xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: cpu.c,v 1.95 2013/12/01 01:05:16 christos Exp $	*/
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
3 
4 /*-
5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by RedBack Networks Inc.
11  *
12  * Author: Bill Sommerfeld
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999 Stefan Grefen
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *      This product includes software developed by the NetBSD
50  *      Foundation, Inc. and its contributors.
51  * 4. Neither the name of The NetBSD Foundation nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.95 2013/12/01 01:05:16 christos Exp $");
70 
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h"		/* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76 
77 #include "lapic.h"
78 #include "ioapic.h"
79 
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90 
91 #include <uvm/uvm.h>
92 
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110 
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114 
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120 
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123 
124 static int	cpu_match(device_t, cfdata_t, void *);
125 static void	cpu_attach(device_t, device_t, void *);
126 static void	cpu_defer(device_t);
127 static int	cpu_rescan(device_t, const char *, const int *);
128 static void	cpu_childdetached(device_t, device_t);
129 static int	vcpu_match(device_t, cfdata_t, void *);
130 static void	vcpu_attach(device_t, device_t, void *);
131 static void	cpu_attach_common(device_t, device_t, void *);
132 void		cpu_offline_md(void);
133 
134 struct cpu_softc {
135 	device_t sc_dev;		/* device tree glue */
136 	struct cpu_info *sc_info;	/* pointer to CPU info */
137 	bool sc_wasonline;
138 };
139 
140 int mp_cpu_start(struct cpu_info *, vaddr_t);
141 void mp_cpu_start_cleanup(struct cpu_info *);
142 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
143 				      mp_cpu_start_cleanup };
144 
145 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
146     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
147 
148 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
149     vcpu_match, vcpu_attach, NULL, NULL);
150 
151 /*
152  * Statically-allocated CPU info for the primary CPU (or the only
153  * CPU, on uniprocessors).  The CPU info list is initialized to
154  * point at it.
155  */
156 #ifdef TRAPLOG
157 #include <machine/tlog.h>
158 struct tlog tlog_primary;
159 #endif
160 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
161 	.ci_dev = 0,
162 	.ci_self = &cpu_info_primary,
163 	.ci_idepth = -1,
164 	.ci_curlwp = &lwp0,
165 	.ci_curldt = -1,
166 #ifdef TRAPLOG
167 	.ci_tlog = &tlog_primary,
168 #endif
169 
170 };
171 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
172 	.ci_dev = 0,
173 	.ci_self = &phycpu_info_primary,
174 };
175 
176 struct cpu_info *cpu_info_list = &cpu_info_primary;
177 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
178 
179 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
180 			  *	[0] basic features %edx
181 			  *	[1] basic features %ecx
182 			  *	[2] extended features %edx
183 			  *	[3] extended features %ecx
184 			  *	[4] VIA padlock features
185 			  */
186 
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 
190 #if defined(MULTIPROCESSOR)
191 void    	cpu_hatch(void *);
192 static void    	cpu_boot_secondary(struct cpu_info *ci);
193 static void    	cpu_start_secondary(struct cpu_info *ci);
194 #endif	/* MULTIPROCESSOR */
195 
196 static int
197 cpu_match(device_t parent, cfdata_t match, void *aux)
198 {
199 
200 	return 1;
201 }
202 
203 static void
204 cpu_attach(device_t parent, device_t self, void *aux)
205 {
206 	struct cpu_softc *sc = device_private(self);
207 	struct cpu_attach_args *caa = aux;
208 	struct cpu_info *ci;
209 	uintptr_t ptr;
210 	static int nphycpu = 0;
211 
212 	sc->sc_dev = self;
213 
214 	/*
215 	 * If we're an Application Processor, allocate a cpu_info
216 	 * If we're the first attached CPU use the primary cpu_info,
217 	 * otherwise allocate a new one
218 	 */
219 	aprint_naive("\n");
220 	aprint_normal("\n");
221 	if (nphycpu > 0) {
222 		struct cpu_info *tmp;
223 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
224 		    KM_SLEEP);
225 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
226 		ci->ci_curldt = -1;
227 
228 		tmp = phycpu_info_list;
229 		while (tmp->ci_next)
230 			tmp = tmp->ci_next;
231 
232 		tmp->ci_next = ci;
233 	} else {
234 		ci = &phycpu_info_primary;
235 	}
236 
237 	ci->ci_self = ci;
238 	sc->sc_info = ci;
239 
240 	ci->ci_dev = self;
241 	ci->ci_acpiid = caa->cpu_id;
242 	ci->ci_cpuid = caa->cpu_number;
243 	ci->ci_vcpu = NULL;
244 	ci->ci_index = nphycpu++;
245 
246 	if (!pmf_device_register(self, NULL, NULL))
247 		aprint_error_dev(self, "couldn't establish power handler\n");
248 
249 	(void)config_defer(self, cpu_defer);
250 }
251 
252 static void
253 cpu_defer(device_t self)
254 {
255 	cpu_rescan(self, NULL, NULL);
256 }
257 
258 static int
259 cpu_rescan(device_t self, const char *ifattr, const int *locators)
260 {
261 	struct cpu_softc *sc = device_private(self);
262 	struct cpufeature_attach_args cfaa;
263 	struct cpu_info *ci = sc->sc_info;
264 
265 	memset(&cfaa, 0, sizeof(cfaa));
266 	cfaa.ci = ci;
267 
268 	if (ifattr_match(ifattr, "cpufeaturebus")) {
269 
270 		if (ci->ci_frequency == NULL) {
271 			cfaa.name = "frequency";
272 			ci->ci_frequency = config_found_ia(self,
273 			    "cpufeaturebus", &cfaa, NULL);
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 static void
281 cpu_childdetached(device_t self, device_t child)
282 {
283 	struct cpu_softc *sc = device_private(self);
284 	struct cpu_info *ci = sc->sc_info;
285 
286 	if (ci->ci_frequency == child)
287 		ci->ci_frequency = NULL;
288 }
289 
290 static int
291 vcpu_match(device_t parent, cfdata_t match, void *aux)
292 {
293 	struct vcpu_attach_args *vcaa = aux;
294 	struct vcpu_runstate_info vcr;
295 	int error;
296 
297 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
298 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
299 					   vcaa->vcaa_caa.cpu_number,
300 					   &vcr);
301 		switch (error) {
302 		case 0:
303 			return 1;
304 		case -ENOENT:
305 			return 0;
306 		default:
307 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
308 		}
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 vcpu_attach(device_t parent, device_t self, void *aux)
316 {
317 	struct vcpu_attach_args *vcaa = aux;
318 
319 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
320 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
321 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
322 
323 	if (!pmf_device_register(self, NULL, NULL))
324 		aprint_error_dev(self, "couldn't establish power handler\n");
325 }
326 
327 static int
328 vcpu_is_up(struct cpu_info *ci)
329 {
330 	KASSERT(ci != NULL);
331 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
332 }
333 
334 static void
335 cpu_vm_init(struct cpu_info *ci)
336 {
337 	int ncolors = 2, i;
338 
339 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
340 		struct x86_cache_info *cai;
341 		int tcolors;
342 
343 		cai = &ci->ci_cinfo[i];
344 
345 		tcolors = atop(cai->cai_totalsize);
346 		switch(cai->cai_associativity) {
347 		case 0xff:
348 			tcolors = 1; /* fully associative */
349 			break;
350 		case 0:
351 		case 1:
352 			break;
353 		default:
354 			tcolors /= cai->cai_associativity;
355 		}
356 		ncolors = max(ncolors, tcolors);
357 	}
358 
359 	/*
360 	 * Knowing the size of the largest cache on this CPU, potentially
361 	 * re-color our pages.
362 	 */
363 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
364 	uvm_page_recolor(ncolors);
365 	pmap_tlb_cpu_init(ci);
366 }
367 
368 static void
369 cpu_attach_common(device_t parent, device_t self, void *aux)
370 {
371 	struct cpu_softc *sc = device_private(self);
372 	struct cpu_attach_args *caa = aux;
373 	struct cpu_info *ci;
374 	uintptr_t ptr;
375 	int cpunum = caa->cpu_number;
376 	static bool again = false;
377 
378 	sc->sc_dev = self;
379 
380 	/*
381 	 * If we're an Application Processor, allocate a cpu_info
382 	 * structure, otherwise use the primary's.
383 	 */
384 	if (caa->cpu_role == CPU_ROLE_AP) {
385 		aprint_naive(": Application Processor\n");
386 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
387 		    KM_SLEEP);
388 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
389 		memset(ci, 0, sizeof(*ci));
390 #ifdef TRAPLOG
391 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
392 #endif
393 	} else {
394 		aprint_naive(": %s Processor\n",
395 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
396 		ci = &cpu_info_primary;
397 	}
398 
399 	ci->ci_self = ci;
400 	sc->sc_info = ci;
401 	ci->ci_dev = self;
402 	ci->ci_cpuid = cpunum;
403 
404 	KASSERT(HYPERVISOR_shared_info != NULL);
405 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
406 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
407 
408 	KASSERT(ci->ci_func == 0);
409 	ci->ci_func = caa->cpu_func;
410 
411 	/* Must be called before mi_cpu_attach(). */
412 	cpu_vm_init(ci);
413 
414 	if (caa->cpu_role == CPU_ROLE_AP) {
415 		int error;
416 
417 		error = mi_cpu_attach(ci);
418 
419 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
420 		if (error != 0) {
421 			aprint_normal("\n");
422 			aprint_error_dev(self,
423 			    "mi_cpu_attach failed with %d\n", error);
424 			return;
425 		}
426 
427 	} else {
428 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
429 	}
430 
431 	KASSERT(ci->ci_cpuid == ci->ci_index);
432 	pmap_reference(pmap_kernel());
433 	ci->ci_pmap = pmap_kernel();
434 	ci->ci_tlbstate = TLBSTATE_STALE;
435 
436 	/*
437 	 * Boot processor may not be attached first, but the below
438 	 * must be done to allow booting other processors.
439 	 */
440 	if (!again) {
441 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
442 		/* Basic init. */
443 		cpu_intr_init(ci);
444 		cpu_get_tsc_freq(ci);
445 		cpu_init(ci);
446 		pmap_cpu_init_late(ci);
447 
448 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
449 		xen_ipi_init();
450 
451 		/* Make sure DELAY() is initialized. */
452 		DELAY(1);
453 		again = true;
454 	}
455 
456 	/* further PCB init done later. */
457 
458 	switch (caa->cpu_role) {
459 	case CPU_ROLE_SP:
460 		atomic_or_32(&ci->ci_flags, CPUF_SP);
461 		cpu_identify(ci);
462 		x86_cpu_idle_init();
463 
464 		break;
465 
466 	case CPU_ROLE_BP:
467 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
468 		cpu_identify(ci);
469 		x86_cpu_idle_init();
470 
471 		break;
472 
473 	case CPU_ROLE_AP:
474 		atomic_or_32(&ci->ci_flags, CPUF_AP);
475 
476 		/*
477 		 * report on an AP
478 		 */
479 
480 #if defined(MULTIPROCESSOR)
481 		/* interrupt handler stack */
482 		cpu_intr_init(ci);
483 
484 		/* Setup per-cpu memory for gdt */
485 		gdt_alloc_cpu(ci);
486 
487 		pmap_cpu_init_late(ci);
488 		cpu_start_secondary(ci);
489 
490 		if (ci->ci_flags & CPUF_PRESENT) {
491 			struct cpu_info *tmp;
492 
493 			cpu_identify(ci);
494 			tmp = cpu_info_list;
495 			while (tmp->ci_next)
496 				tmp = tmp->ci_next;
497 
498 			tmp->ci_next = ci;
499 		}
500 #else
501 		aprint_error(": not started\n");
502 #endif
503 		break;
504 
505 	default:
506 		aprint_normal("\n");
507 		panic("unknown processor type??\n");
508 	}
509 
510 #ifdef MPVERBOSE
511 	if (mp_verbose) {
512 		struct lwp *l = ci->ci_data.cpu_idlelwp;
513 		struct pcb *pcb = lwp_getpcb(l);
514 
515 		aprint_verbose_dev(self,
516 		    "idle lwp at %p, idle sp at 0x%p\n",
517 		    l,
518 #ifdef i386
519 		    (void *)pcb->pcb_esp
520 #else /* i386 */
521 		    (void *)pcb->pcb_rsp
522 #endif /* i386 */
523 		);
524 
525 	}
526 #endif /* MPVERBOSE */
527 }
528 
529 /*
530  * Initialize the processor appropriately.
531  */
532 
533 void
534 cpu_init(struct cpu_info *ci)
535 {
536 
537 	/*
538 	 * If we have FXSAVE/FXRESTOR, use them.
539 	 */
540 	if (cpu_feature[0] & CPUID_FXSR) {
541 		lcr4(rcr4() | CR4_OSFXSR);
542 
543 		/*
544 		 * If we have SSE/SSE2, enable XMM exceptions.
545 		 */
546 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
547 			lcr4(rcr4() | CR4_OSXMMEXCPT);
548 	}
549 
550 #ifdef __x86_64__
551 	/* No user PGD mapped for this CPU yet */
552 	ci->ci_xen_current_user_pgd = 0;
553 #endif
554 #if defined(__x86_64__) || defined(PAE)
555 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
556 #endif
557 
558 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
559 }
560 
561 
562 #ifdef MULTIPROCESSOR
563 
564 void
565 cpu_boot_secondary_processors(void)
566 {
567 	struct cpu_info *ci;
568 	u_long i;
569 	for (i = 0; i < maxcpus; i++) {
570 		ci = cpu_lookup(i);
571 		if (ci == NULL)
572 			continue;
573 		if (ci->ci_data.cpu_idlelwp == NULL)
574 			continue;
575 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
576 			continue;
577 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
578 			continue;
579 		cpu_boot_secondary(ci);
580 	}
581 
582 	x86_mp_online = true;
583 }
584 
585 static void
586 cpu_init_idle_lwp(struct cpu_info *ci)
587 {
588 	struct lwp *l = ci->ci_data.cpu_idlelwp;
589 	struct pcb *pcb = lwp_getpcb(l);
590 
591 	pcb->pcb_cr0 = rcr0();
592 }
593 
594 void
595 cpu_init_idle_lwps(void)
596 {
597 	struct cpu_info *ci;
598 	u_long i;
599 
600 	for (i = 0; i < maxcpus; i++) {
601 		ci = cpu_lookup(i);
602 		if (ci == NULL)
603 			continue;
604 		if (ci->ci_data.cpu_idlelwp == NULL)
605 			continue;
606 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
607 			continue;
608 		cpu_init_idle_lwp(ci);
609 	}
610 }
611 
612 static void
613 cpu_start_secondary(struct cpu_info *ci)
614 {
615 	int i;
616 
617 	aprint_debug_dev(ci->ci_dev, "starting\n");
618 
619 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
620 
621 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
622 		return;
623 	}
624 
625 	/*
626 	 * wait for it to become ready
627 	 */
628 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
629 		delay(10);
630 	}
631 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
632 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
633 #if defined(MPDEBUG) && defined(DDB)
634 		printf("dropping into debugger; continue from here to resume boot\n");
635 		Debugger();
636 #endif
637 	}
638 
639 	CPU_START_CLEANUP(ci);
640 }
641 
642 void
643 cpu_boot_secondary(struct cpu_info *ci)
644 {
645 	int i;
646 	atomic_or_32(&ci->ci_flags, CPUF_GO);
647 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
648 		delay(10);
649 	}
650 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
651 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
652 #if defined(MPDEBUG) && defined(DDB)
653 		printf("dropping into debugger; continue from here to resume boot\n");
654 		Debugger();
655 #endif
656 	}
657 }
658 
659 /*
660  * APs end up here immediately after initialisation and VCPUOP_up in
661  * mp_cpu_start().
662  * At this point, we are running in the idle pcb/idle stack of the new
663  * CPU.  This function jumps to the idle loop and starts looking for
664  * work.
665  */
666 extern void x86_64_tls_switch(struct lwp *);
667 void
668 cpu_hatch(void *v)
669 {
670 	struct cpu_info *ci = (struct cpu_info *)v;
671 	struct pcb *pcb;
672 	int s, i;
673 
674 	/* Setup TLS and kernel GS/FS */
675 	cpu_init_msrs(ci, true);
676 	cpu_init_idt();
677 	gdt_init_cpu(ci);
678 
679 	cpu_probe(ci);
680 
681 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
682 
683 	while ((ci->ci_flags & CPUF_GO) == 0) {
684 		/* Don't use delay, boot CPU may be patching the text. */
685 		for (i = 10000; i != 0; i--)
686 			x86_pause();
687 	}
688 
689 	/* Because the text may have been patched in x86_patch(). */
690 	x86_flush();
691 	tlbflushg();
692 
693 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
694 
695 	pcb = lwp_getpcb(curlwp);
696 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
697 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
698 
699 	xen_ipi_init();
700 
701 	xen_initclocks();
702 
703 #ifdef __x86_64__
704 	fpuinit(ci);
705 #endif
706 
707 	lldt(GSEL(GLDT_SEL, SEL_KPL));
708 
709 	cpu_init(ci);
710 	cpu_get_tsc_freq(ci);
711 
712 	s = splhigh();
713 	x86_enable_intr();
714 	splx(s);
715 
716 	aprint_debug_dev(ci->ci_dev, "running\n");
717 
718 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
719 
720 	idle_loop(NULL);
721 	KASSERT(false);
722 }
723 
724 #if defined(DDB)
725 
726 #include <ddb/db_output.h>
727 #include <machine/db_machdep.h>
728 
729 /*
730  * Dump CPU information from ddb.
731  */
732 void
733 cpu_debug_dump(void)
734 {
735 	struct cpu_info *ci;
736 	CPU_INFO_ITERATOR cii;
737 
738 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
739 	for (CPU_INFO_FOREACH(cii, ci)) {
740 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
741 		    ci,
742 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
743 		    (long)ci->ci_cpuid,
744 		    ci->ci_flags, ci->ci_ipis,
745 		    ci->ci_curlwp,
746 		    ci->ci_fpcurlwp);
747 	}
748 }
749 #endif /* DDB */
750 
751 #endif /* MULTIPROCESSOR */
752 
753 extern void hypervisor_callback(void);
754 extern void failsafe_callback(void);
755 #ifdef __x86_64__
756 typedef void (vector)(void);
757 extern vector Xsyscall, Xsyscall32;
758 #endif
759 
760 /*
761  * Setup the "trampoline". On Xen, we setup nearly all cpu context
762  * outside a trampoline, so we prototype and call targetip like so:
763  * void targetip(struct cpu_info *);
764  */
765 
766 static void
767 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
768 {
769 	int i;
770 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
771 
772 		frames[i] = ((paddr_t) xpmap_ptetomach(
773 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
774 			>> PAGE_SHIFT;
775 
776 		/* Mark Read-only */
777 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
778 		    PG_RW);
779 	}
780 }
781 
782 #ifdef __x86_64__
783 extern char *ldtstore;
784 
785 static void
786 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
787 			struct vcpu_guest_context *initctx,
788 			void targetrip(struct cpu_info *))
789 {
790 	/* page frames to point at GDT */
791 	extern int gdt_size;
792 	paddr_t frames[16];
793 	psize_t gdt_ents;
794 
795 	struct lwp *l;
796 	struct pcb *pcb;
797 
798 	volatile struct vcpu_info *vci;
799 
800 	KASSERT(ci != NULL);
801 	KASSERT(ci != &cpu_info_primary);
802 	KASSERT(initctx != NULL);
803 	KASSERT(targetrip != NULL);
804 
805 	memset(initctx, 0, sizeof *initctx);
806 
807 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
808 	KASSERT(gdt_ents <= 16);
809 
810 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
811 
812 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
813 
814 	l = ci->ci_data.cpu_idlelwp;
815 
816 	KASSERT(l != NULL);
817 	pcb = lwp_getpcb(l);
818 	KASSERT(pcb != NULL);
819 
820 	/* resume with interrupts off */
821 	vci = ci->ci_vcpu;
822 	vci->evtchn_upcall_mask = 1;
823 	xen_mb();
824 
825 	/* resume in kernel-mode */
826 	initctx->flags = VGCF_in_kernel | VGCF_online;
827 
828 	/* Stack and entry points:
829 	 * We arrange for the stack frame for cpu_hatch() to
830 	 * appear as a callee frame of lwp_trampoline(). Being a
831 	 * leaf frame prevents trampling on any of the MD stack setup
832 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
833 	 */
834 
835 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
836 	initctx->user_regs.rip = (vaddr_t) targetrip;
837 
838 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
839 
840 	initctx->user_regs.rflags = pcb->pcb_flags;
841 	initctx->user_regs.rsp = pcb->pcb_rsp;
842 
843 	/* Data segments */
844 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
845 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
846 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
847 
848 	/* GDT */
849 	memcpy(initctx->gdt_frames, frames, sizeof frames);
850 	initctx->gdt_ents = gdt_ents;
851 
852 	/* LDT */
853 	initctx->ldt_base = (unsigned long) ldtstore;
854 	initctx->ldt_ents = LDT_SIZE >> 3;
855 
856 	/* Kernel context state */
857 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
858 	initctx->kernel_sp = pcb->pcb_rsp0;
859 	initctx->ctrlreg[0] = pcb->pcb_cr0;
860 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
861 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
862 	/*
863 	 * Use pmap_kernel() L4 PD directly, until we setup the
864 	 * per-cpu L4 PD in pmap_cpu_init_late()
865 	 */
866 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
867 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
868 
869 
870 	/* Xen callbacks */
871 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
872 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
873 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
874 
875 	return;
876 }
877 #else /* i386 */
878 extern union descriptor *ldt;
879 extern void Xsyscall(void);
880 
881 static void
882 xen_init_i386_vcpuctxt(struct cpu_info *ci,
883 			struct vcpu_guest_context *initctx,
884 			void targeteip(struct cpu_info *))
885 {
886 	/* page frames to point at GDT */
887 	extern int gdt_size;
888 	paddr_t frames[16];
889 	psize_t gdt_ents;
890 
891 	struct lwp *l;
892 	struct pcb *pcb;
893 
894 	volatile struct vcpu_info *vci;
895 
896 	KASSERT(ci != NULL);
897 	KASSERT(ci != &cpu_info_primary);
898 	KASSERT(initctx != NULL);
899 	KASSERT(targeteip != NULL);
900 
901 	memset(initctx, 0, sizeof *initctx);
902 
903 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
904 	KASSERT(gdt_ents <= 16);
905 
906 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
907 
908 	/*
909 	 * Initialise the vcpu context:
910 	 * We use this cpu's idle_loop() pcb context.
911 	 */
912 
913 	l = ci->ci_data.cpu_idlelwp;
914 
915 	KASSERT(l != NULL);
916 	pcb = lwp_getpcb(l);
917 	KASSERT(pcb != NULL);
918 
919 	/* resume with interrupts off */
920 	vci = ci->ci_vcpu;
921 	vci->evtchn_upcall_mask = 1;
922 	xen_mb();
923 
924 	/* resume in kernel-mode */
925 	initctx->flags = VGCF_in_kernel | VGCF_online;
926 
927 	/* Stack frame setup for cpu_hatch():
928 	 * We arrange for the stack frame for cpu_hatch() to
929 	 * appear as a callee frame of lwp_trampoline(). Being a
930 	 * leaf frame prevents trampling on any of the MD stack setup
931 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
932 	 */
933 
934 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
935 						      arg1 */
936 	{ /* targeteip(ci); */
937 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
938 		arg[1] = (uint32_t) ci; /* arg1 */
939 
940 	}
941 
942 	initctx->user_regs.eip = (vaddr_t) targeteip;
943 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
944 	initctx->user_regs.eflags |= pcb->pcb_iopl;
945 
946 	/* Data segments */
947 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
948 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
949 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
950 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
951 
952 	/* GDT */
953 	memcpy(initctx->gdt_frames, frames, sizeof frames);
954 	initctx->gdt_ents = gdt_ents;
955 
956 	/* LDT */
957 	initctx->ldt_base = (unsigned long) ldt;
958 	initctx->ldt_ents = NLDT;
959 
960 	/* Kernel context state */
961 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
962 	initctx->kernel_sp = pcb->pcb_esp0;
963 	initctx->ctrlreg[0] = pcb->pcb_cr0;
964 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
965 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
966 #ifdef PAE
967 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
968 #else /* PAE */
969 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
970 #endif /* PAE */
971 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
972 
973 
974 	/* Xen callbacks */
975 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
976 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
977 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
978 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
979 
980 	return;
981 }
982 #endif /* __x86_64__ */
983 
984 int
985 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
986 {
987 
988 	int hyperror;
989 	struct vcpu_guest_context vcpuctx;
990 
991 	KASSERT(ci != NULL);
992 	KASSERT(ci != &cpu_info_primary);
993 	KASSERT(ci->ci_flags & CPUF_AP);
994 
995 #ifdef __x86_64__
996 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
997 #else  /* i386 */
998 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
999 #endif /* __x86_64__ */
1000 
1001 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
1002 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1003 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1004 		return hyperror;
1005 	}
1006 
1007 	/* Start it up */
1008 
1009 	/* First bring it down */
1010 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1011 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1012 		return hyperror;
1013 	}
1014 
1015 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1016 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1017 		return hyperror;
1018 	}
1019 
1020 	if (!vcpu_is_up(ci)) {
1021 		aprint_error(": did not come up\n");
1022 		return -1;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 void
1029 mp_cpu_start_cleanup(struct cpu_info *ci)
1030 {
1031 	if (vcpu_is_up(ci)) {
1032 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1033 	}
1034 	else {
1035 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1036 	}
1037 
1038 }
1039 
1040 void
1041 cpu_init_msrs(struct cpu_info *ci, bool full)
1042 {
1043 #ifdef __x86_64__
1044 	if (full) {
1045 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1046 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1047 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1048 	}
1049 #endif	/* __x86_64__ */
1050 
1051 	if (cpu_feature[2] & CPUID_NOX)
1052 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1053 
1054 }
1055 
1056 void
1057 cpu_offline_md(void)
1058 {
1059         int s;
1060 
1061         s = splhigh();
1062 #ifdef __i386__
1063         npxsave_cpu(true);
1064 #else
1065         fpusave_cpu(true);
1066 #endif
1067         splx(s);
1068 }
1069 
1070 void
1071 cpu_get_tsc_freq(struct cpu_info *ci)
1072 {
1073 	uint32_t vcpu_tversion;
1074 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1075 
1076 	vcpu_tversion = tinfo->version;
1077 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1078 
1079 	uint64_t freq = 1000000000ULL << 32;
1080 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1081 	if ( tinfo->tsc_shift < 0 )
1082 		freq = freq << -tinfo->tsc_shift;
1083 	else
1084 		freq = freq >> tinfo->tsc_shift;
1085 	ci->ci_data.cpu_cc_freq = freq;
1086 }
1087 
1088 void
1089 x86_cpu_idle_xen(void)
1090 {
1091 	struct cpu_info *ci = curcpu();
1092 
1093 	KASSERT(ci->ci_ilevel == IPL_NONE);
1094 
1095 	x86_disable_intr();
1096 	if (!__predict_false(ci->ci_want_resched)) {
1097 		idle_block();
1098 	} else {
1099 		x86_enable_intr();
1100 	}
1101 }
1102 
1103 /*
1104  * Loads pmap for the current CPU.
1105  */
1106 void
1107 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1108 {
1109 	KASSERT(pmap != pmap_kernel());
1110 
1111 #if defined(__x86_64__) || defined(PAE)
1112 	struct cpu_info *ci = curcpu();
1113 	cpuid_t cid = cpu_index(ci);
1114 
1115 	mutex_enter(&ci->ci_kpm_mtx);
1116 	/* make new pmap visible to xen_kpm_sync() */
1117 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1118 #endif
1119 #ifdef i386
1120 #ifdef PAE
1121 	{
1122 		int i;
1123 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1124 		/* don't update the kernel L3 slot */
1125 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
1126 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1127 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1128 		}
1129 		tlbflush();
1130 	}
1131 #else /* PAE */
1132 	lcr3(pmap_pdirpa(pmap, 0));
1133 #endif /* PAE */
1134 #endif /* i386 */
1135 
1136 #ifdef __x86_64__
1137 	{
1138 		int i;
1139 		pd_entry_t *new_pgd;
1140 		paddr_t l4_pd_ma;
1141 
1142 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1143 
1144 		/*
1145 		 * Map user space address in kernel space and load
1146 		 * user cr3
1147 		 */
1148 		new_pgd = pmap->pm_pdir;
1149 		KASSERT(pmap == ci->ci_pmap);
1150 
1151 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1152 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
1153 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1154 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1155 				xpq_queue_pte_update(
1156 				   l4_pd_ma + i * sizeof(pd_entry_t),
1157 				    new_pgd[i]);
1158 			}
1159 		}
1160 
1161 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1162 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1163 
1164 		tlbflush();
1165 	}
1166 
1167 #endif /* __x86_64__ */
1168 #if defined(__x86_64__) || defined(PAE)
1169 	/* old pmap no longer visible to xen_kpm_sync() */
1170 	if (oldpmap != pmap_kernel()) {
1171 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1172 	}
1173 	mutex_exit(&ci->ci_kpm_mtx);
1174 #endif
1175 }
1176 
1177  /*
1178   * pmap_cpu_init_late: perform late per-CPU initialization.
1179   * Short note about percpu PDIR pages:
1180   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1181   * tables. This is to get around Xen's pagetable setup constraints for
1182   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1183   * will refuse to pin a table setup this way.) and for multiple cpus
1184   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1185   *
1186   * What this means for us is that the PDIR of the pmap_kernel() is
1187   * considered to be a canonical "SHADOW" PDIR with the following
1188   * properties:
1189   * - Its recursive mapping points to itself
1190   * - per-cpu recursive mappings point to themselves on __x86_64__
1191   * - per-cpu L4 pages' kernel entries are expected to be in sync with
1192   *   the shadow
1193   */
1194 
1195 void
1196 pmap_cpu_init_late(struct cpu_info *ci)
1197 {
1198 #if defined(PAE) || defined(__x86_64__)
1199 	/*
1200 	 * The BP has already its own PD page allocated during early
1201 	 * MD startup.
1202 	 */
1203 
1204 #if defined(__x86_64__)
1205 	/* Setup per-cpu normal_pdes */
1206 	int i;
1207 	extern pd_entry_t * const normal_pdes[];
1208 	for (i = 0;i < PTP_LEVELS - 1;i++) {
1209 		ci->ci_normal_pdes[i] = normal_pdes[i];
1210 	}
1211 #endif /* __x86_64__ */
1212 
1213 	if (ci == &cpu_info_primary)
1214 		return;
1215 
1216 	KASSERT(ci != NULL);
1217 
1218 #if defined(PAE)
1219 	cpu_alloc_l3_page(ci);
1220 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
1221 
1222 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1223 	int i;
1224 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
1225 		ci->ci_pae_l3_pdir[i] =
1226 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1227 	}
1228 #endif /* PAE */
1229 
1230 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1231 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1232 
1233 	if (ci->ci_kpm_pdir == NULL) {
1234 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1235 		      __func__, cpu_index(ci));
1236 	}
1237 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1238 	KASSERT(ci->ci_kpm_pdirpa != 0);
1239 
1240 #if defined(__x86_64__)
1241 	/*
1242 	 * Copy over the pmap_kernel() shadow L4 entries
1243 	 */
1244 
1245 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1246 
1247 	/* Recursive kernel mapping */
1248 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1249 #elif defined(PAE)
1250 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1251 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1252 #endif /* __x86_64__ else PAE */
1253 
1254 	/* Xen wants R/O */
1255 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1256 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1257 	pmap_update(pmap_kernel());
1258 #if defined(PAE)
1259 	/* Initialise L3 entry 3. This mapping is shared across all
1260 	 * pmaps and is static, ie; loading a new pmap will not update
1261 	 * this entry.
1262 	 */
1263 
1264 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1265 
1266 	/* Mark L3 R/O (Xen wants this) */
1267 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1268 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1269 	pmap_update(pmap_kernel());
1270 
1271 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1272 
1273 #elif defined(__x86_64__)
1274 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1275 #endif /* PAE , __x86_64__ */
1276 #endif /* defined(PAE) || defined(__x86_64__) */
1277 }
1278 
1279 /*
1280  * Notify all other cpus to halt.
1281  */
1282 
1283 void
1284 cpu_broadcast_halt(void)
1285 {
1286 	xen_broadcast_ipi(XEN_IPI_HALT);
1287 }
1288 
1289 /*
1290  * Send a dummy ipi to a cpu.
1291  */
1292 
1293 void
1294 cpu_kick(struct cpu_info *ci)
1295 {
1296 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
1297 }
1298