xref: /netbsd-src/sys/arch/x86/include/cpu_extended_state.h (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: cpu_extended_state.h,v 1.10 2016/08/18 13:00:54 maxv Exp $	*/
2 
3 #ifndef _X86_CPU_EXTENDED_STATE_H_
4 #define _X86_CPU_EXTENDED_STATE_H_
5 
6 #ifdef __lint__
7 /* Lint has different packing rules and doesn't understand __aligned() */
8 #define __CTASSERT_NOLINT(x) __CTASSERT(1)
9 #else
10 #define __CTASSERT_NOLINT(x) __CTASSERT(x)
11 #endif
12 
13 /*
14  * This file contains definitions of structures that match the memory layouts
15  * used on x86 processors to save floating point registers and other extended
16  * cpu states.
17  *
18  * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and the later
19  * AVX instructions.
20  *
21  * The definitions are such that any future 'extended state' should be handled
22  * (provided the kernel doesn't need to know the actual contents).
23  *
24  * The actual structures the cpu accesses must be aligned to 16 bytes for FXSAVE
25  * and 64 for XSAVE. The types aren't aligned because copies do not need extra
26  * alignment.
27  *
28  * The slightly different layout saved by the i387 fsave is also defined.
29  * This is only normally written by pre Pentium II type cpus that don't
30  * support the fxsave instruction.
31  *
32  * Associated save instructions:
33  * FNSAVE:   Saves x87 state in 108 bytes (original i387 layout).
34  *           Then reinitializes the fpu.
35  * FSAVE:    Encodes to FWAIT followed by FNSAVE.
36  * FXSAVE:   Saves the x87 state and XMM (aka SSE) registers to the
37  *           first 448 (max) bytes of a 512 byte area.
38  *           This layout does not match that written by FNSAVE.
39  * XSAVE:    Uses the same layout for the x87 and XMM registers,
40  *           followed by a 64byte header and separate save areas
41  *           for additional extended cpu state.
42  *           The x87 state is always saved, the others conditionally.
43  * XSAVEOPT: As XSAVE but only writes the registers blocks that have been
44  *           modified.
45  */
46 
47 /*
48  * Layout for code/data pointers relating to FP exceptions. Marked 'packed'
49  * because they aren't always 64bit aligned. Since the x86 cpu supports
50  * misaligned accesses it isn't worth avoiding the 'packed' attribute.
51  */
52 union fp_addr {
53 	uint64_t fa_64;	/* Linear address for 64bit systems */
54 	struct {
55 		uint32_t fa_off;	/* linear address for 32 bit */
56 		uint16_t fa_seg;	/* code/data (etc) segment */
57 		uint16_t fa_opcode;	/* last opcode (sometimes) */
58 	} fa_32;
59 } __packed __aligned(4);
60 
61 /* The x87 registers are 80 bits */
62 struct fpacc87 {
63 	uint64_t f87_mantissa;	/* mantissa */
64 	uint16_t f87_exp_sign;	/* exponent and sign */
65 } __packed __aligned(2);
66 
67 /* The x87 registers padded out to 16 bytes for fxsave */
68 struct fpaccfx {
69 	struct fpacc87 r __aligned(16);
70 };
71 
72 /* The SSE/SSE2 registers are 128 bits */
73 struct xmmreg {
74 	uint8_t xmm_bytes[16];
75 };
76 
77 /* The AVX registers are 256 bits, but the low bits are the xmmregs */
78 struct ymmreg {
79 	uint8_t ymm_bytes[16];
80 };
81 
82 /*
83  * Floating point unit registers (fsave instruction).
84  * The s87_ac[] and fx_87_ac[] are relative to the stack top.
85  * The 'tag word' contains 2 bits per register and refers to absolute register
86  * numbers.
87  * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
88  * is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
89  * The fxsave 'Abridged tag word' in inverted.
90  */
91 struct save87 {
92 	uint16_t s87_cw __aligned(4);	/* control word */
93 	uint16_t s87_sw __aligned(4);	/* status word  */
94 	uint16_t s87_tw __aligned(4);	/* tag word */
95 	union fp_addr s87_ip;		/* floating point instruction pointer */
96 #define s87_opcode s87_ip.fa_32.fa_opcode	/* opcode last executed (11bits) */
97 	union fp_addr s87_dp;		/* floating operand offset */
98 	struct fpacc87 s87_ac[8];	/* accumulator contents */
99 };
100 __CTASSERT_NOLINT(sizeof(struct save87) == 108);
101 
102 /*
103  * FPU/MMX/SSE/SSE2 context
104  */
105 struct fxsave {
106 	uint16_t fx_cw;		/* FPU Control Word */
107 	uint16_t fx_sw;		/* FPU Status Word */
108 	uint8_t fx_tw;		/* FPU Tag Word (abridged) */
109 	uint16_t fx_opcode;	/* FPU Opcode */
110 	union fp_addr fx_ip;	/* FPU Instruction Pointer */
111 	union fp_addr fx_dp;	/* FPU Data pointer */
112 	uint32_t fx_mxcsr;	/* MXCSR Register State */
113 	uint32_t fx_mxcsr_mask;
114 	struct fpaccfx fx_87_ac[8];	/* 8 x87 registers */
115 	struct xmmreg fx_xmm[16];	/* XMM regs (8 in 32bit modes) */
116 	uint8_t fx_rsvd[48];
117 	uint8_t fx_kernel[48];	/* Not written by the hardware */
118 } __aligned(16);
119 __CTASSERT_NOLINT(sizeof(struct fxsave) == 512);
120 
121 /*
122  * The end of the fsave buffer can be used by the operating system
123  */
124 struct fxsave_os {
125 	uint8_t fxo_fxsave[512 - 48];
126 	/* 48 bytes available, NB copied to/from userspace */
127 	uint16_t fxo_dflt_cw;	/* Control word for signal handlers */
128 };
129 
130 /*
131  * For XSAVE, a 64byte header follows the fxsave data.
132  */
133 struct xsave_header {
134 	uint64_t xsh_fxsave[64];	/* to align in the union */
135 	uint64_t xsh_xstate_bv;		/* bitmap of saved sub structures */
136 	uint64_t xsh_rsrvd[2];		/* must be zero */
137 	uint64_t xsh_reserved[5];	/* best if zero */
138 };
139 __CTASSERT(sizeof(struct xsave_header) == 512 + 64);
140 
141 /*
142  * The ymm save area actually follows the xsave_header.
143  */
144 struct xsave_ymm {
145 	struct ymmreg xs_ymm[16];	/* High bits of YMM registers */
146 };
147 __CTASSERT(sizeof(struct xsave_ymm) == 256);
148 
149 /*
150  * The following union is placed at the end of the pcb.
151  * It is defined this way to separate the definitions and to
152  * minimise the number of union/struct selectors.
153  * NB: Some userspace stuff (eg firefox) uses it to parse ucontext.
154  */
155 union savefpu {
156 	struct save87		sv_87;
157 	struct fxsave		sv_xmm;
158 #ifdef _KERNEL
159 	struct fxsave_os	sv_os;
160 	struct xsave_header	sv_xsave_hdr;
161 #endif
162 };
163 
164 /*
165  * 80387 control and status word bits
166  *
167  * The only reference I can find to bits 0x40 and 0x80 in the control word
168  * is for the Weitek 1167/3167.
169  * I (dsl) can't find why the default word has 0x40 set.
170  *
171  * A stack error is signalled as an INVOP that also sets STACK_FAULT
172  * (other INVOP do not clear STACK_FAULT).
173  */
174 /* Interrupt masks (set masks interrupt) and status bits */
175 #define EN_SW_INVOP		0x0001  /* Invalid operation */
176 #define EN_SW_DENORM		0x0002  /* Denormalized operand */
177 #define EN_SW_ZERODIV		0x0004  /* Divide by zero */
178 #define EN_SW_OVERFLOW		0x0008  /* Overflow */
179 #define EN_SW_UNDERFLOW		0x0010  /* Underflow */
180 #define EN_SW_PRECLOSS		0x0020  /* Loss of precision */
181 /* Status word bits (reserved in control word) */
182 #define EN_SW_STACK_FAULT	0x0040	/* Stack under/overflow */
183 #define EN_SW_ERROR_SUMMARY	0x0080	/* Unmasked error has occurred */
184 /* Control bits (badly named) */
185 #define EN_SW_CTL_PREC		0x0300	/* Precision control */
186 #define EN_SW_PREC_24		0x0000	/* Single precision */
187 #define EN_SW_PREC_53		0x0200	/* Double precision */
188 #define EN_SW_PREC_64		0x0300	/* Extended precision */
189 #define EN_SW_CTL_ROUND		0x0c00	/* Rounding control */
190 #define EN_SW_ROUND_EVEN	0x0000	/* Round to nearest even */
191 #define EN_SW_ROUND_DOWN	0x0400	/* Round towards minus infinity */
192 #define EN_SW_ROUND_UP		0x0800	/* Round towards plus infinity */
193 #define EN_SW_ROUND_ZERO	0x0c00	/* Round towards zero (truncates) */
194 #define EN_SW_CTL_INF		0x1000	/* Infinity control, not used  */
195 
196 /*
197  * The standard 0x87 control word from finit is 0x37F, giving:
198  *	round to nearest
199  *	64-bit precision
200  *	all exceptions masked.
201  *
202  * NetBSD used to select:
203  *	round to nearest
204  *	53-bit precision
205  *	all exceptions masked.
206  * Stating: 64-bit precision often gives bad results with high level
207  * languages because it makes the results of calculations depend on whether
208  * intermediate values are stored in memory or in FPU registers.
209  * Also some 'pathological divisions' give an error in the LSB because
210  * the value is first rounded up when the 64bit mantissa is generated,
211  * and then again when it is truncated to 53 bits.
212  *
213  * However the C language explicitly allows the extra precision.
214  *
215  * The iBCS control word has underflow, overflow, zero divide, and invalid
216  * operation exceptions unmasked.  But that causes an unexpected exception
217  * in the test program 'paranoia' and makes denormals useless (DBL_MIN / 2
218  * underflows).  It doesn't make a lot of sense to trap underflow without
219  * trapping denormals.
220  */
221 #define	__INITIAL_NPXCW__	0x037f
222 /* Modern NetBSD uses the default control word.. */
223 #define	__NetBSD_NPXCW__	__INITIAL_NPXCW__
224 /* NetBSD before 6.99.26 forced IEEE double precision. */
225 #define	__NetBSD_COMPAT_NPXCW__	0x127f
226 /* FreeBSD leaves some exceptions unmasked as well. */
227 #define	__FreeBSD_NPXCW__	0x1272
228 /* iBCS2 goes a bit further and leaves the underflow exception unmasked. */
229 #define	__iBCS2_NPXCW__		0x0262
230 /* Linux just uses the default control word. */
231 #define	__Linux_NPXCW__		__INITIAL_NPXCW__
232 /* SVR4 uses the same control word as iBCS2. */
233 #define	__SVR4_NPXCW__		0x0262
234 
235 /*
236  * The default MXCSR value at reset is 0x1f80, IA-32 Instruction
237  * Set Reference, pg. 3-369.
238  *
239  * The low 6 bits of the mxcsr are the fp status bits (same order as x87).
240  * Bit 6 is 'denormals are zero' (speeds up calculations).
241  * Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
242  * Bits 13 and 14 are rounding control.
243  * Bit 15 is 'flush to zero' - affects underflow.
244  * Bits 16-31 must be zero.
245  */
246 #define	__INITIAL_MXCSR__	0x1f80
247 #define	__INITIAL_MXCSR_MASK__	0xffbf
248 
249 #endif /* _X86_CPU_EXTENDED_STATE_H_ */
250