,
161 	.ci_curldt = -1,
162 #ifdef TRAPLOG
163 	.ci_tlog = &tlog_primary,
164 #endif
165 
166 };
167 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
168 	.ci_dev = 0,
169 	.ci_self = &phycpu_info_primary,
170 };
171 
172 struct cpu_info *cpu_info_list = &cpu_info_primary;
173 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
174 
175 uint32_t cpu_feature[7]; /* X86 CPUID feature bits
176 			  *	[0] basic features %edx
177 			  *	[1] basic features %ecx
178 			  *	[2] extended features %edx
179 			  *	[3] extended features %ecx
180 			  *	[4] VIA padlock features
181 			  *	[5] structured extended features cpuid.7:%ebx
182 			  *	[6] structured extended features cpuid.7:%ecx
183 			  */
184 
185 bool x86_mp_online;
186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187 
188 #if defined(MULTIPROCESSOR)
189 void    	cpu_hatch(void *);
190 static void    	cpu_boot_secondary(struct cpu_info *ci);
191 static void    	cpu_start_secondary(struct cpu_info *ci);
192 #endif	/* MULTIPROCESSOR */
193 
194 static int
195 cpu_match(device_t parent, cfdata_t match, void *aux)
196 {
197 
198 	return 1;
199 }
200 
201 static void
202 cpu_attach(device_t parent, device_t self, void *aux)
203 {
204 	struct cpu_softc *sc = device_private(self);
205 	struct cpu_attach_args *caa = aux;
206 	struct cpu_info *ci;
207 	uintptr_t ptr;
208 	static int nphycpu = 0;
209 
210 	sc->sc_dev = self;
211 
212 	/*
213 	 * If we're an Application Processor, allocate a cpu_info
214 	 * If we're the first attached CPU use the primary cpu_info,
215 	 * otherwise allocate a new one
216 	 */
217 	aprint_naive("\n");
218 	aprint_normal("\n");
219 	if (nphycpu > 0) {
220 		struct cpu_info *tmp;
221 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
222 		    KM_SLEEP);
223 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
224 		ci->ci_curldt = -1;
225 
226 		tmp = phycpu_info_list;
227 		while (tmp->ci_next)
228 			tmp = tmp->ci_next;
229 
230 		tmp->ci_next = ci;
231 	} else {
232 		ci = &phycpu_info_primary;
233 	}
234 
235 	ci->ci_self = ci;
236 	sc->sc_info = ci;
237 
238 	ci->ci_dev = self;
239 	ci->ci_acpiid = caa->cpu_id;
240 	ci->ci_cpuid = caa->cpu_number;
241 	ci->ci_vcpu = NULL;
242 	ci->ci_index = nphycpu++;
243 
244 	if (!pmf_device_register(self, NULL, NULL))
245 		aprint_error_dev(self, "couldn't establish power handler\n");
246 
247 	(void)config_defer(self, cpu_defer);
248 }
249 
250 static void
251 cpu_defer(device_t self)
252 {
253 	cpu_rescan(self, NULL, NULL);
254 }
255 
256 static int
257 cpu_rescan(device_t self, const char *ifattr, const int *locators)
258 {
259 	struct cpu_softc *sc = device_private(self);
260 	struct cpufeature_attach_args cfaa;
261 	struct cpu_info *ci = sc->sc_info;
262 
263 	memset(&cfaa, 0, sizeof(cfaa));
264 	cfaa.ci = ci;
265 
266 	if (ifattr_match(ifattr, "cpufeaturebus")) {
267 
268 		if (ci->ci_frequency == NULL) {
269 			cfaa.name = "frequency";
270 			ci->ci_frequency = config_found_ia(self,
271 			    "cpufeaturebus", &cfaa, NULL);
272 		}
273 	}
274 
275 	return 0;
276 }
277 
278 static void
279 cpu_childdetached(device_t self, device_t child)
280 {
281 	struct cpu_softc *sc = device_private(self);
282 	struct cpu_info *ci = sc->sc_info;
283 
284 	if (ci->ci_frequency == child)
285 		ci->ci_frequency = NULL;
286 }
287 
288 static int
289 vcpu_match(device_t parent, cfdata_t match, void *aux)
290 {
291 	struct vcpu_attach_args *vcaa = aux;
292 	struct vcpu_runstate_info vcr;
293 	int error;
294 
295 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
296 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
297 					   vcaa->vcaa_caa.cpu_number,
298 					   &vcr);
299 		switch (error) {
300 		case 0:
301 			return 1;
302 		case -ENOENT:
303 			return 0;
304 		default:
305 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
306 		}
307 	}
308 
309 	return 0;
310 }
311 
312 static void
313 vcpu_attach(device_t parent, device_t self, void *aux)
314 {
315 	struct vcpu_attach_args *vcaa = aux;
316 
317 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
318 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
319 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
320 
321 	if (!pmf_device_register(self, NULL, NULL))
322 		aprint_error_dev(self, "couldn't establish power handler\n");
323 }
324 
325 static int
326 vcpu_is_up(struct cpu_info *ci)
327 {
328 	KASSERT(ci != NULL);
329 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
330 }
331 
332 static void
333 cpu_vm_init(struct cpu_info *ci)
334 {
335 	int ncolors = 2, i;
336 
337 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
338 		struct x86_cache_info *cai;
339 		int tcolors;
340 
341 		cai = &ci->ci_cinfo[i];
342 
343 		tcolors = atop(cai->cai_totalsize);
344 		switch(cai->cai_associativity) {
345 		case 0xff:
346 			tcolors = 1; /* fully associative */
347 			break;
348 		case 0:
349 		case 1:
350 			break;
351 		default:
352 			tcolors /= cai->cai_associativity;
353 		}
354 		ncolors = max(ncolors, tcolors);
355 	}
356 
357 	/*
358 	 * Knowing the size of the largest cache on this CPU, potentially
359 	 * re-color our pages.
360 	 */
361 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
362 	uvm_page_recolor(ncolors);
363 	pmap_tlb_cpu_init(ci);
364 }
365 
366 static void
367 cpu_attach_common(device_t parent, device_t self, void *aux)
368 {
369 	struct cpu_softc *sc = device_private(self);
370 	struct cpu_attach_args *caa = aux;
371 	struct cpu_info *ci;
372 	uintptr_t ptr;
373 	int cpunum = caa->cpu_number;
374 	static bool again = false;
375 
376 	sc->sc_dev = self;
377 
378 	/*
379 	 * If we're an Application Processor, allocate a cpu_info
380 	 * structure, otherwise use the primary's.
381 	 */
382 	if (caa->cpu_role == CPU_ROLE_AP) {
383 		aprint_naive(": Application Processor\n");
384 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
385 		    KM_SLEEP);
386 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
387 		memset(ci, 0, sizeof(*ci));
388 #ifdef TRAPLOG
389 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
390 #endif
391 	} else {
392 		aprint_naive(": %s Processor\n",
393 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
394 		ci = &cpu_info_primary;
395 	}
396 
397 	ci->ci_self = ci;
398 	sc->sc_info = ci;
399 	ci->ci_dev = self;
400 	ci->ci_cpuid = cpunum;
401 
402 	KASSERT(HYPERVISOR_shared_info != NULL);
403 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
404 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
405 
406 	KASSERT(ci->ci_func == 0);
407 	ci->ci_func = caa->cpu_func;
408 	aprint_normal("\n");
409 
410 	/* Must be called before mi_cpu_attach(). */
411 	cpu_vm_init(ci);
412 
413 	if (caa->cpu_role == CPU_ROLE_AP) {
414 		int error;
415 
416 		error = mi_cpu_attach(ci);
417 
418 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 		if (error != 0) {
420 			aprint_error_dev(self,
421 			    "mi_cpu_attach failed with %d\n", error);
422 			return;
423 		}
424 
425 	} else {
426 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
427 	}
428 
429 	KASSERT(ci->ci_cpuid == ci->ci_index);
430 #ifdef __x86_64__
431 	/* No user PGD mapped for this CPU yet */
432 	ci->ci_xen_current_user_pgd = 0;
433 #endif
434 #if defined(__x86_64__) || defined(PAE)
435 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
436 #endif
437 	pmap_reference(pmap_kernel());
438 	ci->ci_pmap = pmap_kernel();
439 	ci->ci_tlbstate = TLBSTATE_STALE;
440 
441 	/*
442 	 * Boot processor may not be attached first, but the below
443 	 * must be done to allow booting other processors.
444 	 */
445 	if (!again) {
446 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
447 		/* Basic init. */
448 		cpu_intr_init(ci);
449 		cpu_get_tsc_freq(ci);
450 		cpu_init(ci);
451 		pmap_cpu_init_late(ci);
452 
453 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
454 		xen_ipi_init();
455 
456 		/* Make sure DELAY() is initialized. */
457 		DELAY(1);
458 		again = true;
459 	}
460 
461 	/* further PCB init done later. */
462 
463 	switch (caa->cpu_role) {
464 	case CPU_ROLE_SP:
465 		atomic_or_32(&ci->ci_flags, CPUF_SP);
466 		cpu_identify(ci);
467 		x86_cpu_idle_init();
468 
469 		break;
470 
471 	case CPU_ROLE_BP:
472 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
473 		cpu_identify(ci);
474 		x86_cpu_idle_init();
475 
476 		break;
477 
478 	case CPU_ROLE_AP:
479 		atomic_or_32(&ci->ci_flags, CPUF_AP);
480 
481 		/*
482 		 * report on an AP
483 		 */
484 
485 #if defined(MULTIPROCESSOR)
486 		/* interrupt handler stack */
487 		cpu_intr_init(ci);
488 
489 		/* Setup per-cpu memory for gdt */
490 		gdt_alloc_cpu(ci);
491 
492 		pmap_cpu_init_late(ci);
493 		cpu_start_secondary(ci);
494 
495 		if (ci->ci_flags & CPUF_PRESENT) {
496 			struct cpu_info *tmp;
497 
498 			cpu_identify(ci);
499 			tmp = cpu_info_list;
500 			while (tmp->ci_next)
501 				tmp = tmp->ci_next;
502 
503 			tmp->ci_next = ci;
504 		}
505 #else
506 		aprint_error_dev(ci->ci_dev, "not started\n");
507 #endif
508 		break;
509 
510 	default:
511 		panic("unknown processor type??\n");
512 	}
513 
514 #ifdef MPVERBOSE
515 	if (mp_verbose) {
516 		struct lwp *l = ci->ci_data.cpu_idlelwp;
517 		struct pcb *pcb = lwp_getpcb(l);
518 
519 		aprint_verbose_dev(self,
520 		    "idle lwp at %p, idle sp at 0x%p\n",
521 		    l,
522 #ifdef i386
523 		    (void *)pcb->pcb_esp
524 #else /* i386 */
525 		    (void *)pcb->pcb_rsp
526 #endif /* i386 */
527 		);
528 
529 	}
530 #endif /* MPVERBOSE */
531 }
532 
533 /*
534  * Initialize the processor appropriately.
535  */
536 
537 void
538 cpu_init(struct cpu_info *ci)
539 {
540 
541 	/*
542 	 * If we have FXSAVE/FXRESTOR, use them.
543 	 */
544 	if (cpu_feature[0] & CPUID_FXSR) {
545 		lcr4(rcr4() | CR4_OSFXSR);
546 
547 		/*
548 		 * If we have SSE/SSE2, enable XMM exceptions.
549 		 */
550 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
551 			lcr4(rcr4() | CR4_OSXMMEXCPT);
552 	}
553 
554 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
555 }
556 
557 
558 #ifdef MULTIPROCESSOR
559 
560 void
561 cpu_boot_secondary_processors(void)
562 {
563 	struct cpu_info *ci;
564 	u_long i;
565 	for (i = 0; i < maxcpus; i++) {
566 		ci = cpu_lookup(i);
567 		if (ci == NULL)
568 			continue;
569 		if (ci->ci_data.cpu_idlelwp == NULL)
570 			continue;
571 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
572 			continue;
573 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
574 			continue;
575 		cpu_boot_secondary(ci);
576 	}
577 
578 	x86_mp_online = true;
579 }
580 
581 static void
582 cpu_init_idle_lwp(struct cpu_info *ci)
583 {
584 	struct lwp *l = ci->ci_data.cpu_idlelwp;
585 	struct pcb *pcb = lwp_getpcb(l);
586 
587 	pcb->pcb_cr0 = rcr0();
588 }
589 
590 void
591 cpu_init_idle_lwps(void)
592 {
593 	struct cpu_info *ci;
594 	u_long i;
595 
596 	for (i = 0; i < maxcpus; i++) {
597 		ci = cpu_lookup(i);
598 		if (ci == NULL)
599 			continue;
600 		if (ci->ci_data.cpu_idlelwp == NULL)
601 			continue;
602 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
603 			continue;
604 		cpu_init_idle_lwp(ci);
605 	}
606 }
607 
608 static void
609 cpu_start_secondary(struct cpu_info *ci)
610 {
611 	int i;
612 
613 	aprint_debug_dev(ci->ci_dev, "starting\n");
614 
615 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
616 
617 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
618 		return;
619 	}
620 
621 	/*
622 	 * wait for it to become ready
623 	 */
624 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
625 		delay(10);
626 	}
627 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
628 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
629 #if defined(MPDEBUG) && defined(DDB)
630 		printf("dropping into debugger; continue from here to resume boot\n");
631 		Debugger();
632 #endif
633 	}
634 
635 	CPU_START_CLEANUP(ci);
636 }
637 
638 void
639 cpu_boot_secondary(struct cpu_info *ci)
640 {
641 	int i;
642 	atomic_or_32(&ci->ci_flags, CPUF_GO);
643 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
644 		delay(10);
645 	}
646 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
647 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
648 #if defined(MPDEBUG) && defined(DDB)
649 		printf("dropping into debugger; continue from here to resume boot\n");
650 		Debugger();
651 #endif
652 	}
653 }
654 
655 /*
656  * APs end up here immediately after initialisation and VCPUOP_up in
657  * mp_cpu_start().
658  * At this point, we are running in the idle pcb/idle stack of the new
659  * CPU.  This function jumps to the idle loop and starts looking for
660  * work.
661  */
662 extern void x86_64_tls_switch(struct lwp *);
663 void
664 cpu_hatch(void *v)
665 {
666 	struct cpu_info *ci = (struct cpu_info *)v;
667 	struct pcb *pcb;
668 	int s, i;
669 
670 	/* Setup TLS and kernel GS/FS */
671 	cpu_init_msrs(ci, true);
672 	cpu_init_idt();
673 	gdt_init_cpu(ci);
674 
675 	cpu_probe(ci);
676 
677 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
678 
679 	while ((ci->ci_flags & CPUF_GO) == 0) {
680 		/* Don't use delay, boot CPU may be patching the text. */
681 		for (i = 10000; i != 0; i--)
682 			x86_pause();
683 	}
684 
685 	/* Because the text may have been patched in x86_patch(). */
686 	x86_flush();
687 	tlbflushg();
688 
689 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
690 
691 	pcb = lwp_getpcb(curlwp);
692 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
693 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
694 
695 	xen_ipi_init();
696 
697 	xen_initclocks();
698 
699 #ifdef __x86_64__
700 	fpuinit(ci);
701 #endif
702 
703 	lldt(GSEL(GLDT_SEL, SEL_KPL));
704 
705 	cpu_init(ci);
706 	cpu_get_tsc_freq(ci);
707 
708 	s = splhigh();
709 	x86_enable_intr();
710 	splx(s);
711 
712 	aprint_debug_dev(ci->ci_dev, "running\n");
713 
714 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
715 
716 	idle_loop(NULL);
717 	KASSERT(false);
718 }
719 
720 #if defined(DDB)
721 
722 #include <ddb/db_output.h>
723 #include <machine/db_machdep.h>
724 
725 /*
726  * Dump CPU information from ddb.
727  */
728 void
729 cpu_debug_dump(void)
730 {
731 	struct cpu_info *ci;
732 	CPU_INFO_ITERATOR cii;
733 
734 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
735 	for (CPU_INFO_FOREACH(cii, ci)) {
736 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
737 		    ci,
738 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
739 		    (long)ci->ci_cpuid,
740 		    ci->ci_flags, ci->ci_ipis,
741 		    ci->ci_curlwp,
742 		    ci->ci_fpcurlwp);
743 	}
744 }
745 #endif /* DDB */
746 
747 #endif /* MULTIPROCESSOR */
748 
749 extern void hypervisor_callback(void);
750 extern void failsafe_callback(void);
751 #ifdef __x86_64__
752 typedef void (vector)(void);
753 extern vector Xsyscall, Xsyscall32;
754 #endif
755 
756 /*
757  * Setup the "trampoline". On Xen, we setup nearly all cpu context
758  * outside a trampoline, so we prototype and call targetip like so:
759  * void targetip(struct cpu_info *);
760  */
761 
762 static void
763 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
764 {
765 	int i;
766 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
767 
768 		frames[i] = ((paddr_t) xpmap_ptetomach(
769 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
770 			>> PAGE_SHIFT;
771 
772 		/* Mark Read-only */
773 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
774 		    PG_RW);
775 	}
776 }
777 
778 #ifdef __x86_64__
779 extern char *ldtstore;
780 
781 static void
782 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
783 			struct vcpu_guest_context *initctx,
784 			void targetrip(struct cpu_info *))
785 {
786 	/* page frames to point at GDT */
787 	extern int gdt_size;
788 	paddr_t frames[16];
789 	psize_t gdt_ents;
790 
791 	struct lwp *l;
792 	struct pcb *pcb;
793 
794 	volatile struct vcpu_info *vci;
795 
796 	KASSERT(ci != NULL);
797 	KASSERT(ci != &cpu_info_primary);
798 	KASSERT(initctx != NULL);
799 	KASSERT(targetrip != NULL);
800 
801 	memset(initctx, 0, sizeof *initctx);
802 
803 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
804 	KASSERT(gdt_ents <= 16);
805 
806 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
807 
808 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
809 
810 	l = ci->ci_data.cpu_idlelwp;
811 
812 	KASSERT(l != NULL);
813 	pcb = lwp_getpcb(l);
814 	KASSERT(pcb != NULL);
815 
816 	/* resume with interrupts off */
817 	vci = ci->ci_vcpu;
818 	vci->evtchn_upcall_mask = 1;
819 	xen_mb();
820 
821 	/* resume in kernel-mode */
822 	initctx->flags = VGCF_in_kernel | VGCF_online;
823 
824 	/* Stack and entry points:
825 	 * We arrange for the stack frame for cpu_hatch() to
826 	 * appear as a callee frame of lwp_trampoline(). Being a
827 	 * leaf frame prevents trampling on any of the MD stack setup
828 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
829 	 */
830 
831 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
832 	initctx->user_regs.rip = (vaddr_t) targetrip;
833 
834 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
835 
836 	initctx->user_regs.rflags = pcb->pcb_flags;
837 	initctx->user_regs.rsp = pcb->pcb_rsp;
838 
839 	/* Data segments */
840 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
841 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
842 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
843 
844 	/* GDT */
845 	memcpy(initctx->gdt_frames, frames, sizeof frames);
846 	initctx->gdt_ents = gdt_ents;
847 
848 	/* LDT */
849 	initctx->ldt_base = (unsigned long) ldtstore;
850 	initctx->ldt_ents = LDT_SIZE >> 3;
851 
852 	/* Kernel context state */
853 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
854 	initctx->kernel_sp = pcb->pcb_rsp0;
855 	initctx->ctrlreg[0] = pcb->pcb_cr0;
856 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
857 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
858 	/*
859 	 * Use pmap_kernel() L4 PD directly, until we setup the
860 	 * per-cpu L4 PD in pmap_cpu_init_late()
861 	 */
862 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
863 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
864 
865 
866 	/* Xen callbacks */
867 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
868 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
869 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
870 
871 	return;
872 }
873 #else /* i386 */
874 extern union descriptor *ldt;
875 extern void Xsyscall(void);
876 
877 static void
878 xen_init_i386_vcpuctxt(struct cpu_info *ci,
879 			struct vcpu_guest_context *initctx,
880 			void targeteip(struct cpu_info *))
881 {
882 	/* page frames to point at GDT */
883 	extern int gdt_size;
884 	paddr_t frames[16];
885 	psize_t gdt_ents;
886 
887 	struct lwp *l;
888 	struct pcb *pcb;
889 
890 	volatile struct vcpu_info *vci;
891 
892 	KASSERT(ci != NULL);
893 	KASSERT(ci != &cpu_info_primary);
894 	KASSERT(initctx != NULL);
895 	KASSERT(targeteip != NULL);
896 
897 	memset(initctx, 0, sizeof *initctx);
898 
899 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
900 	KASSERT(gdt_ents <= 16);
901 
902 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
903 
904 	/*
905 	 * Initialise the vcpu context:
906 	 * We use this cpu's idle_loop() pcb context.
907 	 */
908 
909 	l = ci->ci_data.cpu_idlelwp;
910 
911 	KASSERT(l != NULL);
912 	pcb = lwp_getpcb(l);
913 	KASSERT(pcb != NULL);
914 
915 	/* resume with interrupts off */
916 	vci = ci->ci_vcpu;
917 	vci->evtchn_upcall_mask = 1;
918 	xen_mb();
919 
920 	/* resume in kernel-mode */
921 	initctx->flags = VGCF_in_kernel | VGCF_online;
922 
923 	/* Stack frame setup for cpu_hatch():
924 	 * We arrange for the stack frame for cpu_hatch() to
925 	 * appear as a callee frame of lwp_trampoline(). Being a
926 	 * leaf frame prevents trampling on any of the MD stack setup
927 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
928 	 */
929 
930 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
931 						      arg1 */
932 	{ /* targeteip(ci); */
933 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
934 		arg[1] = (uint32_t) ci; /* arg1 */
935 
936 	}
937 
938 	initctx->user_regs.eip = (vaddr_t) targeteip;
939 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
940 	initctx->user_regs.eflags |= pcb->pcb_iopl;
941 
942 	/* Data segments */
943 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
944 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
945 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
946 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
947 
948 	/* GDT */
949 	memcpy(initctx->gdt_frames, frames, sizeof frames);
950 	initctx->gdt_ents = gdt_ents;
951 
952 	/* LDT */
953 	initctx->ldt_base = (unsigned long) ldt;
954 	initctx->ldt_ents = NLDT;
955 
956 	/* Kernel context state */
957 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
958 	initctx->kernel_sp = pcb->pcb_esp0;
959 	initctx->ctrlreg[0] = pcb->pcb_cr0;
960 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
961 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
962 #ifdef PAE
963 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
964 #else /* PAE */
965 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
966 #endif /* PAE */
967 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
968 
969 
970 	/* Xen callbacks */
971 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
972 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
973 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
974 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
975 
976 	return;
977 }
978 #endif /* __x86_64__ */
979 
980 int
981 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
982 {
983 
984 	int hyperror;
985 	struct vcpu_guest_context vcpuctx;
986 
987 	KASSERT(ci != NULL);
988 	KASSERT(ci != &cpu_info_primary);
989 	KASSERT(ci->ci_flags & CPUF_AP);
990 
991 #ifdef __x86_64__
992 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
993 #else  /* i386 */
994 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
995 #endif /* __x86_64__ */
996 
997 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
998 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
999 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1000 		return hyperror;
1001 	}
1002 
1003 	/* Start it up */
1004 
1005 	/* First bring it down */
1006 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1007 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1008 		return hyperror;
1009 	}
1010 
1011 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1012 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1013 		return hyperror;
1014 	}
1015 
1016 	if (!vcpu_is_up(ci)) {
1017 		aprint_error(": did not come up\n");
1018 		return -1;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 void
1025 mp_cpu_start_cleanup(struct cpu_info *ci)
1026 {
1027 	if (vcpu_is_up(ci)) {
1028 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1029 	}
1030 	else {
1031 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1032 	}
1033 
1034 }
1035 
1036 void
1037 cpu_init_msrs(struct cpu_info *ci, bool full)
1038 {
1039 #ifdef __x86_64__
1040 	if (full) {
1041 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1042 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1043 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1044 	}
1045 #endif	/* __x86_64__ */
1046 
1047 	if (cpu_feature[2] & CPUID_NOX)
1048 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1049 
1050 }
1051 
1052 void
1053 cpu_offline_md(void)
1054 {
1055         int s;
1056 
1057         s = splhigh();
1058         fpusave_cpu(true);
1059         splx(s);
1060 }
1061 
1062 void
1063 cpu_get_tsc_freq(struct cpu_info *ci)
1064 {
1065 	uint32_t vcpu_tversion;
1066 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1067 
1068 	vcpu_tversion = tinfo->version;
1069 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1070 
1071 	uint64_t freq = 1000000000ULL << 32;
1072 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1073 	if ( tinfo->tsc_shift < 0 )
1074 		freq = freq << -tinfo->tsc_shift;
1075 	else
1076 		freq = freq >> tinfo->tsc_shift;
1077 	ci->ci_data.cpu_cc_freq = freq;
1078 }
1079 
1080 void
1081 x86_cpu_idle_xen(void)
1082 {
1083 	struct cpu_info *ci = curcpu();
1084 
1085 	KASSERT(ci->ci_ilevel == IPL_NONE);
1086 
1087 	x86_disable_intr();
1088 	if (!__predict_false(ci->ci_want_resched)) {
1089 		idle_block();
1090 	} else {
1091 		x86_enable_intr();
1092 	}
1093 }
1094 
1095 /*
1096  * Loads pmap for the current CPU.
1097  */
1098 void
1099 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1100 {
1101 	KASSERT(pmap != pmap_kernel());
1102 
1103 #if defined(__x86_64__) || defined(PAE)
1104 	struct cpu_info *ci = curcpu();
1105 	cpuid_t cid = cpu_index(ci);
1106 
1107 	mutex_enter(&ci->ci_kpm_mtx);
1108 	/* make new pmap visible to xen_kpm_sync() */
1109 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1110 #endif
1111 #ifdef i386
1112 #ifdef PAE
1113 	{
1114 		int i;
1115 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1116 		/* don't update the kernel L3 slot */
1117 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
1118 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1119 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1120 		}
1121 		tlbflush();
1122 	}
1123 #else /* PAE */
1124 	lcr3(pmap_pdirpa(pmap, 0));
1125 #endif /* PAE */
1126 #endif /* i386 */
1127 
1128 #ifdef __x86_64__
1129 	{
1130 		int i;
1131 		pd_entry_t *new_pgd;
1132 		paddr_t l4_pd_ma;
1133 
1134 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1135 
1136 		/*
1137 		 * Map user space address in kernel space and load
1138 		 * user cr3
1139 		 */
1140 		new_pgd = pmap->pm_pdir;
1141 		KASSERT(pmap == ci->ci_pmap);
1142 
1143 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1144 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
1145 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1146 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1147 				xpq_queue_pte_update(
1148 				   l4_pd_ma + i * sizeof(pd_entry_t),
1149 				    new_pgd[i]);
1150 			}
1151 		}
1152 
1153 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1154 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1155 
1156 		tlbflush();
1157 	}
1158 
1159 #endif /* __x86_64__ */
1160 #if defined(__x86_64__) || defined(PAE)
1161 	/* old pmap no longer visible to xen_kpm_sync() */
1162 	if (oldpmap != pmap_kernel()) {
1163 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1164 	}
1165 	mutex_exit(&ci->ci_kpm_mtx);
1166 #endif
1167 }
1168 
1169  /*
1170   * pmap_cpu_init_late: perform late per-CPU initialization.
1171   * Short note about percpu PDIR pages:
1172   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1173   * tables. This is to get around Xen's pagetable setup constraints for
1174   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1175   * will refuse to pin a table setup this way.) and for multiple cpus
1176   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1177   *
1178   * What this means for us is that the PDIR of the pmap_kernel() is
1179   * considered to be a canonical "SHADOW" PDIR with the following
1180   * properties:
1181   * - Its recursive mapping points to itself
1182   * - per-cpu recursive mappings point to themselves on __x86_64__
1183   * - per-cpu L4 pages' kernel entries are expected to be in sync with
1184   *   the shadow
1185   */
1186 
1187 void
1188 pmap_cpu_init_late(struct cpu_info *ci)
1189 {
1190 #if defined(PAE) || defined(__x86_64__)
1191 	/*
1192 	 * The BP has already its own PD page allocated during early
1193 	 * MD startup.
1194 	 */
1195 
1196 #if defined(__x86_64__)
1197 	/* Setup per-cpu normal_pdes */
1198 	int i;
1199 	extern pd_entry_t * const normal_pdes[];
1200 	for (i = 0;i < PTP_LEVELS - 1;i++) {
1201 		ci->ci_normal_pdes[i] = normal_pdes[i];
1202 	}
1203 #endif /* __x86_64__ */
1204 
1205 	if (ci == &cpu_info_primary)
1206 		return;
1207 
1208 	KASSERT(ci != NULL);
1209 
1210 #if defined(PAE)
1211 	cpu_alloc_l3_page(ci);
1212 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
1213 
1214 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1215 	int i;
1216 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
1217 		ci->ci_pae_l3_pdir[i] =
1218 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1219 	}
1220 #endif /* PAE */
1221 
1222 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1223 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1224 
1225 	if (ci->ci_kpm_pdir == NULL) {
1226 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1227 		      __func__, cpu_index(ci));
1228 	}
1229 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1230 	KASSERT(ci->ci_kpm_pdirpa != 0);
1231 
1232 #if defined(__x86_64__)
1233 	/*
1234 	 * Copy over the pmap_kernel() shadow L4 entries
1235 	 */
1236 
1237 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1238 
1239 	/* Recursive kernel mapping */
1240 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1241 #elif defined(PAE)
1242 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1243 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1244 #endif /* __x86_64__ else PAE */
1245 
1246 	/* Xen wants R/O */
1247 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1248 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1249 	pmap_update(pmap_kernel());
1250 #if defined(PAE)
1251 	/* Initialise L3 entry 3. This mapping is shared across all
1252 	 * pmaps and is static, ie; loading a new pmap will not update
1253 	 * this entry.
1254 	 */
1255 
1256 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1257 
1258 	/* Mark L3 R/O (Xen wants this) */
1259 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1260 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1261 	pmap_update(pmap_kernel());
1262 
1263 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1264 
1265 #elif defined(__x86_64__)
1266 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1267 #endif /* PAE , __x86_64__ */
1268 #endif /* defined(PAE) || defined(__x86_64__) */
1269 }
1270 
1271 /*
1272  * Notify all other cpus to halt.
1273  */
1274 
1275 void
1276 cpu_broadcast_halt(void)
1277 {
1278 	xen_broadcast_ipi(XEN_IPI_HALT);
1279 }
1280 
1281 /*
1282  * Send a dummy ipi to a cpu.
1283  */
1284 
1285 void
1286 cpu_kick(struct cpu_info *ci)
1287 {
1288 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
1289 }
1290