1 /* $NetBSD: pmap.c,v 1.176 2012/02/25 20:03:58 cherry Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2007 Manuel Bouyer. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 44 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 45 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 46 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 47 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 49 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 53 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 * 55 */ 56 57 /* 58 * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr> 59 * 60 * Permission to use, copy, modify, and distribute this software for any 61 * purpose with or without fee is hereby granted, provided that the above 62 * copyright notice and this permission notice appear in all copies. 63 * 64 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 65 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 66 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 67 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 68 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 69 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 70 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 71 */ 72 73 /* 74 * Copyright (c) 1997 Charles D. Cranor and Washington University. 75 * All rights reserved. 76 * 77 * Redistribution and use in source and binary forms, with or without 78 * modification, are permitted provided that the following conditions 79 * are met: 80 * 1. Redistributions of source code must retain the above copyright 81 * notice, this list of conditions and the following disclaimer. 82 * 2. Redistributions in binary form must reproduce the above copyright 83 * notice, this list of conditions and the following disclaimer in the 84 * documentation and/or other materials provided with the distribution. 85 * 86 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 87 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 88 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 89 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 90 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 91 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 92 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 93 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 94 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 95 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 96 */ 97 98 /* 99 * Copyright 2001 (c) Wasabi Systems, Inc. 100 * All rights reserved. 101 * 102 * Written by Frank van der Linden for Wasabi Systems, Inc. 103 * 104 * Redistribution and use in source and binary forms, with or without 105 * modification, are permitted provided that the following conditions 106 * are met: 107 * 1. Redistributions of source code must retain the above copyright 108 * notice, this list of conditions and the following disclaimer. 109 * 2. Redistributions in binary form must reproduce the above copyright 110 * notice, this list of conditions and the following disclaimer in the 111 * documentation and/or other materials provided with the distribution. 112 * 3. All advertising materials mentioning features or use of this software 113 * must display the following acknowledgement: 114 * This product includes software developed for the NetBSD Project by 115 * Wasabi Systems, Inc. 116 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 117 * or promote products derived from this software without specific prior 118 * written permission. 119 * 120 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 121 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 122 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 123 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 124 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 125 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 126 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 127 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 128 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 129 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 130 * POSSIBILITY OF SUCH DAMAGE. 131 */ 132 133 /* 134 * This is the i386 pmap modified and generalized to support x86-64 135 * as well. The idea is to hide the upper N levels of the page tables 136 * inside pmap_get_ptp, pmap_free_ptp and pmap_growkernel. The rest 137 * is mostly untouched, except that it uses some more generalized 138 * macros and interfaces. 139 * 140 * This pmap has been tested on the i386 as well, and it can be easily 141 * adapted to PAE. 142 * 143 * fvdl@wasabisystems.com 18-Jun-2001 144 */ 145 146 /* 147 * pmap.c: i386 pmap module rewrite 148 * Chuck Cranor <chuck@netbsd> 149 * 11-Aug-97 150 * 151 * history of this pmap module: in addition to my own input, i used 152 * the following references for this rewrite of the i386 pmap: 153 * 154 * [1] the NetBSD i386 pmap. this pmap appears to be based on the 155 * BSD hp300 pmap done by Mike Hibler at University of Utah. 156 * it was then ported to the i386 by William Jolitz of UUNET 157 * Technologies, Inc. Then Charles M. Hannum of the NetBSD 158 * project fixed some bugs and provided some speed ups. 159 * 160 * [2] the FreeBSD i386 pmap. this pmap seems to be the 161 * Hibler/Jolitz pmap, as modified for FreeBSD by John S. Dyson 162 * and David Greenman. 163 * 164 * [3] the Mach pmap. this pmap, from CMU, seems to have migrated 165 * between several processors. the VAX version was done by 166 * Avadis Tevanian, Jr., and Michael Wayne Young. the i386 167 * version was done by Lance Berc, Mike Kupfer, Bob Baron, 168 * David Golub, and Richard Draves. the alpha version was 169 * done by Alessandro Forin (CMU/Mach) and Chris Demetriou 170 * (NetBSD/alpha). 171 */ 172 173 #include <sys/cdefs.h> 174 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.176 2012/02/25 20:03:58 cherry Exp $"); 175 176 #include "opt_user_ldt.h" 177 #include "opt_lockdebug.h" 178 #include "opt_multiprocessor.h" 179 #include "opt_xen.h" 180 #if !defined(__x86_64__) 181 #include "opt_kstack_dr0.h" 182 #endif /* !defined(__x86_64__) */ 183 184 #include <sys/param.h> 185 #include <sys/systm.h> 186 #include <sys/proc.h> 187 #include <sys/pool.h> 188 #include <sys/kernel.h> 189 #include <sys/atomic.h> 190 #include <sys/cpu.h> 191 #include <sys/intr.h> 192 #include <sys/xcall.h> 193 #include <sys/kcore.h> 194 195 #include <uvm/uvm.h> 196 197 #include <dev/isa/isareg.h> 198 199 #include <machine/specialreg.h> 200 #include <machine/gdt.h> 201 #include <machine/isa_machdep.h> 202 #include <machine/cpuvar.h> 203 #include <machine/cputypes.h> 204 205 #include <x86/pmap.h> 206 #include <x86/pmap_pv.h> 207 208 #include <x86/i82489reg.h> 209 #include <x86/i82489var.h> 210 211 #ifdef XEN 212 #include <xen/xen-public/xen.h> 213 #include <xen/hypervisor.h> 214 #endif 215 216 /* 217 * general info: 218 * 219 * - for an explanation of how the i386 MMU hardware works see 220 * the comments in <machine/pte.h>. 221 * 222 * - for an explanation of the general memory structure used by 223 * this pmap (including the recursive mapping), see the comments 224 * in <machine/pmap.h>. 225 * 226 * this file contains the code for the "pmap module." the module's 227 * job is to manage the hardware's virtual to physical address mappings. 228 * note that there are two levels of mapping in the VM system: 229 * 230 * [1] the upper layer of the VM system uses vm_map's and vm_map_entry's 231 * to map ranges of virtual address space to objects/files. for 232 * example, the vm_map may say: "map VA 0x1000 to 0x22000 read-only 233 * to the file /bin/ls starting at offset zero." note that 234 * the upper layer mapping is not concerned with how individual 235 * vm_pages are mapped. 236 * 237 * [2] the lower layer of the VM system (the pmap) maintains the mappings 238 * from virtual addresses. it is concerned with which vm_page is 239 * mapped where. for example, when you run /bin/ls and start 240 * at page 0x1000 the fault routine may lookup the correct page 241 * of the /bin/ls file and then ask the pmap layer to establish 242 * a mapping for it. 243 * 244 * note that information in the lower layer of the VM system can be 245 * thrown away since it can easily be reconstructed from the info 246 * in the upper layer. 247 * 248 * data structures we use include: 249 * 250 * - struct pmap: describes the address space of one thread 251 * - struct pv_entry: describes one <PMAP,VA> mapping of a PA 252 * - struct pv_head: there is one pv_head per managed page of 253 * physical memory. the pv_head points to a list of pv_entry 254 * structures which describe all the <PMAP,VA> pairs that this 255 * page is mapped in. this is critical for page based operations 256 * such as pmap_page_protect() [change protection on _all_ mappings 257 * of a page] 258 */ 259 260 /* 261 * memory allocation 262 * 263 * - there are three data structures that we must dynamically allocate: 264 * 265 * [A] new process' page directory page (PDP) 266 * - plan 1: done at pmap_create() we use 267 * uvm_km_alloc(kernel_map, PAGE_SIZE) [fka kmem_alloc] to do this 268 * allocation. 269 * 270 * if we are low in free physical memory then we sleep in 271 * uvm_km_alloc -- in this case this is ok since we are creating 272 * a new pmap and should not be holding any locks. 273 * 274 * if the kernel is totally out of virtual space 275 * (i.e. uvm_km_alloc returns NULL), then we panic. 276 * 277 * [B] new page tables pages (PTP) 278 * - call uvm_pagealloc() 279 * => success: zero page, add to pm_pdir 280 * => failure: we are out of free vm_pages, let pmap_enter() 281 * tell UVM about it. 282 * 283 * note: for kernel PTPs, we start with NKPTP of them. as we map 284 * kernel memory (at uvm_map time) we check to see if we've grown 285 * the kernel pmap. if so, we call the optional function 286 * pmap_growkernel() to grow the kernel PTPs in advance. 287 * 288 * [C] pv_entry structures 289 */ 290 291 /* 292 * locking 293 * 294 * we have the following locks that we must contend with: 295 * 296 * mutexes: 297 * 298 * - pmap lock (per pmap, part of uvm_object) 299 * this lock protects the fields in the pmap structure including 300 * the non-kernel PDEs in the PDP, and the PTEs. it also locks 301 * in the alternate PTE space (since that is determined by the 302 * entry in the PDP). 303 * 304 * - pvh_lock (per pv_head) 305 * this lock protects the pv_entry list which is chained off the 306 * pv_head structure for a specific managed PA. it is locked 307 * when traversing the list (e.g. adding/removing mappings, 308 * syncing R/M bits, etc.) 309 * 310 * - pmaps_lock 311 * this lock protects the list of active pmaps (headed by "pmaps"). 312 * we lock it when adding or removing pmaps from this list. 313 */ 314 315 const vaddr_t ptp_masks[] = PTP_MASK_INITIALIZER; 316 const int ptp_shifts[] = PTP_SHIFT_INITIALIZER; 317 const long nkptpmax[] = NKPTPMAX_INITIALIZER; 318 const long nbpd[] = NBPD_INITIALIZER; 319 pd_entry_t * const normal_pdes[] = PDES_INITIALIZER; 320 321 long nkptp[] = NKPTP_INITIALIZER; 322 323 struct pmap_head pmaps; 324 kmutex_t pmaps_lock; 325 326 static vaddr_t pmap_maxkvaddr; 327 328 /* 329 * XXX kludge: dummy locking to make KASSERTs in uvm_page.c comfortable. 330 * actual locking is done by pm_lock. 331 */ 332 #if defined(DIAGNOSTIC) 333 #define PMAP_SUBOBJ_LOCK(pm, idx) \ 334 KASSERT(mutex_owned((pm)->pm_lock)); \ 335 if ((idx) != 0) \ 336 mutex_enter((pm)->pm_obj[(idx)].vmobjlock) 337 #define PMAP_SUBOBJ_UNLOCK(pm, idx) \ 338 KASSERT(mutex_owned((pm)->pm_lock)); \ 339 if ((idx) != 0) \ 340 mutex_exit((pm)->pm_obj[(idx)].vmobjlock) 341 #else /* defined(DIAGNOSTIC) */ 342 #define PMAP_SUBOBJ_LOCK(pm, idx) /* nothing */ 343 #define PMAP_SUBOBJ_UNLOCK(pm, idx) /* nothing */ 344 #endif /* defined(DIAGNOSTIC) */ 345 346 /* 347 * Misc. event counters. 348 */ 349 struct evcnt pmap_iobmp_evcnt; 350 struct evcnt pmap_ldt_evcnt; 351 352 /* 353 * PAT 354 */ 355 #define PATENTRY(n, type) (type << ((n) * 8)) 356 #define PAT_UC 0x0ULL 357 #define PAT_WC 0x1ULL 358 #define PAT_WT 0x4ULL 359 #define PAT_WP 0x5ULL 360 #define PAT_WB 0x6ULL 361 #define PAT_UCMINUS 0x7ULL 362 363 static bool cpu_pat_enabled __read_mostly = false; 364 365 /* 366 * global data structures 367 */ 368 369 static struct pmap kernel_pmap_store; /* the kernel's pmap (proc0) */ 370 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store; 371 372 /* 373 * pmap_pg_g: if our processor supports PG_G in the PTE then we 374 * set pmap_pg_g to PG_G (otherwise it is zero). 375 */ 376 377 int pmap_pg_g __read_mostly = 0; 378 379 /* 380 * pmap_largepages: if our processor supports PG_PS and we are 381 * using it, this is set to true. 382 */ 383 384 int pmap_largepages __read_mostly; 385 386 /* 387 * i386 physical memory comes in a big contig chunk with a small 388 * hole toward the front of it... the following two paddr_t's 389 * (shared with machdep.c) describe the physical address space 390 * of this machine. 391 */ 392 paddr_t avail_start __read_mostly; /* PA of first available physical page */ 393 paddr_t avail_end __read_mostly; /* PA of last available physical page */ 394 395 #ifdef XEN 396 #ifdef __x86_64__ 397 /* Dummy PGD for user cr3, used between pmap_deactivate() and pmap_activate() */ 398 static paddr_t xen_dummy_user_pgd; 399 #endif /* __x86_64__ */ 400 paddr_t pmap_pa_start; /* PA of first physical page for this domain */ 401 paddr_t pmap_pa_end; /* PA of last physical page for this domain */ 402 #endif /* XEN */ 403 404 #define VM_PAGE_TO_PP(pg) (&(pg)->mdpage.mp_pp) 405 406 #define PV_HASH_SIZE 32768 407 #define PV_HASH_LOCK_CNT 32 408 409 struct pv_hash_lock { 410 kmutex_t lock; 411 } __aligned(CACHE_LINE_SIZE) pv_hash_locks[PV_HASH_LOCK_CNT] 412 __aligned(CACHE_LINE_SIZE); 413 414 struct pv_hash_head { 415 SLIST_HEAD(, pv_entry) hh_list; 416 } pv_hash_heads[PV_HASH_SIZE]; 417 418 static u_int 419 pvhash_hash(struct vm_page *ptp, vaddr_t va) 420 { 421 422 return (uintptr_t)ptp / sizeof(*ptp) + (va >> PAGE_SHIFT); 423 } 424 425 static struct pv_hash_head * 426 pvhash_head(u_int hash) 427 { 428 429 return &pv_hash_heads[hash % PV_HASH_SIZE]; 430 } 431 432 static kmutex_t * 433 pvhash_lock(u_int hash) 434 { 435 436 return &pv_hash_locks[hash % PV_HASH_LOCK_CNT].lock; 437 } 438 439 static struct pv_entry * 440 pvhash_remove(struct pv_hash_head *hh, struct vm_page *ptp, vaddr_t va) 441 { 442 struct pv_entry *pve; 443 struct pv_entry *prev; 444 445 prev = NULL; 446 SLIST_FOREACH(pve, &hh->hh_list, pve_hash) { 447 if (pve->pve_pte.pte_ptp == ptp && 448 pve->pve_pte.pte_va == va) { 449 if (prev != NULL) { 450 SLIST_REMOVE_AFTER(prev, pve_hash); 451 } else { 452 SLIST_REMOVE_HEAD(&hh->hh_list, pve_hash); 453 } 454 break; 455 } 456 prev = pve; 457 } 458 return pve; 459 } 460 461 /* 462 * other data structures 463 */ 464 465 static pt_entry_t protection_codes[8] __read_mostly; /* maps MI prot to i386 466 prot code */ 467 static bool pmap_initialized __read_mostly = false; /* pmap_init done yet? */ 468 469 /* 470 * the following two vaddr_t's are used during system startup 471 * to keep track of how much of the kernel's VM space we have used. 472 * once the system is started, the management of the remaining kernel 473 * VM space is turned over to the kernel_map vm_map. 474 */ 475 476 static vaddr_t virtual_avail __read_mostly; /* VA of first free KVA */ 477 static vaddr_t virtual_end __read_mostly; /* VA of last free KVA */ 478 479 /* 480 * pool that pmap structures are allocated from 481 */ 482 483 static struct pool_cache pmap_cache; 484 485 /* 486 * pv_entry cache 487 */ 488 489 static struct pool_cache pmap_pv_cache; 490 491 #ifdef __HAVE_DIRECT_MAP 492 493 extern phys_ram_seg_t mem_clusters[]; 494 extern int mem_cluster_cnt; 495 496 #else 497 498 /* 499 * MULTIPROCESSOR: special VA's/ PTE's are actually allocated inside a 500 * maxcpus*NPTECL array of PTE's, to avoid cache line thrashing 501 * due to false sharing. 502 */ 503 504 #ifdef MULTIPROCESSOR 505 #define PTESLEW(pte, id) ((pte)+(id)*NPTECL) 506 #define VASLEW(va,id) ((va)+(id)*NPTECL*PAGE_SIZE) 507 #else 508 #define PTESLEW(pte, id) (pte) 509 #define VASLEW(va,id) (va) 510 #endif 511 512 /* 513 * special VAs and the PTEs that map them 514 */ 515 static pt_entry_t *csrc_pte, *cdst_pte, *zero_pte, *ptp_pte, *early_zero_pte; 516 static char *csrcp, *cdstp, *zerop, *ptpp; 517 #ifdef XEN 518 char *early_zerop; /* also referenced from xen_pmap_bootstrap() */ 519 #else 520 static char *early_zerop; 521 #endif 522 523 #endif 524 525 int pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); 526 527 /* PDP pool_cache(9) and its callbacks */ 528 struct pool_cache pmap_pdp_cache; 529 static int pmap_pdp_ctor(void *, void *, int); 530 static void pmap_pdp_dtor(void *, void *); 531 #ifdef PAE 532 /* need to allocate items of 4 pages */ 533 static void *pmap_pdp_alloc(struct pool *, int); 534 static void pmap_pdp_free(struct pool *, void *); 535 static struct pool_allocator pmap_pdp_allocator = { 536 .pa_alloc = pmap_pdp_alloc, 537 .pa_free = pmap_pdp_free, 538 .pa_pagesz = PAGE_SIZE * PDP_SIZE, 539 }; 540 #endif /* PAE */ 541 542 extern vaddr_t idt_vaddr; /* we allocate IDT early */ 543 extern paddr_t idt_paddr; 544 545 #ifdef _LP64 546 extern vaddr_t lo32_vaddr; 547 extern vaddr_t lo32_paddr; 548 #endif 549 550 extern int end; 551 552 #ifdef i386 553 /* stuff to fix the pentium f00f bug */ 554 extern vaddr_t pentium_idt_vaddr; 555 #endif 556 557 558 /* 559 * local prototypes 560 */ 561 562 static struct vm_page *pmap_get_ptp(struct pmap *, vaddr_t, 563 pd_entry_t * const *); 564 static struct vm_page *pmap_find_ptp(struct pmap *, vaddr_t, paddr_t, int); 565 static void pmap_freepage(struct pmap *, struct vm_page *, int); 566 static void pmap_free_ptp(struct pmap *, struct vm_page *, 567 vaddr_t, pt_entry_t *, 568 pd_entry_t * const *); 569 static bool pmap_remove_pte(struct pmap *, struct vm_page *, 570 pt_entry_t *, vaddr_t, 571 struct pv_entry **); 572 static void pmap_remove_ptes(struct pmap *, struct vm_page *, 573 vaddr_t, vaddr_t, vaddr_t, 574 struct pv_entry **); 575 576 static bool pmap_get_physpage(vaddr_t, int, paddr_t *); 577 static void pmap_alloc_level(pd_entry_t * const *, vaddr_t, int, 578 long *); 579 580 static bool pmap_reactivate(struct pmap *); 581 582 /* 583 * p m a p h e l p e r f u n c t i o n s 584 */ 585 586 static inline void 587 pmap_stats_update(struct pmap *pmap, int resid_diff, int wired_diff) 588 { 589 590 if (pmap == pmap_kernel()) { 591 atomic_add_long(&pmap->pm_stats.resident_count, resid_diff); 592 atomic_add_long(&pmap->pm_stats.wired_count, wired_diff); 593 } else { 594 KASSERT(mutex_owned(pmap->pm_lock)); 595 pmap->pm_stats.resident_count += resid_diff; 596 pmap->pm_stats.wired_count += wired_diff; 597 } 598 } 599 600 static inline void 601 pmap_stats_update_bypte(struct pmap *pmap, pt_entry_t npte, pt_entry_t opte) 602 { 603 int resid_diff = ((npte & PG_V) ? 1 : 0) - ((opte & PG_V) ? 1 : 0); 604 int wired_diff = ((npte & PG_W) ? 1 : 0) - ((opte & PG_W) ? 1 : 0); 605 606 KASSERT((npte & (PG_V | PG_W)) != PG_W); 607 KASSERT((opte & (PG_V | PG_W)) != PG_W); 608 609 pmap_stats_update(pmap, resid_diff, wired_diff); 610 } 611 612 /* 613 * ptp_to_pmap: lookup pmap by ptp 614 */ 615 616 static struct pmap * 617 ptp_to_pmap(struct vm_page *ptp) 618 { 619 struct pmap *pmap; 620 621 if (ptp == NULL) { 622 return pmap_kernel(); 623 } 624 pmap = (struct pmap *)ptp->uobject; 625 KASSERT(pmap != NULL); 626 KASSERT(&pmap->pm_obj[0] == ptp->uobject); 627 return pmap; 628 } 629 630 static inline struct pv_pte * 631 pve_to_pvpte(struct pv_entry *pve) 632 { 633 634 KASSERT((void *)&pve->pve_pte == (void *)pve); 635 return &pve->pve_pte; 636 } 637 638 static inline struct pv_entry * 639 pvpte_to_pve(struct pv_pte *pvpte) 640 { 641 struct pv_entry *pve = (void *)pvpte; 642 643 KASSERT(pve_to_pvpte(pve) == pvpte); 644 return pve; 645 } 646 647 /* 648 * pv_pte_first, pv_pte_next: PV list iterator. 649 */ 650 651 static struct pv_pte * 652 pv_pte_first(struct pmap_page *pp) 653 { 654 655 if ((pp->pp_flags & PP_EMBEDDED) != 0) { 656 return &pp->pp_pte; 657 } 658 return pve_to_pvpte(LIST_FIRST(&pp->pp_head.pvh_list)); 659 } 660 661 static struct pv_pte * 662 pv_pte_next(struct pmap_page *pp, struct pv_pte *pvpte) 663 { 664 665 KASSERT(pvpte != NULL); 666 if (pvpte == &pp->pp_pte) { 667 KASSERT((pp->pp_flags & PP_EMBEDDED) != 0); 668 return NULL; 669 } 670 KASSERT((pp->pp_flags & PP_EMBEDDED) == 0); 671 return pve_to_pvpte(LIST_NEXT(pvpte_to_pve(pvpte), pve_list)); 672 } 673 674 /* 675 * pmap_is_curpmap: is this pmap the one currently loaded [in %cr3]? 676 * of course the kernel is always loaded 677 */ 678 679 bool 680 pmap_is_curpmap(struct pmap *pmap) 681 { 682 return((pmap == pmap_kernel()) || 683 (pmap == curcpu()->ci_pmap)); 684 } 685 686 /* 687 * Add a reference to the specified pmap. 688 */ 689 690 void 691 pmap_reference(struct pmap *pmap) 692 { 693 694 atomic_inc_uint(&pmap->pm_obj[0].uo_refs); 695 } 696 697 /* 698 * pmap_map_ptes: map a pmap's PTEs into KVM and lock them in 699 * 700 * there are several pmaps involved. some or all of them might be same. 701 * 702 * - the pmap given by the first argument 703 * our caller wants to access this pmap's PTEs. 704 * 705 * - pmap_kernel() 706 * the kernel pmap. note that it only contains the kernel part 707 * of the address space which is shared by any pmap. ie. any 708 * pmap can be used instead of pmap_kernel() for our purpose. 709 * 710 * - ci->ci_pmap 711 * pmap currently loaded on the cpu. 712 * 713 * - vm_map_pmap(&curproc->p_vmspace->vm_map) 714 * current process' pmap. 715 * 716 * => we lock enough pmaps to keep things locked in 717 * => must be undone with pmap_unmap_ptes before returning 718 */ 719 720 void 721 pmap_map_ptes(struct pmap *pmap, struct pmap **pmap2, 722 pd_entry_t **ptepp, pd_entry_t * const **pdeppp) 723 { 724 struct pmap *curpmap; 725 struct cpu_info *ci; 726 uint32_t cpumask; 727 lwp_t *l; 728 729 /* The kernel's pmap is always accessible. */ 730 if (pmap == pmap_kernel()) { 731 *pmap2 = NULL; 732 *ptepp = PTE_BASE; 733 *pdeppp = normal_pdes; 734 return; 735 } 736 KASSERT(kpreempt_disabled()); 737 738 l = curlwp; 739 retry: 740 mutex_enter(pmap->pm_lock); 741 ci = curcpu(); 742 curpmap = ci->ci_pmap; 743 if (vm_map_pmap(&l->l_proc->p_vmspace->vm_map) == pmap) { 744 /* Our own pmap so just load it: easy. */ 745 if (__predict_false(ci->ci_want_pmapload)) { 746 mutex_exit(pmap->pm_lock); 747 pmap_load(); 748 goto retry; 749 } 750 KASSERT(pmap == curpmap); 751 } else if (pmap == curpmap) { 752 /* 753 * Already on the CPU: make it valid. This is very 754 * often the case during exit(), when we have switched 755 * to the kernel pmap in order to destroy a user pmap. 756 */ 757 if (!pmap_reactivate(pmap)) { 758 u_int gen = uvm_emap_gen_return(); 759 tlbflush(); 760 uvm_emap_update(gen); 761 } 762 } else { 763 /* 764 * Toss current pmap from CPU, but keep a reference to it. 765 * The reference will be dropped by pmap_unmap_ptes(). 766 * Can happen if we block during exit(). 767 */ 768 cpumask = ci->ci_cpumask; 769 atomic_and_32(&curpmap->pm_cpus, ~cpumask); 770 atomic_and_32(&curpmap->pm_kernel_cpus, ~cpumask); 771 ci->ci_pmap = pmap; 772 ci->ci_tlbstate = TLBSTATE_VALID; 773 atomic_or_32(&pmap->pm_cpus, cpumask); 774 atomic_or_32(&pmap->pm_kernel_cpus, cpumask); 775 cpu_load_pmap(pmap, curpmap); 776 } 777 pmap->pm_ncsw = l->l_ncsw; 778 *pmap2 = curpmap; 779 *ptepp = PTE_BASE; 780 #if defined(XEN) && defined(__x86_64__) 781 KASSERT(ci->ci_normal_pdes[PTP_LEVELS - 2] == L4_BASE); 782 ci->ci_normal_pdes[PTP_LEVELS - 2] = pmap->pm_pdir; 783 *pdeppp = ci->ci_normal_pdes; 784 #else /* XEN && __x86_64__ */ 785 *pdeppp = normal_pdes; 786 #endif /* XEN && __x86_64__ */ 787 } 788 789 /* 790 * pmap_unmap_ptes: unlock the PTE mapping of "pmap" 791 */ 792 793 void 794 pmap_unmap_ptes(struct pmap *pmap, struct pmap *pmap2) 795 { 796 struct cpu_info *ci; 797 struct pmap *mypmap; 798 799 KASSERT(kpreempt_disabled()); 800 801 /* The kernel's pmap is always accessible. */ 802 if (pmap == pmap_kernel()) { 803 return; 804 } 805 806 ci = curcpu(); 807 #if defined(XEN) && defined(__x86_64__) 808 /* Reset per-cpu normal_pdes */ 809 KASSERT(ci->ci_normal_pdes[PTP_LEVELS - 2] != L4_BASE); 810 ci->ci_normal_pdes[PTP_LEVELS - 2] = L4_BASE; 811 #endif /* XEN && __x86_64__ */ 812 /* 813 * We cannot tolerate context switches while mapped in. 814 * If it is our own pmap all we have to do is unlock. 815 */ 816 KASSERT(pmap->pm_ncsw == curlwp->l_ncsw); 817 mypmap = vm_map_pmap(&curproc->p_vmspace->vm_map); 818 if (pmap == mypmap) { 819 mutex_exit(pmap->pm_lock); 820 return; 821 } 822 823 /* 824 * Mark whatever's on the CPU now as lazy and unlock. 825 * If the pmap was already installed, we are done. 826 */ 827 ci->ci_tlbstate = TLBSTATE_LAZY; 828 ci->ci_want_pmapload = (mypmap != pmap_kernel()); 829 mutex_exit(pmap->pm_lock); 830 if (pmap == pmap2) { 831 return; 832 } 833 834 /* 835 * We installed another pmap on the CPU. Grab a reference to 836 * it and leave in place. Toss the evicted pmap (can block). 837 */ 838 pmap_reference(pmap); 839 pmap_destroy(pmap2); 840 } 841 842 843 inline static void 844 pmap_exec_account(struct pmap *pm, vaddr_t va, pt_entry_t opte, pt_entry_t npte) 845 { 846 847 #if !defined(__x86_64__) 848 if (curproc == NULL || curproc->p_vmspace == NULL || 849 pm != vm_map_pmap(&curproc->p_vmspace->vm_map)) 850 return; 851 852 if ((opte ^ npte) & PG_X) 853 pmap_update_pg(va); 854 855 /* 856 * Executability was removed on the last executable change. 857 * Reset the code segment to something conservative and 858 * let the trap handler deal with setting the right limit. 859 * We can't do that because of locking constraints on the vm map. 860 */ 861 862 if ((opte & PG_X) && (npte & PG_X) == 0 && va == pm->pm_hiexec) { 863 struct trapframe *tf = curlwp->l_md.md_regs; 864 865 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); 866 pm->pm_hiexec = I386_MAX_EXE_ADDR; 867 } 868 #endif /* !defined(__x86_64__) */ 869 } 870 871 #if !defined(__x86_64__) 872 /* 873 * Fixup the code segment to cover all potential executable mappings. 874 * returns 0 if no changes to the code segment were made. 875 */ 876 877 int 878 pmap_exec_fixup(struct vm_map *map, struct trapframe *tf, struct pcb *pcb) 879 { 880 struct vm_map_entry *ent; 881 struct pmap *pm = vm_map_pmap(map); 882 vaddr_t va = 0; 883 884 vm_map_lock_read(map); 885 for (ent = (&map->header)->next; ent != &map->header; ent = ent->next) { 886 887 /* 888 * This entry has greater va than the entries before. 889 * We need to make it point to the last page, not past it. 890 */ 891 892 if (ent->protection & VM_PROT_EXECUTE) 893 va = trunc_page(ent->end) - PAGE_SIZE; 894 } 895 vm_map_unlock_read(map); 896 if (va == pm->pm_hiexec && tf->tf_cs == GSEL(GUCODEBIG_SEL, SEL_UPL)) 897 return (0); 898 899 pm->pm_hiexec = va; 900 if (pm->pm_hiexec > I386_MAX_EXE_ADDR) { 901 tf->tf_cs = GSEL(GUCODEBIG_SEL, SEL_UPL); 902 } else { 903 tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); 904 return (0); 905 } 906 return (1); 907 } 908 #endif /* !defined(__x86_64__) */ 909 910 void 911 pat_init(struct cpu_info *ci) 912 { 913 uint64_t pat; 914 915 if (!(ci->ci_feat_val[0] & CPUID_PAT)) 916 return; 917 918 /* We change WT to WC. Leave all other entries the default values. */ 919 pat = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) | 920 PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) | 921 PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) | 922 PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC); 923 924 wrmsr(MSR_CR_PAT, pat); 925 cpu_pat_enabled = true; 926 aprint_debug_dev(ci->ci_dev, "PAT enabled\n"); 927 } 928 929 static pt_entry_t 930 pmap_pat_flags(u_int flags) 931 { 932 u_int cacheflags = (flags & PMAP_CACHE_MASK); 933 934 if (!cpu_pat_enabled) { 935 switch (cacheflags) { 936 case PMAP_NOCACHE: 937 case PMAP_NOCACHE_OVR: 938 /* results in PGC_UCMINUS on cpus which have 939 * the cpuid PAT but PAT "disabled" 940 */ 941 return PG_N; 942 default: 943 return 0; 944 } 945 } 946 947 switch (cacheflags) { 948 case PMAP_NOCACHE: 949 return PGC_UC; 950 case PMAP_WRITE_COMBINE: 951 return PGC_WC; 952 case PMAP_WRITE_BACK: 953 return PGC_WB; 954 case PMAP_NOCACHE_OVR: 955 return PGC_UCMINUS; 956 } 957 958 return 0; 959 } 960 961 /* 962 * p m a p k e n t e r f u n c t i o n s 963 * 964 * functions to quickly enter/remove pages from the kernel address 965 * space. pmap_kremove is exported to MI kernel. we make use of 966 * the recursive PTE mappings. 967 */ 968 969 /* 970 * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking 971 * 972 * => no need to lock anything, assume va is already allocated 973 * => should be faster than normal pmap enter function 974 */ 975 976 void 977 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 978 { 979 pt_entry_t *pte, opte, npte; 980 981 KASSERT(!(prot & ~VM_PROT_ALL)); 982 983 if (va < VM_MIN_KERNEL_ADDRESS) 984 pte = vtopte(va); 985 else 986 pte = kvtopte(va); 987 #ifdef DOM0OPS 988 if (pa < pmap_pa_start || pa >= pmap_pa_end) { 989 #ifdef DEBUG 990 printf_nolog("%s: pa 0x%" PRIx64 " for va 0x%" PRIx64 991 " outside range\n", __func__, (int64_t)pa, (int64_t)va); 992 #endif /* DEBUG */ 993 npte = pa; 994 } else 995 #endif /* DOM0OPS */ 996 npte = pmap_pa2pte(pa); 997 npte |= protection_codes[prot] | PG_k | PG_V | pmap_pg_g; 998 npte |= pmap_pat_flags(flags); 999 opte = pmap_pte_testset(pte, npte); /* zap! */ 1000 #if defined(DIAGNOSTIC) 1001 /* XXX For now... */ 1002 if (opte & PG_PS) 1003 panic("%s: PG_PS", __func__); 1004 #endif 1005 if ((opte & (PG_V | PG_U)) == (PG_V | PG_U)) { 1006 /* This should not happen. */ 1007 printf_nolog("%s: mapping already present\n", __func__); 1008 kpreempt_disable(); 1009 pmap_tlb_shootdown(pmap_kernel(), va, opte, TLBSHOOT_KENTER); 1010 kpreempt_enable(); 1011 } 1012 } 1013 1014 void 1015 pmap_emap_enter(vaddr_t va, paddr_t pa, vm_prot_t prot) 1016 { 1017 pt_entry_t *pte, opte, npte; 1018 1019 KASSERT((prot & ~VM_PROT_ALL) == 0); 1020 pte = (va < VM_MIN_KERNEL_ADDRESS) ? vtopte(va) : kvtopte(va); 1021 1022 #ifdef DOM0OPS 1023 if (pa < pmap_pa_start || pa >= pmap_pa_end) { 1024 npte = pa; 1025 } else 1026 #endif 1027 npte = pmap_pa2pte(pa); 1028 1029 npte = pmap_pa2pte(pa); 1030 npte |= protection_codes[prot] | PG_k | PG_V; 1031 opte = pmap_pte_testset(pte, npte); 1032 } 1033 1034 /* 1035 * pmap_emap_sync: perform TLB flush or pmap load, if it was deferred. 1036 */ 1037 void 1038 pmap_emap_sync(bool canload) 1039 { 1040 struct cpu_info *ci = curcpu(); 1041 struct pmap *pmap; 1042 1043 KASSERT(kpreempt_disabled()); 1044 if (__predict_true(ci->ci_want_pmapload && canload)) { 1045 /* 1046 * XXX: Hint for pmap_reactivate(), which might suggest to 1047 * not perform TLB flush, if state has not changed. 1048 */ 1049 pmap = vm_map_pmap(&curlwp->l_proc->p_vmspace->vm_map); 1050 if (__predict_false(pmap == ci->ci_pmap)) { 1051 const uint32_t cpumask = ci->ci_cpumask; 1052 atomic_and_32(&pmap->pm_cpus, ~cpumask); 1053 } 1054 pmap_load(); 1055 KASSERT(ci->ci_want_pmapload == 0); 1056 } else { 1057 tlbflush(); 1058 } 1059 1060 } 1061 1062 void 1063 pmap_emap_remove(vaddr_t sva, vsize_t len) 1064 { 1065 pt_entry_t *pte, xpte; 1066 vaddr_t va, eva = sva + len; 1067 1068 for (va = sva; va < eva; va += PAGE_SIZE) { 1069 pte = (va < VM_MIN_KERNEL_ADDRESS) ? vtopte(va) : kvtopte(va); 1070 xpte |= pmap_pte_testset(pte, 0); 1071 } 1072 } 1073 1074 __strict_weak_alias(pmap_kenter_ma, pmap_kenter_pa); 1075 1076 #if defined(__x86_64__) 1077 /* 1078 * Change protection for a virtual address. Local for a CPU only, don't 1079 * care about TLB shootdowns. 1080 * 1081 * => must be called with preemption disabled 1082 */ 1083 void 1084 pmap_changeprot_local(vaddr_t va, vm_prot_t prot) 1085 { 1086 pt_entry_t *pte, opte, npte; 1087 1088 KASSERT(kpreempt_disabled()); 1089 1090 if (va < VM_MIN_KERNEL_ADDRESS) 1091 pte = vtopte(va); 1092 else 1093 pte = kvtopte(va); 1094 1095 npte = opte = *pte; 1096 1097 if ((prot & VM_PROT_WRITE) != 0) 1098 npte |= PG_RW; 1099 else 1100 npte &= ~PG_RW; 1101 1102 if (opte != npte) { 1103 pmap_pte_set(pte, npte); 1104 pmap_pte_flush(); 1105 invlpg(va); 1106 } 1107 } 1108 #endif /* defined(__x86_64__) */ 1109 1110 /* 1111 * pmap_kremove: remove a kernel mapping(s) without R/M (pv_entry) tracking 1112 * 1113 * => no need to lock anything 1114 * => caller must dispose of any vm_page mapped in the va range 1115 * => note: not an inline function 1116 * => we assume the va is page aligned and the len is a multiple of PAGE_SIZE 1117 * => we assume kernel only unmaps valid addresses and thus don't bother 1118 * checking the valid bit before doing TLB flushing 1119 * => must be followed by call to pmap_update() before reuse of page 1120 */ 1121 1122 void 1123 pmap_kremove(vaddr_t sva, vsize_t len) 1124 { 1125 pt_entry_t *pte, opte; 1126 vaddr_t va, eva; 1127 1128 eva = sva + len; 1129 1130 kpreempt_disable(); 1131 for (va = sva; va < eva; va += PAGE_SIZE) { 1132 if (va < VM_MIN_KERNEL_ADDRESS) 1133 pte = vtopte(va); 1134 else 1135 pte = kvtopte(va); 1136 opte = pmap_pte_testset(pte, 0); /* zap! */ 1137 if ((opte & (PG_V | PG_U)) == (PG_V | PG_U)) { 1138 pmap_tlb_shootdown(pmap_kernel(), va, opte, 1139 TLBSHOOT_KREMOVE); 1140 } 1141 KASSERT((opte & PG_PS) == 0); 1142 KASSERT((opte & PG_PVLIST) == 0); 1143 } 1144 kpreempt_enable(); 1145 } 1146 1147 /* 1148 * p m a p i n i t f u n c t i o n s 1149 * 1150 * pmap_bootstrap and pmap_init are called during system startup 1151 * to init the pmap module. pmap_bootstrap() does a low level 1152 * init just to get things rolling. pmap_init() finishes the job. 1153 */ 1154 1155 /* 1156 * pmap_bootstrap: get the system in a state where it can run with VM 1157 * properly enabled (called before main()). the VM system is 1158 * fully init'd later... 1159 * 1160 * => on i386, locore.s has already enabled the MMU by allocating 1161 * a PDP for the kernel, and nkpde PTP's for the kernel. 1162 * => kva_start is the first free virtual address in kernel space 1163 */ 1164 1165 void 1166 pmap_bootstrap(vaddr_t kva_start) 1167 { 1168 struct pmap *kpm; 1169 pt_entry_t *pte; 1170 int i; 1171 vaddr_t kva; 1172 #ifndef XEN 1173 pd_entry_t *pde; 1174 unsigned long p1i; 1175 vaddr_t kva_end; 1176 #endif 1177 #ifdef __HAVE_DIRECT_MAP 1178 phys_ram_seg_t *mc; 1179 long ndmpdp; 1180 paddr_t lastpa, dmpd, dmpdp, pdp; 1181 vaddr_t tmpva; 1182 #endif 1183 1184 pt_entry_t pg_nx = (cpu_feature[2] & CPUID_NOX ? PG_NX : 0); 1185 1186 /* 1187 * set up our local static global vars that keep track of the 1188 * usage of KVM before kernel_map is set up 1189 */ 1190 1191 virtual_avail = kva_start; /* first free KVA */ 1192 virtual_end = VM_MAX_KERNEL_ADDRESS; /* last KVA */ 1193 1194 /* 1195 * set up protection_codes: we need to be able to convert from 1196 * a MI protection code (some combo of VM_PROT...) to something 1197 * we can jam into a i386 PTE. 1198 */ 1199 1200 protection_codes[VM_PROT_NONE] = pg_nx; /* --- */ 1201 protection_codes[VM_PROT_EXECUTE] = PG_RO | PG_X; /* --x */ 1202 protection_codes[VM_PROT_READ] = PG_RO | pg_nx; /* -r- */ 1203 protection_codes[VM_PROT_READ|VM_PROT_EXECUTE] = PG_RO | PG_X;/* -rx */ 1204 protection_codes[VM_PROT_WRITE] = PG_RW | pg_nx; /* w-- */ 1205 protection_codes[VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW | PG_X;/* w-x */ 1206 protection_codes[VM_PROT_WRITE|VM_PROT_READ] = PG_RW | pg_nx; 1207 /* wr- */ 1208 protection_codes[VM_PROT_ALL] = PG_RW | PG_X; /* wrx */ 1209 1210 /* 1211 * now we init the kernel's pmap 1212 * 1213 * the kernel pmap's pm_obj is not used for much. however, in 1214 * user pmaps the pm_obj contains the list of active PTPs. 1215 * the pm_obj currently does not have a pager. it might be possible 1216 * to add a pager that would allow a process to read-only mmap its 1217 * own page tables (fast user level vtophys?). this may or may not 1218 * be useful. 1219 */ 1220 1221 kpm = pmap_kernel(); 1222 for (i = 0; i < PTP_LEVELS - 1; i++) { 1223 mutex_init(&kpm->pm_obj_lock[i], MUTEX_DEFAULT, IPL_NONE); 1224 uvm_obj_init(&kpm->pm_obj[i], NULL, false, 1); 1225 uvm_obj_setlock(&kpm->pm_obj[i], &kpm->pm_obj_lock[i]); 1226 kpm->pm_ptphint[i] = NULL; 1227 } 1228 memset(&kpm->pm_list, 0, sizeof(kpm->pm_list)); /* pm_list not used */ 1229 1230 kpm->pm_pdir = (pd_entry_t *)(PDPpaddr + KERNBASE); 1231 for (i = 0; i < PDP_SIZE; i++) 1232 kpm->pm_pdirpa[i] = PDPpaddr + PAGE_SIZE * i; 1233 1234 kpm->pm_stats.wired_count = kpm->pm_stats.resident_count = 1235 x86_btop(kva_start - VM_MIN_KERNEL_ADDRESS); 1236 1237 /* 1238 * the above is just a rough estimate and not critical to the proper 1239 * operation of the system. 1240 */ 1241 1242 #ifndef XEN 1243 /* 1244 * Begin to enable global TLB entries if they are supported. 1245 * The G bit has no effect until the CR4_PGE bit is set in CR4, 1246 * which happens in cpu_init(), which is run on each cpu 1247 * (and happens later) 1248 */ 1249 1250 if (cpu_feature[0] & CPUID_PGE) { 1251 pmap_pg_g = PG_G; /* enable software */ 1252 1253 /* add PG_G attribute to already mapped kernel pages */ 1254 if (KERNBASE == VM_MIN_KERNEL_ADDRESS) { 1255 kva_end = virtual_avail; 1256 } else { 1257 extern vaddr_t eblob, esym; 1258 kva_end = (vaddr_t)&end; 1259 if (esym > kva_end) 1260 kva_end = esym; 1261 if (eblob > kva_end) 1262 kva_end = eblob; 1263 kva_end = roundup(kva_end, PAGE_SIZE); 1264 } 1265 for (kva = KERNBASE; kva < kva_end; kva += PAGE_SIZE) { 1266 p1i = pl1_i(kva); 1267 if (pmap_valid_entry(PTE_BASE[p1i])) 1268 PTE_BASE[p1i] |= PG_G; 1269 } 1270 } 1271 1272 /* 1273 * enable large pages if they are supported. 1274 */ 1275 1276 if (cpu_feature[0] & CPUID_PSE) { 1277 paddr_t pa; 1278 extern char __data_start; 1279 1280 lcr4(rcr4() | CR4_PSE); /* enable hardware (via %cr4) */ 1281 pmap_largepages = 1; /* enable software */ 1282 1283 /* 1284 * the TLB must be flushed after enabling large pages 1285 * on Pentium CPUs, according to section 3.6.2.2 of 1286 * "Intel Architecture Software Developer's Manual, 1287 * Volume 3: System Programming". 1288 */ 1289 tlbflushg(); 1290 1291 /* 1292 * now, remap the kernel text using large pages. we 1293 * assume that the linker has properly aligned the 1294 * .data segment to a NBPD_L2 boundary. 1295 */ 1296 kva_end = rounddown((vaddr_t)&__data_start, NBPD_L1); 1297 for (pa = 0, kva = KERNBASE; kva + NBPD_L2 <= kva_end; 1298 kva += NBPD_L2, pa += NBPD_L2) { 1299 pde = &L2_BASE[pl2_i(kva)]; 1300 *pde = pa | pmap_pg_g | PG_PS | 1301 PG_KR | PG_V; /* zap! */ 1302 tlbflushg(); 1303 } 1304 #if defined(DEBUG) 1305 aprint_normal("kernel text is mapped with %" PRIuPSIZE " large " 1306 "pages and %" PRIuPSIZE " normal pages\n", 1307 howmany(kva - KERNBASE, NBPD_L2), 1308 howmany((vaddr_t)&__data_start - kva, NBPD_L1)); 1309 #endif /* defined(DEBUG) */ 1310 } 1311 #endif /* !XEN */ 1312 1313 #ifdef __HAVE_DIRECT_MAP 1314 1315 tmpva = (KERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2); 1316 pte = PTE_BASE + pl1_i(tmpva); 1317 1318 /* 1319 * Map the direct map. Use 1GB pages if they are available, 1320 * otherwise use 2MB pages. Note that the unused parts of 1321 * PTPs * must be zero outed, as they might be accessed due 1322 * to speculative execution. Also, PG_G is not allowed on 1323 * non-leaf PTPs. 1324 */ 1325 1326 lastpa = 0; 1327 for (i = 0; i < mem_cluster_cnt; i++) { 1328 mc = &mem_clusters[i]; 1329 lastpa = MAX(lastpa, mc->start + mc->size); 1330 } 1331 1332 ndmpdp = (lastpa + NBPD_L3 - 1) >> L3_SHIFT; 1333 dmpdp = avail_start; avail_start += PAGE_SIZE; 1334 1335 *pte = dmpdp | PG_V | PG_RW; 1336 pmap_update_pg(tmpva); 1337 memset((void *)tmpva, 0, PAGE_SIZE); 1338 1339 if (cpu_feature[2] & CPUID_P1GB) { 1340 for (i = 0; i < ndmpdp; i++) { 1341 pdp = (paddr_t)&(((pd_entry_t *)dmpdp)[i]); 1342 *pte = (pdp & PG_FRAME) | PG_V | PG_RW; 1343 pmap_update_pg(tmpva); 1344 1345 pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); 1346 *pde = ((paddr_t)i << L3_SHIFT) | 1347 PG_RW | PG_V | PG_U | PG_PS | PG_G; 1348 } 1349 } else { 1350 dmpd = avail_start; avail_start += ndmpdp * PAGE_SIZE; 1351 1352 for (i = 0; i < ndmpdp; i++) { 1353 pdp = dmpd + i * PAGE_SIZE; 1354 *pte = (pdp & PG_FRAME) | PG_V | PG_RW; 1355 pmap_update_pg(tmpva); 1356 1357 memset((void *)tmpva, 0, PAGE_SIZE); 1358 } 1359 for (i = 0; i < NPDPG * ndmpdp; i++) { 1360 pdp = (paddr_t)&(((pd_entry_t *)dmpd)[i]); 1361 *pte = (pdp & PG_FRAME) | PG_V | PG_RW; 1362 pmap_update_pg(tmpva); 1363 1364 pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); 1365 *pde = ((paddr_t)i << L2_SHIFT) | 1366 PG_RW | PG_V | PG_U | PG_PS | PG_G; 1367 } 1368 for (i = 0; i < ndmpdp; i++) { 1369 pdp = (paddr_t)&(((pd_entry_t *)dmpdp)[i]); 1370 *pte = (pdp & PG_FRAME) | PG_V | PG_RW; 1371 pmap_update_pg((vaddr_t)tmpva); 1372 1373 pde = (pd_entry_t *)(tmpva + (pdp & ~PG_FRAME)); 1374 *pde = (dmpd + (i << PAGE_SHIFT)) | 1375 PG_RW | PG_V | PG_U; 1376 } 1377 } 1378 1379 kpm->pm_pdir[PDIR_SLOT_DIRECT] = dmpdp | PG_KW | PG_V | PG_U; 1380 1381 tlbflush(); 1382 1383 #else 1384 if (VM_MIN_KERNEL_ADDRESS != KERNBASE) { 1385 /* 1386 * zero_pte is stuck at the end of mapped space for the kernel 1387 * image (disjunct from kva space). This is done so that it 1388 * can safely be used in pmap_growkernel (pmap_get_physpage), 1389 * when it's called for the first time. 1390 * XXXfvdl fix this for MULTIPROCESSOR later. 1391 */ 1392 #ifdef XEN 1393 /* early_zerop initialized in xen_pmap_bootstrap() */ 1394 #else 1395 early_zerop = (void *)(KERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2); 1396 #endif 1397 early_zero_pte = PTE_BASE + pl1_i((vaddr_t)early_zerop); 1398 } 1399 1400 /* 1401 * now we allocate the "special" VAs which are used for tmp mappings 1402 * by the pmap (and other modules). we allocate the VAs by advancing 1403 * virtual_avail (note that there are no pages mapped at these VAs). 1404 * we find the PTE that maps the allocated VA via the linear PTE 1405 * mapping. 1406 */ 1407 1408 pte = PTE_BASE + pl1_i(virtual_avail); 1409 1410 #ifdef MULTIPROCESSOR 1411 /* 1412 * Waste some VA space to avoid false sharing of cache lines 1413 * for page table pages: Give each possible CPU a cache line 1414 * of PTE's (8) to play with, though we only need 4. We could 1415 * recycle some of this waste by putting the idle stacks here 1416 * as well; we could waste less space if we knew the largest 1417 * CPU ID beforehand. 1418 */ 1419 csrcp = (char *) virtual_avail; csrc_pte = pte; 1420 1421 cdstp = (char *) virtual_avail+PAGE_SIZE; cdst_pte = pte+1; 1422 1423 zerop = (char *) virtual_avail+PAGE_SIZE*2; zero_pte = pte+2; 1424 1425 ptpp = (char *) virtual_avail+PAGE_SIZE*3; ptp_pte = pte+3; 1426 1427 virtual_avail += PAGE_SIZE * maxcpus * NPTECL; 1428 pte += maxcpus * NPTECL; 1429 #else 1430 csrcp = (void *) virtual_avail; csrc_pte = pte; /* allocate */ 1431 virtual_avail += PAGE_SIZE; pte++; /* advance */ 1432 1433 cdstp = (void *) virtual_avail; cdst_pte = pte; 1434 virtual_avail += PAGE_SIZE; pte++; 1435 1436 zerop = (void *) virtual_avail; zero_pte = pte; 1437 virtual_avail += PAGE_SIZE; pte++; 1438 1439 ptpp = (void *) virtual_avail; ptp_pte = pte; 1440 virtual_avail += PAGE_SIZE; pte++; 1441 #endif 1442 1443 if (VM_MIN_KERNEL_ADDRESS == KERNBASE) { 1444 early_zerop = zerop; 1445 early_zero_pte = zero_pte; 1446 } 1447 #endif 1448 1449 /* 1450 * Nothing after this point actually needs pte. 1451 */ 1452 pte = (void *)0xdeadbeef; 1453 1454 #ifdef XEN 1455 #ifdef __x86_64__ 1456 /* 1457 * We want a dummy page directory for Xen: 1458 * when deactivate a pmap, Xen will still consider it active. 1459 * So we set user PGD to this one to lift all protection on 1460 * the now inactive page tables set. 1461 */ 1462 xen_dummy_user_pgd = avail_start; 1463 avail_start += PAGE_SIZE; 1464 1465 /* Zero fill it, the less checks in Xen it requires the better */ 1466 memset((void *) (xen_dummy_user_pgd + KERNBASE), 0, PAGE_SIZE); 1467 /* Mark read-only */ 1468 HYPERVISOR_update_va_mapping(xen_dummy_user_pgd + KERNBASE, 1469 pmap_pa2pte(xen_dummy_user_pgd) | PG_u | PG_V, UVMF_INVLPG); 1470 /* Pin as L4 */ 1471 xpq_queue_pin_l4_table(xpmap_ptom_masked(xen_dummy_user_pgd)); 1472 #endif /* __x86_64__ */ 1473 idt_vaddr = virtual_avail; /* don't need pte */ 1474 idt_paddr = avail_start; /* steal a page */ 1475 /* 1476 * Xen require one more page as we can't store 1477 * GDT and LDT on the same page 1478 */ 1479 virtual_avail += 3 * PAGE_SIZE; 1480 avail_start += 3 * PAGE_SIZE; 1481 #else /* XEN */ 1482 idt_vaddr = virtual_avail; /* don't need pte */ 1483 idt_paddr = avail_start; /* steal a page */ 1484 #if defined(__x86_64__) 1485 virtual_avail += 2 * PAGE_SIZE; 1486 avail_start += 2 * PAGE_SIZE; 1487 #else /* defined(__x86_64__) */ 1488 virtual_avail += PAGE_SIZE; 1489 avail_start += PAGE_SIZE; 1490 /* pentium f00f bug stuff */ 1491 pentium_idt_vaddr = virtual_avail; /* don't need pte */ 1492 virtual_avail += PAGE_SIZE; 1493 #endif /* defined(__x86_64__) */ 1494 #endif /* XEN */ 1495 1496 #ifdef _LP64 1497 /* 1498 * Grab a page below 4G for things that need it (i.e. 1499 * having an initial %cr3 for the MP trampoline). 1500 */ 1501 lo32_vaddr = virtual_avail; 1502 virtual_avail += PAGE_SIZE; 1503 lo32_paddr = avail_start; 1504 avail_start += PAGE_SIZE; 1505 #endif 1506 1507 /* 1508 * now we reserve some VM for mapping pages when doing a crash dump 1509 */ 1510 1511 virtual_avail = reserve_dumppages(virtual_avail); 1512 1513 /* 1514 * init the static-global locks and global lists. 1515 * 1516 * => pventry::pvh_lock (initialized elsewhere) must also be 1517 * a spin lock, again at IPL_VM to prevent deadlock, and 1518 * again is never taken from interrupt context. 1519 */ 1520 1521 mutex_init(&pmaps_lock, MUTEX_DEFAULT, IPL_NONE); 1522 LIST_INIT(&pmaps); 1523 1524 /* 1525 * ensure the TLB is sync'd with reality by flushing it... 1526 */ 1527 1528 tlbflushg(); 1529 1530 /* 1531 * calculate pmap_maxkvaddr from nkptp[]. 1532 */ 1533 1534 kva = VM_MIN_KERNEL_ADDRESS; 1535 for (i = PTP_LEVELS - 1; i >= 1; i--) { 1536 kva += nkptp[i] * nbpd[i]; 1537 } 1538 pmap_maxkvaddr = kva; 1539 } 1540 1541 #if defined(__x86_64__) 1542 /* 1543 * Pre-allocate PTPs for low memory, so that 1:1 mappings for various 1544 * trampoline code can be entered. 1545 */ 1546 void 1547 pmap_prealloc_lowmem_ptps(void) 1548 { 1549 int level; 1550 paddr_t newp; 1551 pd_entry_t *pdes; 1552 1553 const pd_entry_t pteflags = PG_k | PG_V | PG_RW; 1554 1555 pdes = pmap_kernel()->pm_pdir; 1556 level = PTP_LEVELS; 1557 for (;;) { 1558 newp = avail_start; 1559 avail_start += PAGE_SIZE; 1560 #ifdef __HAVE_DIRECT_MAP 1561 memset((void *)PMAP_DIRECT_MAP(newp), 0, PAGE_SIZE); 1562 #else 1563 pmap_pte_set(early_zero_pte, pmap_pa2pte(newp) | pteflags); 1564 pmap_pte_flush(); 1565 pmap_update_pg((vaddr_t)early_zerop); 1566 memset(early_zerop, 0, PAGE_SIZE); 1567 #endif 1568 1569 #ifdef XEN 1570 /* Mark R/O before installing */ 1571 HYPERVISOR_update_va_mapping ((vaddr_t)early_zerop, 1572 xpmap_ptom_masked(newp) | PG_u | PG_V, UVMF_INVLPG); 1573 if (newp < (NKL2_KIMG_ENTRIES * NBPD_L2)) 1574 HYPERVISOR_update_va_mapping (newp + KERNBASE, 1575 xpmap_ptom_masked(newp) | PG_u | PG_V, UVMF_INVLPG); 1576 1577 1578 if (level == PTP_LEVELS) { /* Top level pde is per-cpu */ 1579 pd_entry_t *kpm_pdir; 1580 /* Reach it via recursive mapping */ 1581 kpm_pdir = normal_pdes[PTP_LEVELS - 2]; 1582 1583 /* Set it as usual. We can't defer this 1584 * outside the loop since recursive 1585 * pte entries won't be accessible during 1586 * further iterations at lower levels 1587 * otherwise. 1588 */ 1589 pmap_pte_set(&kpm_pdir[pl_i(0, PTP_LEVELS)], 1590 pmap_pa2pte(newp) | pteflags); 1591 } 1592 1593 #endif /* XEN */ 1594 pmap_pte_set(&pdes[pl_i(0, level)], 1595 pmap_pa2pte(newp) | pteflags); 1596 1597 pmap_pte_flush(); 1598 1599 level--; 1600 if (level <= 1) 1601 break; 1602 pdes = normal_pdes[level - 2]; 1603 } 1604 } 1605 #endif /* defined(__x86_64__) */ 1606 1607 /* 1608 * pmap_init: called from uvm_init, our job is to get the pmap 1609 * system ready to manage mappings... 1610 */ 1611 1612 void 1613 pmap_init(void) 1614 { 1615 int i, flags; 1616 1617 for (i = 0; i < PV_HASH_SIZE; i++) { 1618 SLIST_INIT(&pv_hash_heads[i].hh_list); 1619 } 1620 for (i = 0; i < PV_HASH_LOCK_CNT; i++) { 1621 mutex_init(&pv_hash_locks[i].lock, MUTEX_NODEBUG, IPL_VM); 1622 } 1623 1624 /* 1625 * initialize caches. 1626 */ 1627 1628 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0, 1629 "pmappl", NULL, IPL_NONE, NULL, NULL, NULL); 1630 1631 #ifdef XEN 1632 /* 1633 * pool_cache(9) should not touch cached objects, since they 1634 * are pinned on xen and R/O for the domU 1635 */ 1636 flags = PR_NOTOUCH; 1637 #else /* XEN */ 1638 flags = 0; 1639 #endif /* XEN */ 1640 #ifdef PAE 1641 pool_cache_bootstrap(&pmap_pdp_cache, PAGE_SIZE * PDP_SIZE, 0, 0, flags, 1642 "pdppl", &pmap_pdp_allocator, IPL_NONE, 1643 pmap_pdp_ctor, pmap_pdp_dtor, NULL); 1644 #else /* PAE */ 1645 pool_cache_bootstrap(&pmap_pdp_cache, PAGE_SIZE, 0, 0, flags, 1646 "pdppl", NULL, IPL_NONE, pmap_pdp_ctor, pmap_pdp_dtor, NULL); 1647 #endif /* PAE */ 1648 pool_cache_bootstrap(&pmap_pv_cache, sizeof(struct pv_entry), 0, 0, 1649 PR_LARGECACHE, "pvpl", &pool_allocator_kmem, IPL_NONE, NULL, 1650 NULL, NULL); 1651 1652 pmap_tlb_init(); 1653 1654 evcnt_attach_dynamic(&pmap_iobmp_evcnt, EVCNT_TYPE_MISC, 1655 NULL, "x86", "io bitmap copy"); 1656 evcnt_attach_dynamic(&pmap_ldt_evcnt, EVCNT_TYPE_MISC, 1657 NULL, "x86", "ldt sync"); 1658 1659 /* 1660 * done: pmap module is up (and ready for business) 1661 */ 1662 1663 pmap_initialized = true; 1664 } 1665 1666 /* 1667 * pmap_cpu_init_late: perform late per-CPU initialization. 1668 */ 1669 1670 #ifndef XEN 1671 void 1672 pmap_cpu_init_late(struct cpu_info *ci) 1673 { 1674 /* 1675 * The BP has already its own PD page allocated during early 1676 * MD startup. 1677 */ 1678 if (ci == &cpu_info_primary) 1679 return; 1680 1681 #ifdef PAE 1682 cpu_alloc_l3_page(ci); 1683 #endif 1684 } 1685 #endif 1686 1687 /* 1688 * p v _ e n t r y f u n c t i o n s 1689 */ 1690 1691 /* 1692 * pmap_free_pvs: free a list of pv_entrys 1693 */ 1694 1695 static void 1696 pmap_free_pvs(struct pv_entry *pve) 1697 { 1698 struct pv_entry *next; 1699 1700 for ( /* null */ ; pve != NULL ; pve = next) { 1701 next = pve->pve_next; 1702 pool_cache_put(&pmap_pv_cache, pve); 1703 } 1704 } 1705 1706 /* 1707 * main pv_entry manipulation functions: 1708 * pmap_enter_pv: enter a mapping onto a pv_head list 1709 * pmap_remove_pv: remove a mapping from a pv_head list 1710 * 1711 * NOTE: Both pmap_enter_pv and pmap_remove_pv expect the caller to lock 1712 * the pvh before calling 1713 */ 1714 1715 /* 1716 * insert_pv: a helper of pmap_enter_pv 1717 */ 1718 1719 static void 1720 insert_pv(struct pmap_page *pp, struct pv_entry *pve) 1721 { 1722 struct pv_hash_head *hh; 1723 kmutex_t *lock; 1724 u_int hash; 1725 1726 hash = pvhash_hash(pve->pve_pte.pte_ptp, pve->pve_pte.pte_va); 1727 lock = pvhash_lock(hash); 1728 hh = pvhash_head(hash); 1729 mutex_spin_enter(lock); 1730 SLIST_INSERT_HEAD(&hh->hh_list, pve, pve_hash); 1731 mutex_spin_exit(lock); 1732 1733 LIST_INSERT_HEAD(&pp->pp_head.pvh_list, pve, pve_list); 1734 } 1735 1736 /* 1737 * pmap_enter_pv: enter a mapping onto a pv_head lst 1738 * 1739 * => caller should adjust ptp's wire_count before calling 1740 */ 1741 1742 static struct pv_entry * 1743 pmap_enter_pv(struct pmap_page *pp, 1744 struct pv_entry *pve, /* preallocated pve for us to use */ 1745 struct pv_entry **sparepve, 1746 struct vm_page *ptp, 1747 vaddr_t va) 1748 { 1749 1750 KASSERT(ptp == NULL || ptp->wire_count >= 2); 1751 KASSERT(ptp == NULL || ptp->uobject != NULL); 1752 KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); 1753 1754 if ((pp->pp_flags & PP_EMBEDDED) == 0) { 1755 if (LIST_EMPTY(&pp->pp_head.pvh_list)) { 1756 pp->pp_flags |= PP_EMBEDDED; 1757 pp->pp_pte.pte_ptp = ptp; 1758 pp->pp_pte.pte_va = va; 1759 1760 return pve; 1761 } 1762 } else { 1763 struct pv_entry *pve2; 1764 1765 pve2 = *sparepve; 1766 *sparepve = NULL; 1767 1768 pve2->pve_pte = pp->pp_pte; 1769 pp->pp_flags &= ~PP_EMBEDDED; 1770 LIST_INIT(&pp->pp_head.pvh_list); 1771 insert_pv(pp, pve2); 1772 } 1773 1774 pve->pve_pte.pte_ptp = ptp; 1775 pve->pve_pte.pte_va = va; 1776 insert_pv(pp, pve); 1777 1778 return NULL; 1779 } 1780 1781 /* 1782 * pmap_remove_pv: try to remove a mapping from a pv_list 1783 * 1784 * => caller should adjust ptp's wire_count and free PTP if needed 1785 * => we return the removed pve 1786 */ 1787 1788 static struct pv_entry * 1789 pmap_remove_pv(struct pmap_page *pp, struct vm_page *ptp, vaddr_t va) 1790 { 1791 struct pv_hash_head *hh; 1792 struct pv_entry *pve; 1793 kmutex_t *lock; 1794 u_int hash; 1795 1796 KASSERT(ptp == NULL || ptp->uobject != NULL); 1797 KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); 1798 1799 if ((pp->pp_flags & PP_EMBEDDED) != 0) { 1800 KASSERT(pp->pp_pte.pte_ptp == ptp); 1801 KASSERT(pp->pp_pte.pte_va == va); 1802 1803 pp->pp_flags &= ~PP_EMBEDDED; 1804 LIST_INIT(&pp->pp_head.pvh_list); 1805 1806 return NULL; 1807 } 1808 1809 hash = pvhash_hash(ptp, va); 1810 lock = pvhash_lock(hash); 1811 hh = pvhash_head(hash); 1812 mutex_spin_enter(lock); 1813 pve = pvhash_remove(hh, ptp, va); 1814 mutex_spin_exit(lock); 1815 1816 LIST_REMOVE(pve, pve_list); 1817 1818 return pve; 1819 } 1820 1821 /* 1822 * p t p f u n c t i o n s 1823 */ 1824 1825 static inline struct vm_page * 1826 pmap_find_ptp(struct pmap *pmap, vaddr_t va, paddr_t pa, int level) 1827 { 1828 int lidx = level - 1; 1829 struct vm_page *pg; 1830 1831 KASSERT(mutex_owned(pmap->pm_lock)); 1832 1833 if (pa != (paddr_t)-1 && pmap->pm_ptphint[lidx] && 1834 pa == VM_PAGE_TO_PHYS(pmap->pm_ptphint[lidx])) { 1835 return (pmap->pm_ptphint[lidx]); 1836 } 1837 PMAP_SUBOBJ_LOCK(pmap, lidx); 1838 pg = uvm_pagelookup(&pmap->pm_obj[lidx], ptp_va2o(va, level)); 1839 PMAP_SUBOBJ_UNLOCK(pmap, lidx); 1840 1841 KASSERT(pg == NULL || pg->wire_count >= 1); 1842 return pg; 1843 } 1844 1845 static inline void 1846 pmap_freepage(struct pmap *pmap, struct vm_page *ptp, int level) 1847 { 1848 lwp_t *l; 1849 int lidx; 1850 struct uvm_object *obj; 1851 1852 KASSERT(ptp->wire_count == 1); 1853 1854 lidx = level - 1; 1855 1856 obj = &pmap->pm_obj[lidx]; 1857 pmap_stats_update(pmap, -1, 0); 1858 if (lidx != 0) 1859 mutex_enter(obj->vmobjlock); 1860 if (pmap->pm_ptphint[lidx] == ptp) 1861 pmap->pm_ptphint[lidx] = TAILQ_FIRST(&obj->memq); 1862 ptp->wire_count = 0; 1863 uvm_pagerealloc(ptp, NULL, 0); 1864 l = curlwp; 1865 KASSERT((l->l_pflag & LP_INTR) == 0); 1866 VM_PAGE_TO_PP(ptp)->pp_link = l->l_md.md_gc_ptp; 1867 l->l_md.md_gc_ptp = ptp; 1868 if (lidx != 0) 1869 mutex_exit(obj->vmobjlock); 1870 } 1871 1872 static void 1873 pmap_free_ptp(struct pmap *pmap, struct vm_page *ptp, vaddr_t va, 1874 pt_entry_t *ptes, pd_entry_t * const *pdes) 1875 { 1876 unsigned long index; 1877 int level; 1878 vaddr_t invaladdr; 1879 pd_entry_t opde; 1880 1881 KASSERT(pmap != pmap_kernel()); 1882 KASSERT(mutex_owned(pmap->pm_lock)); 1883 KASSERT(kpreempt_disabled()); 1884 1885 level = 1; 1886 do { 1887 index = pl_i(va, level + 1); 1888 opde = pmap_pte_testset(&pdes[level - 1][index], 0); 1889 #if defined(XEN) 1890 # if defined(__x86_64__) 1891 /* 1892 * If ptp is a L3 currently mapped in kernel space, 1893 * on any cpu, clear it before freeing 1894 */ 1895 if (level == PTP_LEVELS - 1) { 1896 /* 1897 * Update the per-cpu PD on all cpus the current 1898 * pmap is active on 1899 */ 1900 xen_kpm_sync(pmap, index); 1901 1902 } 1903 # endif /*__x86_64__ */ 1904 invaladdr = level == 1 ? (vaddr_t)ptes : 1905 (vaddr_t)pdes[level - 2]; 1906 pmap_tlb_shootdown(pmap, invaladdr + index * PAGE_SIZE, 1907 opde, TLBSHOOT_FREE_PTP1); 1908 pmap_tlb_shootnow(); 1909 #else /* XEN */ 1910 invaladdr = level == 1 ? (vaddr_t)ptes : 1911 (vaddr_t)pdes[level - 2]; 1912 pmap_tlb_shootdown(pmap, invaladdr + index * PAGE_SIZE, 1913 opde, TLBSHOOT_FREE_PTP1); 1914 #endif /* XEN */ 1915 pmap_freepage(pmap, ptp, level); 1916 if (level < PTP_LEVELS - 1) { 1917 ptp = pmap_find_ptp(pmap, va, (paddr_t)-1, level + 1); 1918 ptp->wire_count--; 1919 if (ptp->wire_count > 1) 1920 break; 1921 } 1922 } while (++level < PTP_LEVELS); 1923 pmap_pte_flush(); 1924 } 1925 1926 /* 1927 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one) 1928 * 1929 * => pmap should NOT be pmap_kernel() 1930 * => pmap should be locked 1931 * => preemption should be disabled 1932 */ 1933 1934 static struct vm_page * 1935 pmap_get_ptp(struct pmap *pmap, vaddr_t va, pd_entry_t * const *pdes) 1936 { 1937 struct vm_page *ptp, *pptp; 1938 int i; 1939 unsigned long index; 1940 pd_entry_t *pva; 1941 paddr_t ppa, pa; 1942 struct uvm_object *obj; 1943 1944 KASSERT(pmap != pmap_kernel()); 1945 KASSERT(mutex_owned(pmap->pm_lock)); 1946 KASSERT(kpreempt_disabled()); 1947 1948 ptp = NULL; 1949 pa = (paddr_t)-1; 1950 1951 /* 1952 * Loop through all page table levels seeing if we need to 1953 * add a new page to that level. 1954 */ 1955 for (i = PTP_LEVELS; i > 1; i--) { 1956 /* 1957 * Save values from previous round. 1958 */ 1959 pptp = ptp; 1960 ppa = pa; 1961 1962 index = pl_i(va, i); 1963 pva = pdes[i - 2]; 1964 1965 if (pmap_valid_entry(pva[index])) { 1966 ppa = pmap_pte2pa(pva[index]); 1967 ptp = NULL; 1968 continue; 1969 } 1970 1971 obj = &pmap->pm_obj[i-2]; 1972 PMAP_SUBOBJ_LOCK(pmap, i - 2); 1973 ptp = uvm_pagealloc(obj, ptp_va2o(va, i - 1), NULL, 1974 UVM_PGA_USERESERVE|UVM_PGA_ZERO); 1975 PMAP_SUBOBJ_UNLOCK(pmap, i - 2); 1976 1977 if (ptp == NULL) 1978 return NULL; 1979 1980 ptp->flags &= ~PG_BUSY; /* never busy */ 1981 ptp->wire_count = 1; 1982 pmap->pm_ptphint[i - 2] = ptp; 1983 pa = VM_PAGE_TO_PHYS(ptp); 1984 pmap_pte_set(&pva[index], (pd_entry_t) 1985 (pmap_pa2pte(pa) | PG_u | PG_RW | PG_V)); 1986 #if defined(XEN) && defined(__x86_64__) 1987 if(i == PTP_LEVELS) { 1988 /* 1989 * Update the per-cpu PD on all cpus the current 1990 * pmap is active on 1991 */ 1992 xen_kpm_sync(pmap, index); 1993 } 1994 #endif /* XEN && __x86_64__ */ 1995 pmap_pte_flush(); 1996 pmap_stats_update(pmap, 1, 0); 1997 /* 1998 * If we're not in the top level, increase the 1999 * wire count of the parent page. 2000 */ 2001 if (i < PTP_LEVELS) { 2002 if (pptp == NULL) 2003 pptp = pmap_find_ptp(pmap, va, ppa, i); 2004 #ifdef DIAGNOSTIC 2005 if (pptp == NULL) 2006 panic("pde page disappeared"); 2007 #endif 2008 pptp->wire_count++; 2009 } 2010 } 2011 2012 /* 2013 * ptp is not NULL if we just allocated a new ptp. If it's 2014 * still NULL, we must look up the existing one. 2015 */ 2016 if (ptp == NULL) { 2017 ptp = pmap_find_ptp(pmap, va, ppa, 1); 2018 #ifdef DIAGNOSTIC 2019 if (ptp == NULL) { 2020 printf("va %" PRIxVADDR " ppa %" PRIxPADDR "\n", 2021 va, ppa); 2022 panic("pmap_get_ptp: unmanaged user PTP"); 2023 } 2024 #endif 2025 } 2026 2027 pmap->pm_ptphint[0] = ptp; 2028 return(ptp); 2029 } 2030 2031 /* 2032 * p m a p l i f e c y c l e f u n c t i o n s 2033 */ 2034 2035 /* 2036 * pmap_pdp_ctor: constructor for the PDP cache. 2037 */ 2038 static int 2039 pmap_pdp_ctor(void *arg, void *v, int flags) 2040 { 2041 pd_entry_t *pdir = v; 2042 paddr_t pdirpa = 0; /* XXX: GCC */ 2043 vaddr_t object; 2044 int i; 2045 2046 #if !defined(XEN) || !defined(__x86_64__) 2047 int npde; 2048 #endif 2049 #ifdef XEN 2050 int s; 2051 #endif 2052 2053 /* 2054 * NOTE: The `pmaps_lock' is held when the PDP is allocated. 2055 */ 2056 2057 #if defined(XEN) && defined(__x86_64__) 2058 /* fetch the physical address of the page directory. */ 2059 (void) pmap_extract(pmap_kernel(), (vaddr_t) pdir, &pdirpa); 2060 2061 /* zero init area */ 2062 memset (pdir, 0, PAGE_SIZE); /* Xen wants a clean page */ 2063 /* 2064 * this pdir will NEVER be active in kernel mode 2065 * so mark recursive entry invalid 2066 */ 2067 pdir[PDIR_SLOT_PTE] = pmap_pa2pte(pdirpa) | PG_u; 2068 /* 2069 * PDP constructed this way won't be for kernel, 2070 * hence we don't put kernel mappings on Xen. 2071 * But we need to make pmap_create() happy, so put a dummy (without 2072 * PG_V) value at the right place. 2073 */ 2074 pdir[PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1] - 1] = 2075 (pd_entry_t)-1 & PG_FRAME; 2076 #else /* XEN && __x86_64__*/ 2077 /* zero init area */ 2078 memset(pdir, 0, PDIR_SLOT_PTE * sizeof(pd_entry_t)); 2079 2080 object = (vaddr_t)v; 2081 for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { 2082 /* fetch the physical address of the page directory. */ 2083 (void) pmap_extract(pmap_kernel(), object, &pdirpa); 2084 /* put in recursive PDE to map the PTEs */ 2085 pdir[PDIR_SLOT_PTE + i] = pmap_pa2pte(pdirpa) | PG_V; 2086 #ifndef XEN 2087 pdir[PDIR_SLOT_PTE + i] |= PG_KW; 2088 #endif 2089 } 2090 2091 /* copy kernel's PDE */ 2092 npde = nkptp[PTP_LEVELS - 1]; 2093 2094 memcpy(&pdir[PDIR_SLOT_KERN], &PDP_BASE[PDIR_SLOT_KERN], 2095 npde * sizeof(pd_entry_t)); 2096 2097 /* zero the rest */ 2098 memset(&pdir[PDIR_SLOT_KERN + npde], 0, (PAGE_SIZE * PDP_SIZE) - 2099 (PDIR_SLOT_KERN + npde) * sizeof(pd_entry_t)); 2100 2101 if (VM_MIN_KERNEL_ADDRESS != KERNBASE) { 2102 int idx = pl_i(KERNBASE, PTP_LEVELS); 2103 2104 pdir[idx] = PDP_BASE[idx]; 2105 } 2106 2107 #ifdef __HAVE_DIRECT_MAP 2108 pdir[PDIR_SLOT_DIRECT] = PDP_BASE[PDIR_SLOT_DIRECT]; 2109 #endif 2110 2111 #endif /* XEN && __x86_64__*/ 2112 #ifdef XEN 2113 s = splvm(); 2114 object = (vaddr_t)v; 2115 pmap_protect(pmap_kernel(), object, object + (PAGE_SIZE * PDP_SIZE), 2116 VM_PROT_READ); 2117 pmap_update(pmap_kernel()); 2118 for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { 2119 /* 2120 * pin as L2/L4 page, we have to do the page with the 2121 * PDIR_SLOT_PTE entries last 2122 */ 2123 #ifdef PAE 2124 if (i == l2tol3(PDIR_SLOT_PTE)) 2125 continue; 2126 #endif 2127 2128 (void) pmap_extract(pmap_kernel(), object, &pdirpa); 2129 #ifdef __x86_64__ 2130 xpq_queue_pin_l4_table(xpmap_ptom_masked(pdirpa)); 2131 #else 2132 xpq_queue_pin_l2_table(xpmap_ptom_masked(pdirpa)); 2133 #endif 2134 } 2135 #ifdef PAE 2136 object = ((vaddr_t)pdir) + PAGE_SIZE * l2tol3(PDIR_SLOT_PTE); 2137 (void)pmap_extract(pmap_kernel(), object, &pdirpa); 2138 xpq_queue_pin_l2_table(xpmap_ptom_masked(pdirpa)); 2139 #endif 2140 splx(s); 2141 #endif /* XEN */ 2142 2143 return (0); 2144 } 2145 2146 /* 2147 * pmap_pdp_dtor: destructor for the PDP cache. 2148 */ 2149 2150 static void 2151 pmap_pdp_dtor(void *arg, void *v) 2152 { 2153 #ifdef XEN 2154 paddr_t pdirpa = 0; /* XXX: GCC */ 2155 vaddr_t object = (vaddr_t)v; 2156 int i; 2157 int s = splvm(); 2158 pt_entry_t *pte; 2159 2160 for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { 2161 /* fetch the physical address of the page directory. */ 2162 (void) pmap_extract(pmap_kernel(), object, &pdirpa); 2163 /* unpin page table */ 2164 xpq_queue_unpin_table(xpmap_ptom_masked(pdirpa)); 2165 } 2166 object = (vaddr_t)v; 2167 for (i = 0; i < PDP_SIZE; i++, object += PAGE_SIZE) { 2168 /* Set page RW again */ 2169 pte = kvtopte(object); 2170 pmap_pte_set(pte, *pte | PG_RW); 2171 xen_bcast_invlpg((vaddr_t)object); 2172 } 2173 splx(s); 2174 #endif /* XEN */ 2175 } 2176 2177 #ifdef PAE 2178 2179 /* pmap_pdp_alloc: Allocate a page for the pdp memory pool. */ 2180 2181 static void * 2182 pmap_pdp_alloc(struct pool *pp, int flags) 2183 { 2184 return (void *)uvm_km_alloc(kernel_map, 2185 PAGE_SIZE * PDP_SIZE, PAGE_SIZE * PDP_SIZE, 2186 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 2187 | UVM_KMF_WIRED); 2188 } 2189 2190 /* 2191 * pmap_pdp_free: free a PDP 2192 */ 2193 2194 static void 2195 pmap_pdp_free(struct pool *pp, void *v) 2196 { 2197 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * PDP_SIZE, 2198 UVM_KMF_WIRED); 2199 } 2200 #endif /* PAE */ 2201 2202 /* 2203 * pmap_create: create a pmap 2204 * 2205 * => note: old pmap interface took a "size" args which allowed for 2206 * the creation of "software only" pmaps (not in bsd). 2207 */ 2208 2209 struct pmap * 2210 pmap_create(void) 2211 { 2212 struct pmap *pmap; 2213 int i; 2214 2215 pmap = pool_cache_get(&pmap_cache, PR_WAITOK); 2216 2217 /* init uvm_object */ 2218 for (i = 0; i < PTP_LEVELS - 1; i++) { 2219 mutex_init(&pmap->pm_obj_lock[i], MUTEX_DEFAULT, IPL_NONE); 2220 uvm_obj_init(&pmap->pm_obj[i], NULL, false, 1); 2221 uvm_obj_setlock(&pmap->pm_obj[i], &pmap->pm_obj_lock[i]); 2222 pmap->pm_ptphint[i] = NULL; 2223 } 2224 pmap->pm_stats.wired_count = 0; 2225 /* count the PDP allocd below */ 2226 pmap->pm_stats.resident_count = PDP_SIZE; 2227 #if !defined(__x86_64__) 2228 pmap->pm_hiexec = 0; 2229 #endif /* !defined(__x86_64__) */ 2230 pmap->pm_flags = 0; 2231 pmap->pm_cpus = 0; 2232 pmap->pm_kernel_cpus = 0; 2233 pmap->pm_xen_ptp_cpus = 0; 2234 pmap->pm_gc_ptp = NULL; 2235 2236 /* init the LDT */ 2237 pmap->pm_ldt = NULL; 2238 pmap->pm_ldt_len = 0; 2239 pmap->pm_ldt_sel = GSYSSEL(GLDT_SEL, SEL_KPL); 2240 2241 /* allocate PDP */ 2242 try_again: 2243 pmap->pm_pdir = pool_cache_get(&pmap_pdp_cache, PR_WAITOK); 2244 2245 mutex_enter(&pmaps_lock); 2246 2247 if (pmap->pm_pdir[PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1] - 1] == 0) { 2248 mutex_exit(&pmaps_lock); 2249 pool_cache_destruct_object(&pmap_pdp_cache, pmap->pm_pdir); 2250 goto try_again; 2251 } 2252 2253 for (i = 0; i < PDP_SIZE; i++) 2254 pmap->pm_pdirpa[i] = 2255 pmap_pte2pa(pmap->pm_pdir[PDIR_SLOT_PTE + i]); 2256 2257 LIST_INSERT_HEAD(&pmaps, pmap, pm_list); 2258 2259 mutex_exit(&pmaps_lock); 2260 2261 return (pmap); 2262 } 2263 2264 /* 2265 * pmap_free_ptps: put a list of ptps back to the freelist. 2266 */ 2267 2268 static void 2269 pmap_free_ptps(struct vm_page *empty_ptps) 2270 { 2271 struct vm_page *ptp; 2272 struct pmap_page *pp; 2273 2274 while ((ptp = empty_ptps) != NULL) { 2275 pp = VM_PAGE_TO_PP(ptp); 2276 empty_ptps = pp->pp_link; 2277 LIST_INIT(&pp->pp_head.pvh_list); 2278 uvm_pagefree(ptp); 2279 } 2280 } 2281 2282 /* 2283 * pmap_destroy: drop reference count on pmap. free pmap if 2284 * reference count goes to zero. 2285 */ 2286 2287 void 2288 pmap_destroy(struct pmap *pmap) 2289 { 2290 int i; 2291 #ifdef DIAGNOSTIC 2292 struct cpu_info *ci; 2293 CPU_INFO_ITERATOR cii; 2294 #endif /* DIAGNOSTIC */ 2295 lwp_t *l; 2296 2297 /* 2298 * If we have torn down this pmap, process deferred frees and 2299 * invalidations. Free now if the system is low on memory. 2300 * Otherwise, free when the pmap is destroyed thus avoiding a 2301 * TLB shootdown. 2302 */ 2303 l = curlwp; 2304 if (__predict_false(l->l_md.md_gc_pmap == pmap)) { 2305 if (uvmexp.free < uvmexp.freetarg) { 2306 pmap_update(pmap); 2307 } else { 2308 KASSERT(pmap->pm_gc_ptp == NULL); 2309 pmap->pm_gc_ptp = l->l_md.md_gc_ptp; 2310 l->l_md.md_gc_ptp = NULL; 2311 l->l_md.md_gc_pmap = NULL; 2312 } 2313 } 2314 2315 /* 2316 * drop reference count 2317 */ 2318 2319 if (atomic_dec_uint_nv(&pmap->pm_obj[0].uo_refs) > 0) { 2320 return; 2321 } 2322 2323 #ifdef DIAGNOSTIC 2324 for (CPU_INFO_FOREACH(cii, ci)) { 2325 if (ci->ci_pmap == pmap) 2326 panic("destroying pmap being used"); 2327 #if defined(XEN) && defined(__x86_64__) 2328 for (i = 0; i < PDIR_SLOT_PTE; i++) { 2329 if (pmap->pm_pdir[i] != 0 && 2330 ci->ci_kpm_pdir[i] == pmap->pm_pdir[i]) { 2331 printf("pmap_destroy(%p) pmap_kernel %p " 2332 "curcpu %d cpu %d ci_pmap %p " 2333 "ci->ci_kpm_pdir[%d]=%" PRIx64 2334 " pmap->pm_pdir[%d]=%" PRIx64 "\n", 2335 pmap, pmap_kernel(), curcpu()->ci_index, 2336 ci->ci_index, ci->ci_pmap, 2337 i, ci->ci_kpm_pdir[i], 2338 i, pmap->pm_pdir[i]); 2339 panic("pmap_destroy: used pmap"); 2340 } 2341 } 2342 #endif 2343 } 2344 #endif /* DIAGNOSTIC */ 2345 2346 /* 2347 * reference count is zero, free pmap resources and then free pmap. 2348 */ 2349 2350 /* 2351 * remove it from global list of pmaps 2352 */ 2353 2354 mutex_enter(&pmaps_lock); 2355 LIST_REMOVE(pmap, pm_list); 2356 mutex_exit(&pmaps_lock); 2357 2358 /* 2359 * Process deferred PTP frees. No TLB shootdown required, as the 2360 * PTP pages are no longer visible to any CPU. 2361 */ 2362 2363 pmap_free_ptps(pmap->pm_gc_ptp); 2364 2365 /* 2366 * destroyed pmap shouldn't have remaining PTPs 2367 */ 2368 2369 for (i = 0; i < PTP_LEVELS - 1; i++) { 2370 KASSERT(pmap->pm_obj[i].uo_npages == 0); 2371 KASSERT(TAILQ_EMPTY(&pmap->pm_obj[i].memq)); 2372 } 2373 2374 pool_cache_put(&pmap_pdp_cache, pmap->pm_pdir); 2375 2376 #ifdef USER_LDT 2377 if (pmap->pm_ldt != NULL) { 2378 /* 2379 * no need to switch the LDT; this address space is gone, 2380 * nothing is using it. 2381 * 2382 * No need to lock the pmap for ldt_free (or anything else), 2383 * we're the last one to use it. 2384 */ 2385 mutex_enter(&cpu_lock); 2386 ldt_free(pmap->pm_ldt_sel); 2387 mutex_exit(&cpu_lock); 2388 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_ldt, 2389 pmap->pm_ldt_len, UVM_KMF_WIRED); 2390 } 2391 #endif 2392 2393 for (i = 0; i < PTP_LEVELS - 1; i++) { 2394 uvm_obj_destroy(&pmap->pm_obj[i], false); 2395 mutex_destroy(&pmap->pm_obj_lock[i]); 2396 } 2397 pool_cache_put(&pmap_cache, pmap); 2398 } 2399 2400 /* 2401 * pmap_remove_all: pmap is being torn down by the current thread. 2402 * avoid unnecessary invalidations. 2403 */ 2404 2405 void 2406 pmap_remove_all(struct pmap *pmap) 2407 { 2408 lwp_t *l = curlwp; 2409 2410 KASSERT(l->l_md.md_gc_pmap == NULL); 2411 2412 l->l_md.md_gc_pmap = pmap; 2413 } 2414 2415 #if defined(PMAP_FORK) 2416 /* 2417 * pmap_fork: perform any necessary data structure manipulation when 2418 * a VM space is forked. 2419 */ 2420 2421 void 2422 pmap_fork(struct pmap *pmap1, struct pmap *pmap2) 2423 { 2424 #ifdef USER_LDT 2425 union descriptor *new_ldt; 2426 size_t len; 2427 int sel; 2428 2429 if (__predict_true(pmap1->pm_ldt == NULL)) { 2430 return; 2431 } 2432 2433 retry: 2434 if (pmap1->pm_ldt != NULL) { 2435 len = pmap1->pm_ldt_len; 2436 new_ldt = (union descriptor *)uvm_km_alloc(kernel_map, len, 0, 2437 UVM_KMF_WIRED); 2438 mutex_enter(&cpu_lock); 2439 sel = ldt_alloc(new_ldt, len); 2440 if (sel == -1) { 2441 mutex_exit(&cpu_lock); 2442 uvm_km_free(kernel_map, (vaddr_t)new_ldt, len, 2443 UVM_KMF_WIRED); 2444 printf("WARNING: pmap_fork: unable to allocate LDT\n"); 2445 return; 2446 } 2447 } else { 2448 len = -1; 2449 new_ldt = NULL; 2450 sel = -1; 2451 mutex_enter(&cpu_lock); 2452 } 2453 2454 /* Copy the LDT, if necessary. */ 2455 if (pmap1->pm_ldt != NULL) { 2456 if (len != pmap1->pm_ldt_len) { 2457 if (len != -1) { 2458 ldt_free(sel); 2459 uvm_km_free(kernel_map, (vaddr_t)new_ldt, 2460 len, UVM_KMF_WIRED); 2461 } 2462 mutex_exit(&cpu_lock); 2463 goto retry; 2464 } 2465 2466 memcpy(new_ldt, pmap1->pm_ldt, len); 2467 pmap2->pm_ldt = new_ldt; 2468 pmap2->pm_ldt_len = pmap1->pm_ldt_len; 2469 pmap2->pm_ldt_sel = sel; 2470 len = -1; 2471 } 2472 2473 if (len != -1) { 2474 ldt_free(sel); 2475 uvm_km_free(kernel_map, (vaddr_t)new_ldt, len, 2476 UVM_KMF_WIRED); 2477 } 2478 mutex_exit(&cpu_lock); 2479 #endif /* USER_LDT */ 2480 } 2481 #endif /* PMAP_FORK */ 2482 2483 #ifdef USER_LDT 2484 2485 /* 2486 * pmap_ldt_xcall: cross call used by pmap_ldt_sync. if the named pmap 2487 * is active, reload LDTR. 2488 */ 2489 static void 2490 pmap_ldt_xcall(void *arg1, void *arg2) 2491 { 2492 struct pmap *pm; 2493 2494 kpreempt_disable(); 2495 pm = arg1; 2496 if (curcpu()->ci_pmap == pm) { 2497 lldt(pm->pm_ldt_sel); 2498 } 2499 kpreempt_enable(); 2500 } 2501 2502 /* 2503 * pmap_ldt_sync: LDT selector for the named pmap is changing. swap 2504 * in the new selector on all CPUs. 2505 */ 2506 void 2507 pmap_ldt_sync(struct pmap *pm) 2508 { 2509 uint64_t where; 2510 2511 KASSERT(mutex_owned(&cpu_lock)); 2512 2513 pmap_ldt_evcnt.ev_count++; 2514 where = xc_broadcast(0, pmap_ldt_xcall, pm, NULL); 2515 xc_wait(where); 2516 } 2517 2518 /* 2519 * pmap_ldt_cleanup: if the pmap has a local LDT, deallocate it, and 2520 * restore the default. 2521 */ 2522 2523 void 2524 pmap_ldt_cleanup(struct lwp *l) 2525 { 2526 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 2527 union descriptor *dp = NULL; 2528 size_t len = 0; 2529 int sel = -1; 2530 2531 if (__predict_true(pmap->pm_ldt == NULL)) { 2532 return; 2533 } 2534 2535 mutex_enter(&cpu_lock); 2536 if (pmap->pm_ldt != NULL) { 2537 sel = pmap->pm_ldt_sel; 2538 dp = pmap->pm_ldt; 2539 len = pmap->pm_ldt_len; 2540 pmap->pm_ldt_sel = GSYSSEL(GLDT_SEL, SEL_KPL); 2541 pmap->pm_ldt = NULL; 2542 pmap->pm_ldt_len = 0; 2543 pmap_ldt_sync(pmap); 2544 ldt_free(sel); 2545 uvm_km_free(kernel_map, (vaddr_t)dp, len, UVM_KMF_WIRED); 2546 } 2547 mutex_exit(&cpu_lock); 2548 } 2549 #endif /* USER_LDT */ 2550 2551 /* 2552 * pmap_activate: activate a process' pmap 2553 * 2554 * => must be called with kernel preemption disabled 2555 * => if lwp is the curlwp, then set ci_want_pmapload so that 2556 * actual MMU context switch will be done by pmap_load() later 2557 */ 2558 2559 void 2560 pmap_activate(struct lwp *l) 2561 { 2562 struct cpu_info *ci; 2563 struct pmap *pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); 2564 2565 KASSERT(kpreempt_disabled()); 2566 2567 ci = curcpu(); 2568 2569 if (l == ci->ci_curlwp) { 2570 KASSERT(ci->ci_want_pmapload == 0); 2571 KASSERT(ci->ci_tlbstate != TLBSTATE_VALID); 2572 #ifdef KSTACK_CHECK_DR0 2573 /* 2574 * setup breakpoint on the top of stack 2575 */ 2576 if (l == &lwp0) 2577 dr0(0, 0, 0, 0); 2578 else 2579 dr0(KSTACK_LOWEST_ADDR(l), 1, 3, 1); 2580 #endif 2581 2582 /* 2583 * no need to switch to kernel vmspace because 2584 * it's a subset of any vmspace. 2585 */ 2586 2587 if (pmap == pmap_kernel()) { 2588 ci->ci_want_pmapload = 0; 2589 return; 2590 } 2591 2592 ci->ci_want_pmapload = 1; 2593 } 2594 } 2595 2596 /* 2597 * pmap_reactivate: try to regain reference to the pmap. 2598 * 2599 * => must be called with kernel preemption disabled 2600 */ 2601 2602 static bool 2603 pmap_reactivate(struct pmap *pmap) 2604 { 2605 struct cpu_info *ci; 2606 uint32_t cpumask; 2607 bool result; 2608 uint32_t oldcpus; 2609 2610 ci = curcpu(); 2611 cpumask = ci->ci_cpumask; 2612 2613 KASSERT(kpreempt_disabled()); 2614 #if defined(XEN) && defined(__x86_64__) 2615 KASSERT(pmap_pdirpa(pmap, 0) == ci->ci_xen_current_user_pgd); 2616 #elif defined(PAE) 2617 KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); 2618 #elif !defined(XEN) 2619 KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(rcr3())); 2620 #endif 2621 2622 /* 2623 * if we still have a lazy reference to this pmap, 2624 * we can assume that there was no tlb shootdown 2625 * for this pmap in the meantime. 2626 * 2627 * the order of events here is important as we must 2628 * synchronize with TLB shootdown interrupts. declare 2629 * interest in invalidations (TLBSTATE_VALID) and then 2630 * check the cpumask, which the IPIs can change only 2631 * when the state is TLBSTATE_LAZY. 2632 */ 2633 2634 ci->ci_tlbstate = TLBSTATE_VALID; 2635 oldcpus = pmap->pm_cpus; 2636 KASSERT((pmap->pm_kernel_cpus & cpumask) != 0); 2637 if (oldcpus & cpumask) { 2638 /* got it */ 2639 result = true; 2640 } else { 2641 /* must reload */ 2642 atomic_or_32(&pmap->pm_cpus, cpumask); 2643 result = false; 2644 } 2645 2646 return result; 2647 } 2648 2649 /* 2650 * pmap_load: actually switch pmap. (fill in %cr3 and LDT info) 2651 * 2652 * ensures that the current process' pmap is loaded on the current cpu's MMU 2653 * and there's no stale TLB entries. 2654 * 2655 * the caller should disable preemption or do check-and-retry to prevent 2656 * a preemption from undoing our efforts. 2657 * 2658 * this function can block. 2659 */ 2660 2661 void 2662 pmap_load(void) 2663 { 2664 struct cpu_info *ci; 2665 uint32_t cpumask; 2666 struct pmap *pmap; 2667 struct pmap *oldpmap; 2668 struct lwp *l; 2669 struct pcb *pcb; 2670 uint64_t ncsw; 2671 2672 kpreempt_disable(); 2673 retry: 2674 ci = curcpu(); 2675 if (!ci->ci_want_pmapload) { 2676 kpreempt_enable(); 2677 return; 2678 } 2679 cpumask = ci->ci_cpumask; 2680 l = ci->ci_curlwp; 2681 ncsw = l->l_ncsw; 2682 2683 /* should be able to take ipis. */ 2684 KASSERT(ci->ci_ilevel < IPL_HIGH); 2685 #ifdef XEN 2686 /* Check to see if interrupts are enabled (ie; no events are masked) */ 2687 KASSERT(x86_read_psl() == 0); 2688 #else 2689 KASSERT((x86_read_psl() & PSL_I) != 0); 2690 #endif 2691 2692 KASSERT(l != NULL); 2693 pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); 2694 KASSERT(pmap != pmap_kernel()); 2695 oldpmap = ci->ci_pmap; 2696 pcb = lwp_getpcb(l); 2697 2698 if (pmap == oldpmap) { 2699 if (!pmap_reactivate(pmap)) { 2700 u_int gen = uvm_emap_gen_return(); 2701 2702 /* 2703 * pmap has been changed during deactivated. 2704 * our tlb may be stale. 2705 */ 2706 2707 tlbflush(); 2708 uvm_emap_update(gen); 2709 } 2710 2711 ci->ci_want_pmapload = 0; 2712 kpreempt_enable(); 2713 return; 2714 } 2715 2716 /* 2717 * grab a reference to the new pmap. 2718 */ 2719 2720 pmap_reference(pmap); 2721 2722 /* 2723 * actually switch pmap. 2724 */ 2725 2726 atomic_and_32(&oldpmap->pm_cpus, ~cpumask); 2727 atomic_and_32(&oldpmap->pm_kernel_cpus, ~cpumask); 2728 2729 #if defined(XEN) && defined(__x86_64__) 2730 KASSERT(pmap_pdirpa(oldpmap, 0) == ci->ci_xen_current_user_pgd || 2731 oldpmap == pmap_kernel()); 2732 #elif defined(PAE) 2733 KASSERT(pmap_pdirpa(oldpmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); 2734 #elif !defined(XEN) 2735 KASSERT(pmap_pdirpa(oldpmap, 0) == pmap_pte2pa(rcr3())); 2736 #endif 2737 KASSERT((pmap->pm_cpus & cpumask) == 0); 2738 KASSERT((pmap->pm_kernel_cpus & cpumask) == 0); 2739 2740 /* 2741 * mark the pmap in use by this processor. again we must 2742 * synchronize with TLB shootdown interrupts, so set the 2743 * state VALID first, then register us for shootdown events 2744 * on this pmap. 2745 */ 2746 2747 ci->ci_tlbstate = TLBSTATE_VALID; 2748 atomic_or_32(&pmap->pm_cpus, cpumask); 2749 atomic_or_32(&pmap->pm_kernel_cpus, cpumask); 2750 ci->ci_pmap = pmap; 2751 2752 /* 2753 * update tss. now that we have registered for invalidations 2754 * from other CPUs, we're good to load the page tables. 2755 */ 2756 #ifdef PAE 2757 pcb->pcb_cr3 = ci->ci_pae_l3_pdirpa; 2758 #else 2759 pcb->pcb_cr3 = pmap_pdirpa(pmap, 0); 2760 #endif 2761 2762 #ifdef i386 2763 #ifndef XEN 2764 ci->ci_tss.tss_ldt = pmap->pm_ldt_sel; 2765 ci->ci_tss.tss_cr3 = pcb->pcb_cr3; 2766 #endif /* !XEN */ 2767 #endif /* i386 */ 2768 2769 lldt(pmap->pm_ldt_sel); 2770 2771 u_int gen = uvm_emap_gen_return(); 2772 cpu_load_pmap(pmap, oldpmap); 2773 uvm_emap_update(gen); 2774 2775 ci->ci_want_pmapload = 0; 2776 2777 /* 2778 * we're now running with the new pmap. drop the reference 2779 * to the old pmap. if we block, we need to go around again. 2780 */ 2781 2782 pmap_destroy(oldpmap); 2783 if (l->l_ncsw != ncsw) { 2784 goto retry; 2785 } 2786 2787 kpreempt_enable(); 2788 } 2789 2790 /* 2791 * pmap_deactivate: deactivate a process' pmap. 2792 * 2793 * => Must be called with kernel preemption disabled (high IPL is enough). 2794 */ 2795 void 2796 pmap_deactivate(struct lwp *l) 2797 { 2798 struct pmap *pmap; 2799 struct cpu_info *ci; 2800 2801 KASSERT(kpreempt_disabled()); 2802 2803 if (l != curlwp) { 2804 return; 2805 } 2806 2807 /* 2808 * Wait for pending TLB shootdowns to complete. Necessary because 2809 * TLB shootdown state is per-CPU, and the LWP may be coming off 2810 * the CPU before it has a chance to call pmap_update(), e.g. due 2811 * to kernel preemption or blocking routine in between. 2812 */ 2813 pmap_tlb_shootnow(); 2814 2815 ci = curcpu(); 2816 2817 if (ci->ci_want_pmapload) { 2818 /* 2819 * ci_want_pmapload means that our pmap is not loaded on 2820 * the CPU or TLB might be stale. note that pmap_kernel() 2821 * is always considered loaded. 2822 */ 2823 KASSERT(vm_map_pmap(&l->l_proc->p_vmspace->vm_map) 2824 != pmap_kernel()); 2825 KASSERT(vm_map_pmap(&l->l_proc->p_vmspace->vm_map) 2826 != ci->ci_pmap || ci->ci_tlbstate != TLBSTATE_VALID); 2827 2828 /* 2829 * userspace has not been touched. 2830 * nothing to do here. 2831 */ 2832 2833 ci->ci_want_pmapload = 0; 2834 return; 2835 } 2836 2837 pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map); 2838 2839 if (pmap == pmap_kernel()) { 2840 return; 2841 } 2842 2843 #if defined(XEN) && defined(__x86_64__) 2844 KASSERT(pmap_pdirpa(pmap, 0) == ci->ci_xen_current_user_pgd); 2845 #elif defined(PAE) 2846 KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(ci->ci_pae_l3_pdir[0])); 2847 #elif !defined(XEN) 2848 KASSERT(pmap_pdirpa(pmap, 0) == pmap_pte2pa(rcr3())); 2849 #endif 2850 KASSERT(ci->ci_pmap == pmap); 2851 2852 /* 2853 * we aren't interested in TLB invalidations for this pmap, 2854 * at least for the time being. 2855 */ 2856 2857 KASSERT(ci->ci_tlbstate == TLBSTATE_VALID); 2858 ci->ci_tlbstate = TLBSTATE_LAZY; 2859 } 2860 2861 /* 2862 * end of lifecycle functions 2863 */ 2864 2865 /* 2866 * some misc. functions 2867 */ 2868 2869 int 2870 pmap_pdes_invalid(vaddr_t va, pd_entry_t * const *pdes, pd_entry_t *lastpde) 2871 { 2872 int i; 2873 unsigned long index; 2874 pd_entry_t pde; 2875 2876 for (i = PTP_LEVELS; i > 1; i--) { 2877 index = pl_i(va, i); 2878 pde = pdes[i - 2][index]; 2879 if ((pde & PG_V) == 0) 2880 return i; 2881 } 2882 if (lastpde != NULL) 2883 *lastpde = pde; 2884 return 0; 2885 } 2886 2887 /* 2888 * pmap_extract: extract a PA for the given VA 2889 */ 2890 2891 bool 2892 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap) 2893 { 2894 pt_entry_t *ptes, pte; 2895 pd_entry_t pde; 2896 pd_entry_t * const *pdes; 2897 struct pmap *pmap2; 2898 struct cpu_info *ci; 2899 paddr_t pa; 2900 lwp_t *l; 2901 bool hard, rv; 2902 2903 #ifdef __HAVE_DIRECT_MAP 2904 if (va >= PMAP_DIRECT_BASE && va < PMAP_DIRECT_END) { 2905 if (pap != NULL) { 2906 *pap = va - PMAP_DIRECT_BASE; 2907 } 2908 return true; 2909 } 2910 #endif 2911 2912 rv = false; 2913 pa = 0; 2914 l = curlwp; 2915 2916 KPREEMPT_DISABLE(l); 2917 ci = l->l_cpu; 2918 if (__predict_true(!ci->ci_want_pmapload && ci->ci_pmap == pmap) || 2919 pmap == pmap_kernel()) { 2920 /* 2921 * no need to lock, because it's pmap_kernel() or our 2922 * own pmap and is active. if a user pmap, the caller 2923 * will hold the vm_map write/read locked and so prevent 2924 * entries from disappearing while we are here. ptps 2925 * can disappear via pmap_remove() and pmap_protect(), 2926 * but they are called with the vm_map write locked. 2927 */ 2928 hard = false; 2929 ptes = PTE_BASE; 2930 pdes = normal_pdes; 2931 } else { 2932 /* we lose, do it the hard way. */ 2933 hard = true; 2934 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); 2935 } 2936 if (pmap_pdes_valid(va, pdes, &pde)) { 2937 pte = ptes[pl1_i(va)]; 2938 if (pde & PG_PS) { 2939 pa = (pde & PG_LGFRAME) | (va & (NBPD_L2 - 1)); 2940 rv = true; 2941 } else if (__predict_true((pte & PG_V) != 0)) { 2942 pa = pmap_pte2pa(pte) | (va & (NBPD_L1 - 1)); 2943 rv = true; 2944 } 2945 } 2946 if (__predict_false(hard)) { 2947 pmap_unmap_ptes(pmap, pmap2); 2948 } 2949 KPREEMPT_ENABLE(l); 2950 if (pap != NULL) { 2951 *pap = pa; 2952 } 2953 return rv; 2954 } 2955 2956 2957 /* 2958 * vtophys: virtual address to physical address. For use by 2959 * machine-dependent code only. 2960 */ 2961 2962 paddr_t 2963 vtophys(vaddr_t va) 2964 { 2965 paddr_t pa; 2966 2967 if (pmap_extract(pmap_kernel(), va, &pa) == true) 2968 return (pa); 2969 return (0); 2970 } 2971 2972 __strict_weak_alias(pmap_extract_ma, pmap_extract); 2973 2974 #ifdef XEN 2975 2976 /* 2977 * vtomach: virtual address to machine address. For use by 2978 * machine-dependent code only. 2979 */ 2980 2981 paddr_t 2982 vtomach(vaddr_t va) 2983 { 2984 paddr_t pa; 2985 2986 if (pmap_extract_ma(pmap_kernel(), va, &pa) == true) 2987 return (pa); 2988 return (0); 2989 } 2990 2991 #endif /* XEN */ 2992 2993 /* 2994 * pmap_virtual_space: used during bootup [pmap_steal_memory] to 2995 * determine the bounds of the kernel virtual addess space. 2996 */ 2997 2998 void 2999 pmap_virtual_space(vaddr_t *startp, vaddr_t *endp) 3000 { 3001 *startp = virtual_avail; 3002 *endp = virtual_end; 3003 } 3004 3005 /* 3006 * pmap_map: map a range of PAs into kvm. 3007 * 3008 * => used during crash dump 3009 * => XXX: pmap_map() should be phased out? 3010 */ 3011 3012 vaddr_t 3013 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot) 3014 { 3015 while (spa < epa) { 3016 pmap_kenter_pa(va, spa, prot, 0); 3017 va += PAGE_SIZE; 3018 spa += PAGE_SIZE; 3019 } 3020 pmap_update(pmap_kernel()); 3021 return va; 3022 } 3023 3024 /* 3025 * pmap_zero_page: zero a page 3026 */ 3027 3028 void 3029 pmap_zero_page(paddr_t pa) 3030 { 3031 #ifdef __HAVE_DIRECT_MAP 3032 pagezero(PMAP_DIRECT_MAP(pa)); 3033 #else 3034 pt_entry_t *zpte; 3035 void *zerova; 3036 int id; 3037 3038 kpreempt_disable(); 3039 id = cpu_number(); 3040 zpte = PTESLEW(zero_pte, id); 3041 zerova = VASLEW(zerop, id); 3042 3043 #ifdef DIAGNOSTIC 3044 if (*zpte) 3045 panic("pmap_zero_page: lock botch"); 3046 #endif 3047 3048 pmap_pte_set(zpte, pmap_pa2pte(pa) | PG_V | PG_RW | PG_M | PG_U | PG_k); 3049 pmap_pte_flush(); 3050 pmap_update_pg((vaddr_t)zerova); /* flush TLB */ 3051 3052 memset(zerova, 0, PAGE_SIZE); 3053 3054 #if defined(DIAGNOSTIC) || defined(XEN) 3055 pmap_pte_set(zpte, 0); /* zap ! */ 3056 pmap_pte_flush(); 3057 #endif 3058 kpreempt_enable(); 3059 #endif 3060 } 3061 3062 /* 3063 * pmap_pagezeroidle: the same, for the idle loop page zero'er. 3064 * Returns true if the page was zero'd, false if we aborted for 3065 * some reason. 3066 */ 3067 3068 bool 3069 pmap_pageidlezero(paddr_t pa) 3070 { 3071 #ifdef __HAVE_DIRECT_MAP 3072 KASSERT(cpu_feature[0] & CPUID_SSE2); 3073 return sse2_idlezero_page((void *)PMAP_DIRECT_MAP(pa)); 3074 #else 3075 pt_entry_t *zpte; 3076 void *zerova; 3077 bool rv; 3078 int id; 3079 3080 id = cpu_number(); 3081 zpte = PTESLEW(zero_pte, id); 3082 zerova = VASLEW(zerop, id); 3083 3084 KASSERT(cpu_feature[0] & CPUID_SSE2); 3085 KASSERT(*zpte == 0); 3086 3087 pmap_pte_set(zpte, pmap_pa2pte(pa) | PG_V | PG_RW | PG_M | PG_U | PG_k); 3088 pmap_pte_flush(); 3089 pmap_update_pg((vaddr_t)zerova); /* flush TLB */ 3090 3091 rv = sse2_idlezero_page(zerova); 3092 3093 #if defined(DIAGNOSTIC) || defined(XEN) 3094 pmap_pte_set(zpte, 0); /* zap ! */ 3095 pmap_pte_flush(); 3096 #endif 3097 3098 return rv; 3099 #endif 3100 } 3101 3102 /* 3103 * pmap_copy_page: copy a page 3104 */ 3105 3106 void 3107 pmap_copy_page(paddr_t srcpa, paddr_t dstpa) 3108 { 3109 #ifdef __HAVE_DIRECT_MAP 3110 vaddr_t srcva = PMAP_DIRECT_MAP(srcpa); 3111 vaddr_t dstva = PMAP_DIRECT_MAP(dstpa); 3112 3113 memcpy((void *)dstva, (void *)srcva, PAGE_SIZE); 3114 #else 3115 pt_entry_t *spte; 3116 pt_entry_t *dpte; 3117 void *csrcva; 3118 void *cdstva; 3119 int id; 3120 3121 kpreempt_disable(); 3122 id = cpu_number(); 3123 spte = PTESLEW(csrc_pte,id); 3124 dpte = PTESLEW(cdst_pte,id); 3125 csrcva = VASLEW(csrcp, id); 3126 cdstva = VASLEW(cdstp, id); 3127 3128 KASSERT(*spte == 0 && *dpte == 0); 3129 3130 pmap_pte_set(spte, pmap_pa2pte(srcpa) | PG_V | PG_RW | PG_U | PG_k); 3131 pmap_pte_set(dpte, 3132 pmap_pa2pte(dstpa) | PG_V | PG_RW | PG_M | PG_U | PG_k); 3133 pmap_pte_flush(); 3134 pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva); 3135 3136 memcpy(cdstva, csrcva, PAGE_SIZE); 3137 3138 #if defined(DIAGNOSTIC) || defined(XEN) 3139 pmap_pte_set(spte, 0); 3140 pmap_pte_set(dpte, 0); 3141 pmap_pte_flush(); 3142 #endif 3143 kpreempt_enable(); 3144 #endif 3145 } 3146 3147 static pt_entry_t * 3148 pmap_map_ptp(struct vm_page *ptp) 3149 { 3150 #ifdef __HAVE_DIRECT_MAP 3151 return (void *)PMAP_DIRECT_MAP(VM_PAGE_TO_PHYS(ptp)); 3152 #else 3153 pt_entry_t *ptppte; 3154 void *ptpva; 3155 int id; 3156 3157 KASSERT(kpreempt_disabled()); 3158 3159 id = cpu_number(); 3160 ptppte = PTESLEW(ptp_pte, id); 3161 ptpva = VASLEW(ptpp, id); 3162 #if !defined(XEN) 3163 pmap_pte_set(ptppte, pmap_pa2pte(VM_PAGE_TO_PHYS(ptp)) | PG_V | PG_M | 3164 PG_RW | PG_U | PG_k); 3165 #else 3166 pmap_pte_set(ptppte, pmap_pa2pte(VM_PAGE_TO_PHYS(ptp)) | PG_V | PG_M | 3167 PG_U | PG_k); 3168 #endif 3169 pmap_pte_flush(); 3170 pmap_update_pg((vaddr_t)ptpva); 3171 3172 return (pt_entry_t *)ptpva; 3173 #endif 3174 } 3175 3176 static void 3177 pmap_unmap_ptp(void) 3178 { 3179 #ifndef __HAVE_DIRECT_MAP 3180 #if defined(DIAGNOSTIC) || defined(XEN) 3181 pt_entry_t *pte; 3182 3183 KASSERT(kpreempt_disabled()); 3184 3185 pte = PTESLEW(ptp_pte, cpu_number()); 3186 if (*pte != 0) { 3187 pmap_pte_set(pte, 0); 3188 pmap_pte_flush(); 3189 } 3190 #endif 3191 #endif 3192 } 3193 3194 static pt_entry_t * 3195 pmap_map_pte(struct pmap *pmap, struct vm_page *ptp, vaddr_t va) 3196 { 3197 3198 KASSERT(kpreempt_disabled()); 3199 if (pmap_is_curpmap(pmap)) { 3200 return &PTE_BASE[pl1_i(va)]; /* (k)vtopte */ 3201 } 3202 KASSERT(ptp != NULL); 3203 return pmap_map_ptp(ptp) + pl1_pi(va); 3204 } 3205 3206 static void 3207 pmap_unmap_pte(void) 3208 { 3209 3210 KASSERT(kpreempt_disabled()); 3211 3212 pmap_unmap_ptp(); 3213 } 3214 3215 /* 3216 * p m a p r e m o v e f u n c t i o n s 3217 * 3218 * functions that remove mappings 3219 */ 3220 3221 /* 3222 * pmap_remove_ptes: remove PTEs from a PTP 3223 * 3224 * => caller must hold pmap's lock 3225 * => PTP must be mapped into KVA 3226 * => PTP should be null if pmap == pmap_kernel() 3227 * => must be called with kernel preemption disabled 3228 * => returns composite pte if at least one page should be shot down 3229 */ 3230 3231 static void 3232 pmap_remove_ptes(struct pmap *pmap, struct vm_page *ptp, vaddr_t ptpva, 3233 vaddr_t startva, vaddr_t endva, struct pv_entry **pv_tofree) 3234 { 3235 pt_entry_t *pte = (pt_entry_t *)ptpva; 3236 3237 KASSERT(pmap == pmap_kernel() || mutex_owned(pmap->pm_lock)); 3238 KASSERT(kpreempt_disabled()); 3239 3240 /* 3241 * note that ptpva points to the PTE that maps startva. this may 3242 * or may not be the first PTE in the PTP. 3243 * 3244 * we loop through the PTP while there are still PTEs to look at 3245 * and the wire_count is greater than 1 (because we use the wire_count 3246 * to keep track of the number of real PTEs in the PTP). 3247 */ 3248 while (startva < endva && (ptp == NULL || ptp->wire_count > 1)) { 3249 (void)pmap_remove_pte(pmap, ptp, pte, startva, pv_tofree); 3250 startva += PAGE_SIZE; 3251 pte++; 3252 } 3253 } 3254 3255 3256 /* 3257 * pmap_remove_pte: remove a single PTE from a PTP. 3258 * 3259 * => caller must hold pmap's lock 3260 * => PTP must be mapped into KVA 3261 * => PTP should be null if pmap == pmap_kernel() 3262 * => returns true if we removed a mapping 3263 * => must be called with kernel preemption disabled 3264 */ 3265 static bool 3266 pmap_remove_pte(struct pmap *pmap, struct vm_page *ptp, pt_entry_t *pte, 3267 vaddr_t va, struct pv_entry **pv_tofree) 3268 { 3269 struct pv_entry *pve; 3270 struct vm_page *pg; 3271 struct pmap_page *pp; 3272 pt_entry_t opte; 3273 3274 KASSERT(pmap == pmap_kernel() || mutex_owned(pmap->pm_lock)); 3275 KASSERT(kpreempt_disabled()); 3276 3277 if (!pmap_valid_entry(*pte)) { 3278 /* VA not mapped. */ 3279 return false; 3280 } 3281 3282 /* Atomically save the old PTE and zap it. */ 3283 opte = pmap_pte_testset(pte, 0); 3284 if (!pmap_valid_entry(opte)) { 3285 return false; 3286 } 3287 3288 pmap_exec_account(pmap, va, opte, 0); 3289 pmap_stats_update_bypte(pmap, 0, opte); 3290 3291 if (ptp) { 3292 /* 3293 * Dropping a PTE. Make sure that the PDE is flushed. 3294 */ 3295 ptp->wire_count--; 3296 if (ptp->wire_count <= 1) { 3297 opte |= PG_U; 3298 } 3299 } 3300 3301 if ((opte & PG_U) != 0) { 3302 pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_REMOVE_PTE); 3303 } 3304 3305 /* 3306 * If we are not on a pv_head list - we are done. 3307 */ 3308 if ((opte & PG_PVLIST) == 0) { 3309 #if defined(DIAGNOSTIC) && !defined(DOM0OPS) 3310 if (PHYS_TO_VM_PAGE(pmap_pte2pa(opte)) != NULL) 3311 panic("pmap_remove_pte: managed page without " 3312 "PG_PVLIST for %#" PRIxVADDR, va); 3313 #endif 3314 return true; 3315 } 3316 3317 pg = PHYS_TO_VM_PAGE(pmap_pte2pa(opte)); 3318 3319 KASSERTMSG(pg != NULL, "pmap_remove_pte: unmanaged page marked " 3320 "PG_PVLIST, va = %#" PRIxVADDR ", pa = %#" PRIxPADDR, 3321 va, (paddr_t)pmap_pte2pa(opte)); 3322 3323 KASSERT(uvm_page_locked_p(pg)); 3324 3325 /* Sync R/M bits. */ 3326 pp = VM_PAGE_TO_PP(pg); 3327 pp->pp_attrs |= opte; 3328 pve = pmap_remove_pv(pp, ptp, va); 3329 3330 if (pve) { 3331 pve->pve_next = *pv_tofree; 3332 *pv_tofree = pve; 3333 } 3334 return true; 3335 } 3336 3337 /* 3338 * pmap_remove: mapping removal function. 3339 * 3340 * => caller should not be holding any pmap locks 3341 */ 3342 3343 void 3344 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva) 3345 { 3346 pt_entry_t *ptes; 3347 pd_entry_t pde; 3348 pd_entry_t * const *pdes; 3349 struct pv_entry *pv_tofree = NULL; 3350 bool result; 3351 int i; 3352 paddr_t ptppa; 3353 vaddr_t blkendva, va = sva; 3354 struct vm_page *ptp; 3355 struct pmap *pmap2; 3356 3357 kpreempt_disable(); 3358 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ 3359 3360 /* 3361 * removing one page? take shortcut function. 3362 */ 3363 3364 if (va + PAGE_SIZE == eva) { 3365 if (pmap_pdes_valid(va, pdes, &pde)) { 3366 3367 /* PA of the PTP */ 3368 ptppa = pmap_pte2pa(pde); 3369 3370 /* Get PTP if non-kernel mapping. */ 3371 if (pmap != pmap_kernel()) { 3372 ptp = pmap_find_ptp(pmap, va, ptppa, 1); 3373 KASSERTMSG(ptp != NULL, 3374 "pmap_remove: unmanaged PTP detected"); 3375 } else { 3376 /* Never free kernel PTPs. */ 3377 ptp = NULL; 3378 } 3379 3380 result = pmap_remove_pte(pmap, ptp, 3381 &ptes[pl1_i(va)], va, &pv_tofree); 3382 3383 /* 3384 * if mapping removed and the PTP is no longer 3385 * being used, free it! 3386 */ 3387 3388 if (result && ptp && ptp->wire_count <= 1) 3389 pmap_free_ptp(pmap, ptp, va, ptes, pdes); 3390 } 3391 } else for (/* null */ ; va < eva ; va = blkendva) { 3392 int lvl; 3393 3394 /* determine range of block */ 3395 blkendva = x86_round_pdr(va+1); 3396 if (blkendva > eva) 3397 blkendva = eva; 3398 3399 /* 3400 * XXXCDC: our PTE mappings should never be removed 3401 * with pmap_remove! if we allow this (and why would 3402 * we?) then we end up freeing the pmap's page 3403 * directory page (PDP) before we are finished using 3404 * it when we hit in in the recursive mapping. this 3405 * is BAD. 3406 * 3407 * long term solution is to move the PTEs out of user 3408 * address space. and into kernel address space (up 3409 * with APTE). then we can set VM_MAXUSER_ADDRESS to 3410 * be VM_MAX_ADDRESS. 3411 */ 3412 3413 /* XXXCDC: ugly hack to avoid freeing PDP here */ 3414 for (i = 0; i < PDP_SIZE; i++) { 3415 if (pl_i(va, PTP_LEVELS) == PDIR_SLOT_PTE+i) 3416 continue; 3417 } 3418 3419 lvl = pmap_pdes_invalid(va, pdes, &pde); 3420 if (lvl != 0) { 3421 /* 3422 * skip a range corresponding to an invalid pde. 3423 */ 3424 blkendva = (va & ptp_masks[lvl - 1]) + nbpd[lvl - 1]; 3425 continue; 3426 } 3427 3428 /* PA of the PTP */ 3429 ptppa = pmap_pte2pa(pde); 3430 3431 /* Get PTP if non-kernel mapping. */ 3432 if (pmap != pmap_kernel()) { 3433 ptp = pmap_find_ptp(pmap, va, ptppa, 1); 3434 KASSERTMSG(ptp != NULL, 3435 "pmap_remove: unmanaged PTP detected"); 3436 } else { 3437 /* Never free kernel PTPs. */ 3438 ptp = NULL; 3439 } 3440 3441 pmap_remove_ptes(pmap, ptp, (vaddr_t)&ptes[pl1_i(va)], va, 3442 blkendva, &pv_tofree); 3443 3444 /* if PTP is no longer being used, free it! */ 3445 if (ptp && ptp->wire_count <= 1) { 3446 pmap_free_ptp(pmap, ptp, va, ptes, pdes); 3447 } 3448 } 3449 pmap_unmap_ptes(pmap, pmap2); /* unlock pmap */ 3450 kpreempt_enable(); 3451 3452 /* Now we free unused PVs */ 3453 if (pv_tofree) 3454 pmap_free_pvs(pv_tofree); 3455 } 3456 3457 /* 3458 * pmap_sync_pv: clear pte bits and return the old value of the pte. 3459 * 3460 * => Caller should disable kernel preemption. 3461 * => issues tlb shootdowns if necessary. 3462 */ 3463 3464 static int 3465 pmap_sync_pv(struct pv_pte *pvpte, pt_entry_t expect, int clearbits, 3466 pt_entry_t *optep) 3467 { 3468 struct pmap *pmap; 3469 struct vm_page *ptp; 3470 vaddr_t va; 3471 pt_entry_t *ptep; 3472 pt_entry_t opte; 3473 pt_entry_t npte; 3474 bool need_shootdown; 3475 3476 ptp = pvpte->pte_ptp; 3477 va = pvpte->pte_va; 3478 KASSERT(ptp == NULL || ptp->uobject != NULL); 3479 KASSERT(ptp == NULL || ptp_va2o(va, 1) == ptp->offset); 3480 pmap = ptp_to_pmap(ptp); 3481 3482 KASSERT((expect & ~(PG_FRAME | PG_V)) == 0); 3483 KASSERT((expect & PG_V) != 0); 3484 KASSERT(clearbits == ~0 || (clearbits & ~(PG_M | PG_U | PG_RW)) == 0); 3485 KASSERT(kpreempt_disabled()); 3486 3487 ptep = pmap_map_pte(pmap, ptp, va); 3488 do { 3489 opte = *ptep; 3490 KASSERT((opte & (PG_M | PG_U)) != PG_M); 3491 KASSERT((opte & (PG_U | PG_V)) != PG_U); 3492 KASSERT(opte == 0 || (opte & PG_V) != 0); 3493 if ((opte & (PG_FRAME | PG_V)) != expect) { 3494 3495 /* 3496 * we lost a race with a V->P operation like 3497 * pmap_remove(). wait for the competitor 3498 * reflecting pte bits into mp_attrs. 3499 * 3500 * issue a redundant TLB shootdown so that 3501 * we can wait for its completion. 3502 */ 3503 3504 pmap_unmap_pte(); 3505 if (clearbits != 0) { 3506 pmap_tlb_shootdown(pmap, va, 3507 (pmap == pmap_kernel() ? PG_G : 0), 3508 TLBSHOOT_SYNC_PV1); 3509 } 3510 return EAGAIN; 3511 } 3512 3513 /* 3514 * check if there's anything to do on this pte. 3515 */ 3516 3517 if ((opte & clearbits) == 0) { 3518 need_shootdown = false; 3519 break; 3520 } 3521 3522 /* 3523 * we need a shootdown if the pte is cached. (PG_U) 3524 * 3525 * ...unless we are clearing only the PG_RW bit and 3526 * it isn't cached as RW. (PG_M) 3527 */ 3528 3529 need_shootdown = (opte & PG_U) != 0 && 3530 !(clearbits == PG_RW && (opte & PG_M) == 0); 3531 3532 npte = opte & ~clearbits; 3533 3534 /* 3535 * if we need a shootdown anyway, clear PG_U and PG_M. 3536 */ 3537 3538 if (need_shootdown) { 3539 npte &= ~(PG_U | PG_M); 3540 } 3541 KASSERT((npte & (PG_M | PG_U)) != PG_M); 3542 KASSERT((npte & (PG_U | PG_V)) != PG_U); 3543 KASSERT(npte == 0 || (opte & PG_V) != 0); 3544 } while (pmap_pte_cas(ptep, opte, npte) != opte); 3545 3546 if (need_shootdown) { 3547 pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_SYNC_PV2); 3548 } 3549 pmap_unmap_pte(); 3550 3551 *optep = opte; 3552 return 0; 3553 } 3554 3555 /* 3556 * pmap_page_remove: remove a managed vm_page from all pmaps that map it 3557 * 3558 * => R/M bits are sync'd back to attrs 3559 */ 3560 3561 void 3562 pmap_page_remove(struct vm_page *pg) 3563 { 3564 struct pmap_page *pp; 3565 struct pv_pte *pvpte; 3566 struct pv_entry *killlist = NULL; 3567 struct vm_page *ptp; 3568 pt_entry_t expect; 3569 lwp_t *l; 3570 int count; 3571 3572 KASSERT(uvm_page_locked_p(pg)); 3573 3574 l = curlwp; 3575 pp = VM_PAGE_TO_PP(pg); 3576 expect = pmap_pa2pte(VM_PAGE_TO_PHYS(pg)) | PG_V; 3577 count = SPINLOCK_BACKOFF_MIN; 3578 kpreempt_disable(); 3579 startover: 3580 while ((pvpte = pv_pte_first(pp)) != NULL) { 3581 struct pmap *pmap; 3582 struct pv_entry *pve; 3583 pt_entry_t opte; 3584 vaddr_t va; 3585 int error; 3586 3587 /* 3588 * add a reference to the pmap before clearing the pte. 3589 * otherwise the pmap can disappear behind us. 3590 */ 3591 3592 ptp = pvpte->pte_ptp; 3593 pmap = ptp_to_pmap(ptp); 3594 if (ptp != NULL) { 3595 pmap_reference(pmap); 3596 } 3597 3598 error = pmap_sync_pv(pvpte, expect, ~0, &opte); 3599 if (error == EAGAIN) { 3600 int hold_count; 3601 KERNEL_UNLOCK_ALL(curlwp, &hold_count); 3602 if (ptp != NULL) { 3603 pmap_destroy(pmap); 3604 } 3605 SPINLOCK_BACKOFF(count); 3606 KERNEL_LOCK(hold_count, curlwp); 3607 goto startover; 3608 } 3609 3610 pp->pp_attrs |= opte; 3611 va = pvpte->pte_va; 3612 pve = pmap_remove_pv(pp, ptp, va); 3613 3614 /* update the PTP reference count. free if last reference. */ 3615 if (ptp != NULL) { 3616 struct pmap *pmap2; 3617 pt_entry_t *ptes; 3618 pd_entry_t * const *pdes; 3619 3620 KASSERT(pmap != pmap_kernel()); 3621 3622 pmap_tlb_shootnow(); 3623 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); 3624 pmap_stats_update_bypte(pmap, 0, opte); 3625 ptp->wire_count--; 3626 if (ptp->wire_count <= 1) { 3627 pmap_free_ptp(pmap, ptp, va, ptes, pdes); 3628 } 3629 pmap_unmap_ptes(pmap, pmap2); 3630 pmap_destroy(pmap); 3631 } else { 3632 KASSERT(pmap == pmap_kernel()); 3633 pmap_stats_update_bypte(pmap, 0, opte); 3634 } 3635 3636 if (pve != NULL) { 3637 pve->pve_next = killlist; /* mark it for death */ 3638 killlist = pve; 3639 } 3640 } 3641 pmap_tlb_shootnow(); 3642 kpreempt_enable(); 3643 3644 /* Now free unused pvs. */ 3645 pmap_free_pvs(killlist); 3646 } 3647 3648 /* 3649 * p m a p a t t r i b u t e f u n c t i o n s 3650 * functions that test/change managed page's attributes 3651 * since a page can be mapped multiple times we must check each PTE that 3652 * maps it by going down the pv lists. 3653 */ 3654 3655 /* 3656 * pmap_test_attrs: test a page's attributes 3657 */ 3658 3659 bool 3660 pmap_test_attrs(struct vm_page *pg, unsigned testbits) 3661 { 3662 struct pmap_page *pp; 3663 struct pv_pte *pvpte; 3664 pt_entry_t expect; 3665 u_int result; 3666 3667 KASSERT(uvm_page_locked_p(pg)); 3668 3669 pp = VM_PAGE_TO_PP(pg); 3670 if ((pp->pp_attrs & testbits) != 0) { 3671 return true; 3672 } 3673 expect = pmap_pa2pte(VM_PAGE_TO_PHYS(pg)) | PG_V; 3674 kpreempt_disable(); 3675 for (pvpte = pv_pte_first(pp); pvpte; pvpte = pv_pte_next(pp, pvpte)) { 3676 pt_entry_t opte; 3677 int error; 3678 3679 if ((pp->pp_attrs & testbits) != 0) { 3680 break; 3681 } 3682 error = pmap_sync_pv(pvpte, expect, 0, &opte); 3683 if (error == 0) { 3684 pp->pp_attrs |= opte; 3685 } 3686 } 3687 result = pp->pp_attrs & testbits; 3688 kpreempt_enable(); 3689 3690 /* 3691 * note that we will exit the for loop with a non-null pve if 3692 * we have found the bits we are testing for. 3693 */ 3694 3695 return result != 0; 3696 } 3697 3698 /* 3699 * pmap_clear_attrs: clear the specified attribute for a page. 3700 * 3701 * => we return true if we cleared one of the bits we were asked to 3702 */ 3703 3704 bool 3705 pmap_clear_attrs(struct vm_page *pg, unsigned clearbits) 3706 { 3707 struct pmap_page *pp; 3708 struct pv_pte *pvpte; 3709 u_int result; 3710 pt_entry_t expect; 3711 int count; 3712 3713 KASSERT(uvm_page_locked_p(pg)); 3714 3715 pp = VM_PAGE_TO_PP(pg); 3716 expect = pmap_pa2pte(VM_PAGE_TO_PHYS(pg)) | PG_V; 3717 count = SPINLOCK_BACKOFF_MIN; 3718 kpreempt_disable(); 3719 startover: 3720 for (pvpte = pv_pte_first(pp); pvpte; pvpte = pv_pte_next(pp, pvpte)) { 3721 pt_entry_t opte; 3722 int error; 3723 3724 error = pmap_sync_pv(pvpte, expect, clearbits, &opte); 3725 if (error == EAGAIN) { 3726 int hold_count; 3727 KERNEL_UNLOCK_ALL(curlwp, &hold_count); 3728 SPINLOCK_BACKOFF(count); 3729 KERNEL_LOCK(hold_count, curlwp); 3730 goto startover; 3731 } 3732 pp->pp_attrs |= opte; 3733 } 3734 result = pp->pp_attrs & clearbits; 3735 pp->pp_attrs &= ~clearbits; 3736 kpreempt_enable(); 3737 3738 return result != 0; 3739 } 3740 3741 3742 /* 3743 * p m a p p r o t e c t i o n f u n c t i o n s 3744 */ 3745 3746 /* 3747 * pmap_page_protect: change the protection of all recorded mappings 3748 * of a managed page 3749 * 3750 * => NOTE: this is an inline function in pmap.h 3751 */ 3752 3753 /* see pmap.h */ 3754 3755 /* 3756 * pmap_protect: set the protection in of the pages in a pmap 3757 * 3758 * => NOTE: this is an inline function in pmap.h 3759 */ 3760 3761 /* see pmap.h */ 3762 3763 /* 3764 * pmap_write_protect: write-protect pages in a pmap. 3765 */ 3766 void 3767 pmap_write_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 3768 { 3769 pt_entry_t *ptes; 3770 pt_entry_t * const *pdes; 3771 struct pmap *pmap2; 3772 vaddr_t blockend, va; 3773 3774 KASSERT(curlwp->l_md.md_gc_pmap != pmap); 3775 3776 sva &= PG_FRAME; 3777 eva &= PG_FRAME; 3778 3779 /* Acquire pmap. */ 3780 kpreempt_disable(); 3781 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); 3782 3783 for (va = sva ; va < eva ; va = blockend) { 3784 pt_entry_t *spte, *epte; 3785 int i; 3786 3787 blockend = x86_round_pdr(va + 1); 3788 if (blockend > eva) 3789 blockend = eva; 3790 3791 /* 3792 * XXXCDC: our PTE mappings should never be write-protected! 3793 * 3794 * long term solution is to move the PTEs out of user 3795 * address space. and into kernel address space (up 3796 * with APTE). then we can set VM_MAXUSER_ADDRESS to 3797 * be VM_MAX_ADDRESS. 3798 */ 3799 3800 /* XXXCDC: ugly hack to avoid freeing PDP here */ 3801 for (i = 0; i < PDP_SIZE; i++) { 3802 if (pl_i(va, PTP_LEVELS) == PDIR_SLOT_PTE+i) 3803 continue; 3804 } 3805 3806 /* Is it a valid block? */ 3807 if (!pmap_pdes_valid(va, pdes, NULL)) { 3808 continue; 3809 } 3810 KASSERT(va < VM_MAXUSER_ADDRESS || va >= VM_MAX_ADDRESS); 3811 3812 spte = &ptes[pl1_i(va)]; 3813 epte = &ptes[pl1_i(blockend)]; 3814 3815 for (/*null */; spte < epte ; spte++) { 3816 pt_entry_t opte, npte; 3817 3818 do { 3819 opte = *spte; 3820 if ((~opte & (PG_RW | PG_V)) != 0) { 3821 goto next; 3822 } 3823 npte = opte & ~PG_RW; 3824 } while (pmap_pte_cas(spte, opte, npte) != opte); 3825 3826 if ((opte & PG_M) != 0) { 3827 vaddr_t tva = x86_ptob(spte - ptes); 3828 pmap_tlb_shootdown(pmap, tva, opte, 3829 TLBSHOOT_WRITE_PROTECT); 3830 } 3831 next:; 3832 } 3833 } 3834 3835 /* Release pmap. */ 3836 pmap_unmap_ptes(pmap, pmap2); 3837 kpreempt_enable(); 3838 } 3839 3840 /* 3841 * pmap_unwire: clear the wired bit in the PTE. 3842 * 3843 * => Mapping should already be present. 3844 */ 3845 void 3846 pmap_unwire(struct pmap *pmap, vaddr_t va) 3847 { 3848 pt_entry_t *ptes, *ptep, opte; 3849 pd_entry_t * const *pdes; 3850 struct pmap *pmap2; 3851 3852 /* Acquire pmap. */ 3853 kpreempt_disable(); 3854 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); 3855 3856 if (!pmap_pdes_valid(va, pdes, NULL)) { 3857 panic("pmap_unwire: invalid PDE"); 3858 } 3859 3860 ptep = &ptes[pl1_i(va)]; 3861 opte = *ptep; 3862 KASSERT(pmap_valid_entry(opte)); 3863 3864 if (opte & PG_W) { 3865 pt_entry_t npte = opte & ~PG_W; 3866 3867 opte = pmap_pte_testset(ptep, npte); 3868 pmap_stats_update_bypte(pmap, npte, opte); 3869 } else { 3870 printf("pmap_unwire: wiring for pmap %p va 0x%lx " 3871 "did not change!\n", pmap, va); 3872 } 3873 3874 /* Release pmap. */ 3875 pmap_unmap_ptes(pmap, pmap2); 3876 kpreempt_enable(); 3877 } 3878 3879 /* 3880 * pmap_copy: copy mappings from one pmap to another 3881 * 3882 * => optional function 3883 * void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) 3884 */ 3885 3886 /* 3887 * defined as macro in pmap.h 3888 */ 3889 3890 __strict_weak_alias(pmap_enter, pmap_enter_default); 3891 3892 int 3893 pmap_enter_default(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, 3894 u_int flags) 3895 { 3896 return pmap_enter_ma(pmap, va, pa, pa, prot, flags, 0); 3897 } 3898 3899 /* 3900 * pmap_enter: enter a mapping into a pmap 3901 * 3902 * => must be done "now" ... no lazy-evaluation 3903 * => we set pmap => pv_head locking 3904 */ 3905 int 3906 pmap_enter_ma(struct pmap *pmap, vaddr_t va, paddr_t ma, paddr_t pa, 3907 vm_prot_t prot, u_int flags, int domid) 3908 { 3909 pt_entry_t *ptes, opte, npte; 3910 pt_entry_t *ptep; 3911 pd_entry_t * const *pdes; 3912 struct vm_page *ptp, *pg; 3913 struct pmap_page *new_pp; 3914 struct pmap_page *old_pp; 3915 struct pv_entry *old_pve = NULL; 3916 struct pv_entry *new_pve; 3917 struct pv_entry *new_pve2; 3918 int error; 3919 bool wired = (flags & PMAP_WIRED) != 0; 3920 struct pmap *pmap2; 3921 3922 KASSERT(pmap_initialized); 3923 KASSERT(curlwp->l_md.md_gc_pmap != pmap); 3924 KASSERT(va < VM_MAX_KERNEL_ADDRESS); 3925 KASSERTMSG(va != (vaddr_t)PDP_BASE, 3926 "pmap_enter: trying to map over PDP!"); 3927 KASSERTMSG(va < VM_MIN_KERNEL_ADDRESS || 3928 pmap_valid_entry(pmap->pm_pdir[pl_i(va, PTP_LEVELS)]), 3929 "pmap_enter: missing kernel PTP for VA %lx!", va); 3930 3931 #ifdef XEN 3932 KASSERT(domid == DOMID_SELF || pa == 0); 3933 #endif /* XEN */ 3934 3935 npte = ma | protection_codes[prot] | PG_V; 3936 npte |= pmap_pat_flags(flags); 3937 if (wired) 3938 npte |= PG_W; 3939 if (va < VM_MAXUSER_ADDRESS) 3940 npte |= PG_u; 3941 else if (va < VM_MAX_ADDRESS) 3942 npte |= (PG_u | PG_RW); /* XXXCDC: no longer needed? */ 3943 else 3944 npte |= PG_k; 3945 if (pmap == pmap_kernel()) 3946 npte |= pmap_pg_g; 3947 if (flags & VM_PROT_ALL) { 3948 npte |= PG_U; 3949 if (flags & VM_PROT_WRITE) { 3950 KASSERT((npte & PG_RW) != 0); 3951 npte |= PG_M; 3952 } 3953 } 3954 3955 #ifdef XEN 3956 if (domid != DOMID_SELF) 3957 pg = NULL; 3958 else 3959 #endif 3960 pg = PHYS_TO_VM_PAGE(pa); 3961 if (pg != NULL) { 3962 /* This is a managed page */ 3963 npte |= PG_PVLIST; 3964 new_pp = VM_PAGE_TO_PP(pg); 3965 } else { 3966 new_pp = NULL; 3967 } 3968 3969 /* get pves. */ 3970 new_pve = pool_cache_get(&pmap_pv_cache, PR_NOWAIT); 3971 new_pve2 = pool_cache_get(&pmap_pv_cache, PR_NOWAIT); 3972 if (new_pve == NULL || new_pve2 == NULL) { 3973 if (flags & PMAP_CANFAIL) { 3974 error = ENOMEM; 3975 goto out2; 3976 } 3977 panic("pmap_enter: pve allocation failed"); 3978 } 3979 3980 kpreempt_disable(); 3981 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ 3982 if (pmap == pmap_kernel()) { 3983 ptp = NULL; 3984 } else { 3985 ptp = pmap_get_ptp(pmap, va, pdes); 3986 if (ptp == NULL) { 3987 pmap_unmap_ptes(pmap, pmap2); 3988 if (flags & PMAP_CANFAIL) { 3989 error = ENOMEM; 3990 goto out; 3991 } 3992 panic("pmap_enter: get ptp failed"); 3993 } 3994 } 3995 3996 /* 3997 * update the pte. 3998 */ 3999 4000 ptep = &ptes[pl1_i(va)]; 4001 do { 4002 opte = *ptep; 4003 4004 /* 4005 * if the same page, inherit PG_U and PG_M. 4006 */ 4007 if (((opte ^ npte) & (PG_FRAME | PG_V)) == 0) { 4008 npte |= opte & (PG_U | PG_M); 4009 } 4010 #if defined(XEN) 4011 if (domid != DOMID_SELF) { 4012 /* pmap_pte_cas with error handling */ 4013 int s = splvm(); 4014 if (opte != *ptep) { 4015 splx(s); 4016 continue; 4017 } 4018 error = xpq_update_foreign( 4019 vtomach((vaddr_t)ptep), npte, domid); 4020 splx(s); 4021 if (error) { 4022 if (ptp != NULL && ptp->wire_count <= 1) { 4023 pmap_free_ptp(pmap, ptp, va, ptes, pdes); 4024 } 4025 pmap_unmap_ptes(pmap, pmap2); 4026 goto out; 4027 } 4028 break; 4029 } 4030 #endif /* defined(XEN) */ 4031 } while (pmap_pte_cas(ptep, opte, npte) != opte); 4032 4033 /* 4034 * update statistics and PTP's reference count. 4035 */ 4036 4037 pmap_stats_update_bypte(pmap, npte, opte); 4038 if (ptp != NULL && !pmap_valid_entry(opte)) { 4039 ptp->wire_count++; 4040 } 4041 KASSERT(ptp == NULL || ptp->wire_count > 1); 4042 4043 /* 4044 * if the same page, we can skip pv_entry handling. 4045 */ 4046 4047 if (((opte ^ npte) & (PG_FRAME | PG_V)) == 0) { 4048 KASSERT(((opte ^ npte) & PG_PVLIST) == 0); 4049 goto same_pa; 4050 } 4051 4052 /* 4053 * if old page is managed, remove pv_entry from its list. 4054 */ 4055 4056 if ((~opte & (PG_V | PG_PVLIST)) == 0) { 4057 pg = PHYS_TO_VM_PAGE(pmap_pte2pa(opte)); 4058 4059 KASSERTMSG(pg != NULL, "pmap_enter: PG_PVLIST mapping with " 4060 "unmanaged page pa = 0x%" PRIx64 " (0x%" PRIx64 ")", 4061 (int64_t)pa, (int64_t)atop(pa)); 4062 4063 KASSERT(uvm_page_locked_p(pg)); 4064 4065 old_pp = VM_PAGE_TO_PP(pg); 4066 old_pve = pmap_remove_pv(old_pp, ptp, va); 4067 old_pp->pp_attrs |= opte; 4068 } 4069 4070 /* 4071 * if new page is managed, insert pv_entry into its list. 4072 */ 4073 4074 if (new_pp) { 4075 new_pve = pmap_enter_pv(new_pp, new_pve, &new_pve2, ptp, va); 4076 } 4077 4078 same_pa: 4079 pmap_unmap_ptes(pmap, pmap2); 4080 4081 /* 4082 * shootdown tlb if necessary. 4083 */ 4084 4085 if ((~opte & (PG_V | PG_U)) == 0 && 4086 ((opte ^ npte) & (PG_FRAME | PG_RW)) != 0) { 4087 pmap_tlb_shootdown(pmap, va, opte, TLBSHOOT_ENTER); 4088 } 4089 4090 error = 0; 4091 out: 4092 kpreempt_enable(); 4093 out2: 4094 if (old_pve != NULL) { 4095 pool_cache_put(&pmap_pv_cache, old_pve); 4096 } 4097 if (new_pve != NULL) { 4098 pool_cache_put(&pmap_pv_cache, new_pve); 4099 } 4100 if (new_pve2 != NULL) { 4101 pool_cache_put(&pmap_pv_cache, new_pve2); 4102 } 4103 4104 return error; 4105 } 4106 4107 static bool 4108 pmap_get_physpage(vaddr_t va, int level, paddr_t *paddrp) 4109 { 4110 struct vm_page *ptp; 4111 struct pmap *kpm = pmap_kernel(); 4112 4113 if (!uvm.page_init_done) { 4114 4115 /* 4116 * we're growing the kernel pmap early (from 4117 * uvm_pageboot_alloc()). this case must be 4118 * handled a little differently. 4119 */ 4120 4121 if (!uvm_page_physget(paddrp)) 4122 panic("pmap_get_physpage: out of memory"); 4123 #ifdef __HAVE_DIRECT_MAP 4124 pagezero(PMAP_DIRECT_MAP(*paddrp)); 4125 #else 4126 kpreempt_disable(); 4127 pmap_pte_set(early_zero_pte, 4128 pmap_pa2pte(*paddrp) | PG_V | PG_RW | PG_k); 4129 pmap_pte_flush(); 4130 pmap_update_pg((vaddr_t)early_zerop); 4131 memset(early_zerop, 0, PAGE_SIZE); 4132 #if defined(DIAGNOSTIC) || defined (XEN) 4133 pmap_pte_set(early_zero_pte, 0); 4134 pmap_pte_flush(); 4135 #endif /* defined(DIAGNOSTIC) */ 4136 kpreempt_enable(); 4137 #endif 4138 } else { 4139 /* XXX */ 4140 ptp = uvm_pagealloc(NULL, 0, NULL, 4141 UVM_PGA_USERESERVE|UVM_PGA_ZERO); 4142 if (ptp == NULL) 4143 panic("pmap_get_physpage: out of memory"); 4144 ptp->flags &= ~PG_BUSY; 4145 ptp->wire_count = 1; 4146 *paddrp = VM_PAGE_TO_PHYS(ptp); 4147 } 4148 pmap_stats_update(kpm, 1, 0); 4149 return true; 4150 } 4151 4152 /* 4153 * Allocate the amount of specified ptps for a ptp level, and populate 4154 * all levels below accordingly, mapping virtual addresses starting at 4155 * kva. 4156 * 4157 * Used by pmap_growkernel. 4158 */ 4159 static void 4160 pmap_alloc_level(pd_entry_t * const *pdes, vaddr_t kva, int lvl, 4161 long *needed_ptps) 4162 { 4163 unsigned long i; 4164 vaddr_t va; 4165 paddr_t pa; 4166 unsigned long index, endindex; 4167 int level; 4168 pd_entry_t *pdep; 4169 #ifdef XEN 4170 int s = splvm(); /* protect xpq_* */ 4171 #endif 4172 4173 for (level = lvl; level > 1; level--) { 4174 if (level == PTP_LEVELS) 4175 pdep = pmap_kernel()->pm_pdir; 4176 else 4177 pdep = pdes[level - 2]; 4178 va = kva; 4179 index = pl_i_roundup(kva, level); 4180 endindex = index + needed_ptps[level - 1] - 1; 4181 4182 4183 for (i = index; i <= endindex; i++) { 4184 pt_entry_t pte; 4185 4186 KASSERT(!pmap_valid_entry(pdep[i])); 4187 pmap_get_physpage(va, level - 1, &pa); 4188 pte = pmap_pa2pte(pa) | PG_k | PG_V | PG_RW; 4189 #ifdef XEN 4190 pmap_pte_set(&pdep[i], pte); 4191 #if defined(PAE) || defined(__x86_64__) 4192 if (level == PTP_LEVELS && i >= PDIR_SLOT_KERN) { 4193 if (__predict_true( 4194 cpu_info_primary.ci_flags & CPUF_PRESENT)) { 4195 /* update per-cpu PMDs on all cpus */ 4196 xen_kpm_sync(pmap_kernel(), i); 4197 } else { 4198 /* 4199 * too early; update primary CPU 4200 * PMD only (without locks) 4201 */ 4202 #ifdef PAE 4203 pd_entry_t *cpu_pdep = 4204 &cpu_info_primary.ci_kpm_pdir[l2tol2(i)]; 4205 #endif 4206 #ifdef __x86_64__ 4207 pd_entry_t *cpu_pdep = 4208 &cpu_info_primary.ci_kpm_pdir[i]; 4209 #endif 4210 pmap_pte_set(cpu_pdep, pte); 4211 } 4212 } 4213 #endif /* PAE || __x86_64__ */ 4214 #else /* XEN */ 4215 pdep[i] = pte; 4216 #endif /* XEN */ 4217 KASSERT(level != PTP_LEVELS || nkptp[level - 1] + 4218 pl_i(VM_MIN_KERNEL_ADDRESS, level) == i); 4219 nkptp[level - 1]++; 4220 va += nbpd[level - 1]; 4221 } 4222 pmap_pte_flush(); 4223 } 4224 #ifdef XEN 4225 splx(s); 4226 #endif 4227 } 4228 4229 /* 4230 * pmap_growkernel: increase usage of KVM space 4231 * 4232 * => we allocate new PTPs for the kernel and install them in all 4233 * the pmaps on the system. 4234 */ 4235 4236 vaddr_t 4237 pmap_growkernel(vaddr_t maxkvaddr) 4238 { 4239 struct pmap *kpm = pmap_kernel(); 4240 #if !defined(XEN) || !defined(__x86_64__) 4241 struct pmap *pm; 4242 #endif 4243 int s, i; 4244 long needed_kptp[PTP_LEVELS], target_nptp, old; 4245 bool invalidate = false; 4246 4247 s = splvm(); /* to be safe */ 4248 mutex_enter(kpm->pm_lock); 4249 4250 if (maxkvaddr <= pmap_maxkvaddr) { 4251 mutex_exit(kpm->pm_lock); 4252 splx(s); 4253 return pmap_maxkvaddr; 4254 } 4255 4256 maxkvaddr = x86_round_pdr(maxkvaddr); 4257 old = nkptp[PTP_LEVELS - 1]; 4258 /* 4259 * This loop could be optimized more, but pmap_growkernel() 4260 * is called infrequently. 4261 */ 4262 for (i = PTP_LEVELS - 1; i >= 1; i--) { 4263 target_nptp = pl_i_roundup(maxkvaddr, i + 1) - 4264 pl_i_roundup(VM_MIN_KERNEL_ADDRESS, i + 1); 4265 /* 4266 * XXX only need to check toplevel. 4267 */ 4268 if (target_nptp > nkptpmax[i]) 4269 panic("out of KVA space"); 4270 KASSERT(target_nptp >= nkptp[i]); 4271 needed_kptp[i] = target_nptp - nkptp[i]; 4272 } 4273 4274 pmap_alloc_level(normal_pdes, pmap_maxkvaddr, PTP_LEVELS, needed_kptp); 4275 4276 /* 4277 * If the number of top level entries changed, update all 4278 * pmaps. 4279 */ 4280 if (needed_kptp[PTP_LEVELS - 1] != 0) { 4281 #ifdef XEN 4282 #ifdef __x86_64__ 4283 /* nothing, kernel entries are never entered in user pmap */ 4284 #else /* __x86_64__ */ 4285 mutex_enter(&pmaps_lock); 4286 LIST_FOREACH(pm, &pmaps, pm_list) { 4287 int pdkidx; 4288 for (pdkidx = PDIR_SLOT_KERN + old; 4289 pdkidx < PDIR_SLOT_KERN + nkptp[PTP_LEVELS - 1]; 4290 pdkidx++) { 4291 pmap_pte_set(&pm->pm_pdir[pdkidx], 4292 kpm->pm_pdir[pdkidx]); 4293 } 4294 pmap_pte_flush(); 4295 } 4296 mutex_exit(&pmaps_lock); 4297 #endif /* __x86_64__ */ 4298 #else /* XEN */ 4299 unsigned newpdes; 4300 newpdes = nkptp[PTP_LEVELS - 1] - old; 4301 mutex_enter(&pmaps_lock); 4302 LIST_FOREACH(pm, &pmaps, pm_list) { 4303 memcpy(&pm->pm_pdir[PDIR_SLOT_KERN + old], 4304 &kpm->pm_pdir[PDIR_SLOT_KERN + old], 4305 newpdes * sizeof (pd_entry_t)); 4306 } 4307 mutex_exit(&pmaps_lock); 4308 #endif 4309 invalidate = true; 4310 } 4311 pmap_maxkvaddr = maxkvaddr; 4312 mutex_exit(kpm->pm_lock); 4313 splx(s); 4314 4315 if (invalidate && pmap_initialized) { 4316 /* Invalidate the PDP cache. */ 4317 pool_cache_invalidate(&pmap_pdp_cache); 4318 } 4319 4320 return maxkvaddr; 4321 } 4322 4323 #ifdef DEBUG 4324 void pmap_dump(struct pmap *, vaddr_t, vaddr_t); 4325 4326 /* 4327 * pmap_dump: dump all the mappings from a pmap 4328 * 4329 * => caller should not be holding any pmap locks 4330 */ 4331 4332 void 4333 pmap_dump(struct pmap *pmap, vaddr_t sva, vaddr_t eva) 4334 { 4335 pt_entry_t *ptes, *pte; 4336 pd_entry_t * const *pdes; 4337 struct pmap *pmap2; 4338 vaddr_t blkendva; 4339 4340 /* 4341 * if end is out of range truncate. 4342 * if (end == start) update to max. 4343 */ 4344 4345 if (eva > VM_MAXUSER_ADDRESS || eva <= sva) 4346 eva = VM_MAXUSER_ADDRESS; 4347 4348 /* 4349 * we lock in the pmap => pv_head direction 4350 */ 4351 4352 kpreempt_disable(); 4353 pmap_map_ptes(pmap, &pmap2, &ptes, &pdes); /* locks pmap */ 4354 4355 /* 4356 * dumping a range of pages: we dump in PTP sized blocks (4MB) 4357 */ 4358 4359 for (/* null */ ; sva < eva ; sva = blkendva) { 4360 4361 /* determine range of block */ 4362 blkendva = x86_round_pdr(sva+1); 4363 if (blkendva > eva) 4364 blkendva = eva; 4365 4366 /* valid block? */ 4367 if (!pmap_pdes_valid(sva, pdes, NULL)) 4368 continue; 4369 4370 pte = &ptes[pl1_i(sva)]; 4371 for (/* null */; sva < blkendva ; sva += PAGE_SIZE, pte++) { 4372 if (!pmap_valid_entry(*pte)) 4373 continue; 4374 printf("va %#" PRIxVADDR " -> pa %#" PRIxPADDR 4375 " (pte=%#" PRIxPADDR ")\n", 4376 sva, (paddr_t)pmap_pte2pa(*pte), (paddr_t)*pte); 4377 } 4378 } 4379 pmap_unmap_ptes(pmap, pmap2); 4380 kpreempt_enable(); 4381 } 4382 #endif 4383 4384 /* 4385 * pmap_update: process deferred invalidations and frees. 4386 */ 4387 4388 void 4389 pmap_update(struct pmap *pmap) 4390 { 4391 struct vm_page *empty_ptps; 4392 lwp_t *l = curlwp; 4393 4394 /* 4395 * If we have torn down this pmap, invalidate non-global TLB 4396 * entries on any processors using it. 4397 */ 4398 KPREEMPT_DISABLE(l); 4399 if (__predict_false(l->l_md.md_gc_pmap == pmap)) { 4400 l->l_md.md_gc_pmap = NULL; 4401 pmap_tlb_shootdown(pmap, (vaddr_t)-1LL, 0, TLBSHOOT_UPDATE); 4402 } 4403 /* 4404 * Initiate any pending TLB shootdowns. Wait for them to 4405 * complete before returning control to the caller. 4406 */ 4407 pmap_tlb_shootnow(); 4408 KPREEMPT_ENABLE(l); 4409 4410 /* 4411 * Now that shootdowns are complete, process deferred frees, 4412 * but not from interrupt context. 4413 */ 4414 if (l->l_md.md_gc_ptp != NULL) { 4415 KASSERT((l->l_pflag & LP_INTR) == 0); 4416 if (cpu_intr_p()) { 4417 return; 4418 } 4419 empty_ptps = l->l_md.md_gc_ptp; 4420 l->l_md.md_gc_ptp = NULL; 4421 pmap_free_ptps(empty_ptps); 4422 } 4423 } 4424 4425 #if PTP_LEVELS > 4 4426 #error "Unsupported number of page table mappings" 4427 #endif 4428 4429 paddr_t 4430 pmap_init_tmp_pgtbl(paddr_t pg) 4431 { 4432 static bool maps_loaded; 4433 static const paddr_t x86_tmp_pml_paddr[] = { 4434 4 * PAGE_SIZE, 4435 5 * PAGE_SIZE, 4436 6 * PAGE_SIZE, 4437 7 * PAGE_SIZE 4438 }; 4439 static vaddr_t x86_tmp_pml_vaddr[] = { 0, 0, 0, 0 }; 4440 4441 pd_entry_t *tmp_pml, *kernel_pml; 4442 4443 int level; 4444 4445 if (!maps_loaded) { 4446 for (level = 0; level < PTP_LEVELS; ++level) { 4447 x86_tmp_pml_vaddr[level] = 4448 uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 4449 UVM_KMF_VAONLY); 4450 4451 if (x86_tmp_pml_vaddr[level] == 0) 4452 panic("mapping of real mode PML failed\n"); 4453 pmap_kenter_pa(x86_tmp_pml_vaddr[level], 4454 x86_tmp_pml_paddr[level], 4455 VM_PROT_READ | VM_PROT_WRITE, 0); 4456 pmap_update(pmap_kernel()); 4457 } 4458 maps_loaded = true; 4459 } 4460 4461 /* Zero levels 1-3 */ 4462 for (level = 0; level < PTP_LEVELS - 1; ++level) { 4463 tmp_pml = (void *)x86_tmp_pml_vaddr[level]; 4464 memset(tmp_pml, 0, PAGE_SIZE); 4465 } 4466 4467 /* Copy PML4 */ 4468 kernel_pml = pmap_kernel()->pm_pdir; 4469 tmp_pml = (void *)x86_tmp_pml_vaddr[PTP_LEVELS - 1]; 4470 memcpy(tmp_pml, kernel_pml, PAGE_SIZE); 4471 4472 #ifdef PAE 4473 /* 4474 * Use the last 4 entries of the L2 page as L3 PD entries. These 4475 * last entries are unlikely to be used for temporary mappings. 4476 * 508: maps 0->1GB (userland) 4477 * 509: unused 4478 * 510: unused 4479 * 511: maps 3->4GB (kernel) 4480 */ 4481 tmp_pml[508] = x86_tmp_pml_paddr[PTP_LEVELS - 1] | PG_V; 4482 tmp_pml[509] = 0; 4483 tmp_pml[510] = 0; 4484 tmp_pml[511] = pmap_pdirpa(pmap_kernel(), PDIR_SLOT_KERN) | PG_V; 4485 #endif 4486 4487 for (level = PTP_LEVELS - 1; level > 0; --level) { 4488 tmp_pml = (void *)x86_tmp_pml_vaddr[level]; 4489 4490 tmp_pml[pl_i(pg, level + 1)] = 4491 (x86_tmp_pml_paddr[level - 1] & PG_FRAME) | PG_RW | PG_V; 4492 } 4493 4494 tmp_pml = (void *)x86_tmp_pml_vaddr[0]; 4495 tmp_pml[pl_i(pg, 1)] = (pg & PG_FRAME) | PG_RW | PG_V; 4496 4497 #ifdef PAE 4498 /* Return the PA of the L3 page (entry 508 of the L2 page) */ 4499 return x86_tmp_pml_paddr[PTP_LEVELS - 1] + 508 * sizeof(pd_entry_t); 4500 #endif 4501 4502 return x86_tmp_pml_paddr[PTP_LEVELS - 1]; 4503 } 4504 4505 u_int 4506 x86_mmap_flags(paddr_t mdpgno) 4507 { 4508 u_int nflag = (mdpgno >> X86_MMAP_FLAG_SHIFT) & X86_MMAP_FLAG_MASK; 4509 u_int pflag = 0; 4510 4511 if (nflag & X86_MMAP_FLAG_PREFETCH) 4512 pflag |= PMAP_WRITE_COMBINE; 4513 4514 return pflag; 4515 } 4516