xref: /netbsd-src/sys/arch/x86/acpi/acpi_cpu_md.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /* $NetBSD: acpi_cpu_md.c,v 1.72 2012/12/06 04:43:29 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.72 2012/12/06 04:43:29 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpufreq.h>
35 #include <sys/device.h>
36 #include <sys/kcore.h>
37 #include <sys/sysctl.h>
38 #include <sys/xcall.h>
39 
40 #include <x86/cpu.h>
41 #include <x86/cpufunc.h>
42 #include <x86/cputypes.h>
43 #include <x86/cpuvar.h>
44 #include <x86/cpu_msr.h>
45 #include <x86/machdep.h>
46 
47 #include <dev/acpi/acpica.h>
48 #include <dev/acpi/acpi_cpu.h>
49 
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52 
53 #include <machine/acpi_machdep.h>
54 
55 /*
56  * Intel IA32_MISC_ENABLE.
57  */
58 #define MSR_MISC_ENABLE_EST	__BIT(16)
59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
60 
61 /*
62  * AMD C1E.
63  */
64 #define MSR_CMPHALT		0xc0010055
65 
66 #define MSR_CMPHALT_SMI		__BIT(27)
67 #define MSR_CMPHALT_C1E		__BIT(28)
68 #define MSR_CMPHALT_BMSTS	__BIT(29)
69 
70 /*
71  * AMD families 10h, 11h, 12h, 14h, and 15h.
72  */
73 #define MSR_10H_LIMIT		0xc0010061
74 #define MSR_10H_CONTROL		0xc0010062
75 #define MSR_10H_STATUS		0xc0010063
76 #define MSR_10H_CONFIG		0xc0010064
77 
78 /*
79  * AMD family 0Fh.
80  */
81 #define MSR_0FH_CONTROL		0xc0010041
82 #define MSR_0FH_STATUS		0xc0010042
83 
84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
87 
88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
92 
93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
95 
96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
103 
104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
105 
106 static char	  native_idle_text[16];
107 void		(*native_idle)(void) = NULL;
108 
109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
112                                               uint32_t *);
113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
116 					        uint32_t, uint32_t);
117 static int	 acpicpu_md_pstate_sysctl_init(void);
118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
121 
122 extern struct acpicpu_softc **acpicpu_sc;
123 static struct sysctllog *acpicpu_log = NULL;
124 
125 struct cpu_info *
126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
127 {
128 	struct cpufeature_attach_args *cfaa = aux;
129 
130 	if (strcmp(cfaa->name, "frequency") != 0)
131 		return NULL;
132 
133 	return cfaa->ci;
134 }
135 
136 struct cpu_info *
137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
138 {
139 	struct cpufeature_attach_args *cfaa = aux;
140 
141 	return cfaa->ci;
142 }
143 
144 uint32_t
145 acpicpu_md_flags(void)
146 {
147 	struct cpu_info *ci = curcpu();
148 	struct pci_attach_args pa;
149 	uint32_t family, val = 0;
150 	uint32_t regs[4];
151 	uint64_t msr;
152 
153 	if (acpi_md_ncpus() == 1)
154 		val |= ACPICPU_FLAG_C_BM;
155 
156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
157 		val |= ACPICPU_FLAG_C_FFH;
158 
159 	/*
160 	 * By default, assume that the local APIC timer
161 	 * as well as TSC are stalled during C3 sleep.
162 	 */
163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
164 
165 	switch (cpu_vendor) {
166 
167 	case CPUVENDOR_IDT:
168 
169 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
170 			val |= ACPICPU_FLAG_P_FFH;
171 
172 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
173 			val |= ACPICPU_FLAG_T_FFH;
174 
175 		break;
176 
177 	case CPUVENDOR_INTEL:
178 
179 		/*
180 		 * Bus master control and arbitration should be
181 		 * available on all supported Intel CPUs (to be
182 		 * sure, this is double-checked later from the
183 		 * firmware data). These flags imply that it is
184 		 * not necessary to flush caches before C3 state.
185 		 */
186 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
187 
188 		/*
189 		 * Check if we can use "native", MSR-based,
190 		 * access. If not, we have to resort to I/O.
191 		 */
192 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
193 			val |= ACPICPU_FLAG_P_FFH;
194 
195 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
196 			val |= ACPICPU_FLAG_T_FFH;
197 
198 		/*
199 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
200 		 * Boost are available. Also see if we might have
201 		 * an invariant local APIC timer ("ARAT").
202 		 */
203 		if (cpuid_level >= 0x06) {
204 
205 			x86_cpuid(0x00000006, regs);
206 
207 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 				val |= ACPICPU_FLAG_P_HWF;
209 
210 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
211 				val |= ACPICPU_FLAG_P_TURBO;
212 
213 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
214 				val &= ~ACPICPU_FLAG_C_APIC;
215 		}
216 
217 		/*
218 		 * Detect whether TSC is invariant. If it is not,
219 		 * we keep the flag to note that TSC will not run
220 		 * at constant rate. Depending on the CPU, this may
221 		 * affect P- and T-state changes, but especially
222 		 * relevant are C-states; with variant TSC, states
223 		 * larger than C1 may completely stop the counter.
224 		 */
225 		x86_cpuid(0x80000000, regs);
226 
227 		if (regs[0] >= 0x80000007) {
228 
229 			x86_cpuid(0x80000007, regs);
230 
231 			if ((regs[3] & __BIT(8)) != 0)
232 				val &= ~ACPICPU_FLAG_C_TSC;
233 		}
234 
235 		break;
236 
237 	case CPUVENDOR_AMD:
238 
239 		x86_cpuid(0x80000000, regs);
240 
241 		if (regs[0] < 0x80000007)
242 			break;
243 
244 		x86_cpuid(0x80000007, regs);
245 
246 		family = CPUID2FAMILY(ci->ci_signature);
247 
248 		if (family == 0xf)
249 			family += CPUID2EXTFAMILY(ci->ci_signature);
250 
251     		switch (family) {
252 
253 		case 0x0f:
254 
255 			/*
256 			 * Disable C1E if present.
257 			 */
258 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
259 				val |= ACPICPU_FLAG_C_C1E;
260 
261 			/*
262 			 * Evaluate support for the "FID/VID
263 			 * algorithm" also used by powernow(4).
264 			 */
265 			if ((regs[3] & CPUID_APM_FID) == 0)
266 				break;
267 
268 			if ((regs[3] & CPUID_APM_VID) == 0)
269 				break;
270 
271 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
272 			break;
273 
274 		case 0x10:
275 		case 0x11:
276 
277 			/*
278 			 * Disable C1E if present.
279 			 */
280 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
281 				val |= ACPICPU_FLAG_C_C1E;
282 
283 			/* FALLTHROUGH */
284 
285 		case 0x12:
286 		case 0x14: /* AMD Fusion */
287 		case 0x15: /* AMD Bulldozer */
288 
289 			/*
290 			 * Like with Intel, detect invariant TSC,
291 			 * MSR-based P-states, and AMD's "turbo"
292 			 * (Core Performance Boost), respectively.
293 			 */
294 			if ((regs[3] & CPUID_APM_TSC) != 0)
295 				val &= ~ACPICPU_FLAG_C_TSC;
296 
297 			if ((regs[3] & CPUID_APM_HWP) != 0)
298 				val |= ACPICPU_FLAG_P_FFH;
299 
300 			if ((regs[3] & CPUID_APM_CPB) != 0)
301 				val |= ACPICPU_FLAG_P_TURBO;
302 
303 			/*
304 			 * Also check for APERF and MPERF,
305 			 * first available in the family 10h.
306 			 */
307 			if (cpuid_level >= 0x06) {
308 
309 				x86_cpuid(0x00000006, regs);
310 
311 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
312 					val |= ACPICPU_FLAG_P_HWF;
313 			}
314 
315 			break;
316 		}
317 
318 		break;
319 	}
320 
321 	/*
322 	 * There are several erratums for PIIX4.
323 	 */
324 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
325 		val |= ACPICPU_FLAG_PIIX4;
326 
327 	return val;
328 }
329 
330 static int
331 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
332 {
333 
334 	/*
335 	 * XXX: The pci_find_device(9) function only
336 	 *	deals with attached devices. Change this
337 	 *	to use something like pci_device_foreach().
338 	 */
339 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
340 		return 0;
341 
342 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
343 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
344 		return 1;
345 
346 	return 0;
347 }
348 
349 void
350 acpicpu_md_quirk_c1e(void)
351 {
352 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
353 	uint64_t val;
354 
355 	val = rdmsr(MSR_CMPHALT);
356 
357 	if ((val & c1e) != 0)
358 		wrmsr(MSR_CMPHALT, val & ~c1e);
359 }
360 
361 int
362 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
363 {
364 	const size_t size = sizeof(native_idle_text);
365 	struct acpicpu_cstate *cs;
366 	bool ipi = false;
367 	int i;
368 
369 	/*
370 	 * Save the cpu_idle(9) loop used by default.
371 	 */
372 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
373 
374 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
375 
376 		cs = &sc->sc_cstate[i];
377 
378 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
379 			ipi = true;
380 			break;
381 		}
382 	}
383 
384 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
385 
386 	return 0;
387 }
388 
389 int
390 acpicpu_md_cstate_stop(void)
391 {
392 	static char text[16];
393 	void (*func)(void);
394 	uint64_t xc;
395 	bool ipi;
396 
397 	x86_cpu_idle_get(&func, text, sizeof(text));
398 
399 	if (func == native_idle)
400 		return EALREADY;
401 
402 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
403 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
404 
405 	/*
406 	 * Run a cross-call to ensure that all CPUs are
407 	 * out from the ACPI idle-loop before detachment.
408 	 */
409 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
410 	xc_wait(xc);
411 
412 	return 0;
413 }
414 
415 /*
416  * Called with interrupts enabled.
417  */
418 void
419 acpicpu_md_cstate_enter(int method, int state)
420 {
421 	struct cpu_info *ci = curcpu();
422 
423 	KASSERT(ci->ci_ilevel == IPL_NONE);
424 
425 	switch (method) {
426 
427 	case ACPICPU_C_STATE_FFH:
428 
429 		x86_monitor(&ci->ci_want_resched, 0, 0);
430 
431 		if (__predict_false(ci->ci_want_resched != 0))
432 			return;
433 
434 		x86_mwait((state - 1) << 4, 0);
435 		break;
436 
437 	case ACPICPU_C_STATE_HALT:
438 
439 		x86_disable_intr();
440 
441 		if (__predict_false(ci->ci_want_resched != 0)) {
442 			x86_enable_intr();
443 			return;
444 		}
445 
446 		x86_stihlt();
447 		break;
448 	}
449 }
450 
451 int
452 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
453 {
454 	uint64_t xc, val;
455 
456 	switch (cpu_vendor) {
457 
458 	case CPUVENDOR_IDT:
459 	case CPUVENDOR_INTEL:
460 
461 		/*
462 		 * Make sure EST is enabled.
463 		 */
464 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
465 
466 			val = rdmsr(MSR_MISC_ENABLE);
467 
468 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
469 
470 				val |= MSR_MISC_ENABLE_EST;
471 				wrmsr(MSR_MISC_ENABLE, val);
472 				val = rdmsr(MSR_MISC_ENABLE);
473 
474 				if ((val & MSR_MISC_ENABLE_EST) == 0)
475 					return ENOTTY;
476 			}
477 		}
478 	}
479 
480 	/*
481 	 * Reset the APERF and MPERF counters.
482 	 */
483 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
484 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
485 		xc_wait(xc);
486 	}
487 
488 	return acpicpu_md_pstate_sysctl_init();
489 }
490 
491 int
492 acpicpu_md_pstate_stop(void)
493 {
494 
495 	if (acpicpu_log == NULL)
496 		return EALREADY;
497 
498 	sysctl_teardown(&acpicpu_log);
499 	acpicpu_log = NULL;
500 
501 	return 0;
502 }
503 
504 int
505 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
506 {
507 	struct cpu_info *ci = sc->sc_ci;
508 	struct acpicpu_pstate *ps, msr;
509 	uint32_t family, i = 0;
510 
511 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
512 
513 	switch (cpu_vendor) {
514 
515 	case CPUVENDOR_IDT:
516 	case CPUVENDOR_INTEL:
517 
518 		/*
519 		 * If the so-called Turbo Boost is present,
520 		 * the P0-state is always the "turbo state".
521 		 * It is shown as the P1 frequency + 1 MHz.
522 		 *
523 		 * For discussion, see:
524 		 *
525 		 *	Intel Corporation: Intel Turbo Boost Technology
526 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
527 		 *	Based Processors. White Paper, November 2008.
528 		 */
529 		if (sc->sc_pstate_count >= 2 &&
530 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
531 
532 			ps = &sc->sc_pstate[0];
533 
534 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
535 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
536 		}
537 
538 		msr.ps_control_addr = MSR_PERF_CTL;
539 		msr.ps_control_mask = __BITS(0, 15);
540 
541 		msr.ps_status_addr  = MSR_PERF_STATUS;
542 		msr.ps_status_mask  = __BITS(0, 15);
543 		break;
544 
545 	case CPUVENDOR_AMD:
546 
547 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
548 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
549 
550 		family = CPUID2FAMILY(ci->ci_signature);
551 
552 		if (family == 0xf)
553 			family += CPUID2EXTFAMILY(ci->ci_signature);
554 
555 		switch (family) {
556 
557 		case 0x0f:
558 			msr.ps_control_addr = MSR_0FH_CONTROL;
559 			msr.ps_status_addr  = MSR_0FH_STATUS;
560 			break;
561 
562 		case 0x10:
563 		case 0x11:
564 		case 0x12:
565 		case 0x14:
566 		case 0x15:
567 			msr.ps_control_addr = MSR_10H_CONTROL;
568 			msr.ps_control_mask = __BITS(0, 2);
569 
570 			msr.ps_status_addr  = MSR_10H_STATUS;
571 			msr.ps_status_mask  = __BITS(0, 2);
572 			break;
573 
574 		default:
575 			/*
576 			 * If we have an unknown AMD CPU, rely on XPSS.
577 			 */
578 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
579 				return EOPNOTSUPP;
580 		}
581 
582 		break;
583 
584 	default:
585 		return ENODEV;
586 	}
587 
588 	/*
589 	 * Fill the P-state structures with MSR addresses that are
590 	 * known to be correct. If we do not know the addresses,
591 	 * leave the values intact. If a vendor uses XPSS, we do
592 	 * not necessarily need to do anything to support new CPUs.
593 	 */
594 	while (i < sc->sc_pstate_count) {
595 
596 		ps = &sc->sc_pstate[i];
597 
598 		if (msr.ps_flags != 0)
599 			ps->ps_flags |= msr.ps_flags;
600 
601 		if (msr.ps_status_addr != 0)
602 			ps->ps_status_addr = msr.ps_status_addr;
603 
604 		if (msr.ps_status_mask != 0)
605 			ps->ps_status_mask = msr.ps_status_mask;
606 
607 		if (msr.ps_control_addr != 0)
608 			ps->ps_control_addr = msr.ps_control_addr;
609 
610 		if (msr.ps_control_mask != 0)
611 			ps->ps_control_mask = msr.ps_control_mask;
612 
613 		i++;
614 	}
615 
616 	return 0;
617 }
618 
619 /*
620  * Read the IA32_APERF and IA32_MPERF counters. The first
621  * increments at the rate of the fixed maximum frequency
622  * configured during the boot, whereas APERF counts at the
623  * rate of the actual frequency. Note that the MSRs must be
624  * read without delay, and that only the ratio between
625  * IA32_APERF and IA32_MPERF is architecturally defined.
626  *
627  * The function thus returns the percentage of the actual
628  * frequency in terms of the maximum frequency of the calling
629  * CPU since the last call. A value zero implies an error.
630  *
631  * For further details, refer to:
632  *
633  *	Intel Corporation: Intel 64 and IA-32 Architectures
634  *	Software Developer's Manual. Section 13.2, Volume 3A:
635  *	System Programming Guide, Part 1. July, 2008.
636  *
637  *	Advanced Micro Devices: BIOS and Kernel Developer's
638  *	Guide (BKDG) for AMD Family 10h Processors. Section
639  *	2.4.5, Revision 3.48, April 2010.
640  */
641 uint8_t
642 acpicpu_md_pstate_hwf(struct cpu_info *ci)
643 {
644 	struct acpicpu_softc *sc;
645 	uint64_t aperf, mperf;
646 	uint8_t rv = 0;
647 
648 	sc = acpicpu_sc[ci->ci_acpiid];
649 
650 	if (__predict_false(sc == NULL))
651 		return 0;
652 
653 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
654 		return 0;
655 
656 	aperf = sc->sc_pstate_aperf;
657 	mperf = sc->sc_pstate_mperf;
658 
659 	x86_disable_intr();
660 
661 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
662 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
663 
664 	x86_enable_intr();
665 
666 	aperf = sc->sc_pstate_aperf - aperf;
667 	mperf = sc->sc_pstate_mperf - mperf;
668 
669 	if (__predict_true(mperf != 0))
670 		rv = (aperf * 100) / mperf;
671 
672 	return rv;
673 }
674 
675 static void
676 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
677 {
678 	struct cpu_info *ci = curcpu();
679 	struct acpicpu_softc *sc;
680 
681 	sc = acpicpu_sc[ci->ci_acpiid];
682 
683 	if (__predict_false(sc == NULL))
684 		return;
685 
686 	x86_disable_intr();
687 
688 	wrmsr(MSR_APERF, 0);
689 	wrmsr(MSR_MPERF, 0);
690 
691 	x86_enable_intr();
692 
693 	sc->sc_pstate_aperf = 0;
694 	sc->sc_pstate_mperf = 0;
695 }
696 
697 int
698 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
699 {
700 	struct acpicpu_pstate *ps = NULL;
701 	uint64_t val;
702 	uint32_t i;
703 
704 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
705 		return acpicpu_md_pstate_fidvid_get(sc, freq);
706 
707 	/*
708 	 * Pick any P-state for the status address.
709 	 */
710 	for (i = 0; i < sc->sc_pstate_count; i++) {
711 
712 		ps = &sc->sc_pstate[i];
713 
714 		if (__predict_true(ps->ps_freq != 0))
715 			break;
716 	}
717 
718 	if (__predict_false(ps == NULL))
719 		return ENODEV;
720 
721 	if (__predict_false(ps->ps_status_addr == 0))
722 		return EINVAL;
723 
724 	val = rdmsr(ps->ps_status_addr);
725 
726 	if (__predict_true(ps->ps_status_mask != 0))
727 		val = val & ps->ps_status_mask;
728 
729 	/*
730 	 * Search for the value from known P-states.
731 	 */
732 	for (i = 0; i < sc->sc_pstate_count; i++) {
733 
734 		ps = &sc->sc_pstate[i];
735 
736 		if (__predict_false(ps->ps_freq == 0))
737 			continue;
738 
739 		if (val == ps->ps_status) {
740 			*freq = ps->ps_freq;
741 			return 0;
742 		}
743 	}
744 
745 	/*
746 	 * If the value was not found, try APERF/MPERF.
747 	 * The state is P0 if the return value is 100 %.
748 	 */
749 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
750 
751 		KASSERT(sc->sc_pstate_count > 0);
752 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
753 
754 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
755 			*freq = sc->sc_pstate[0].ps_freq;
756 			return 0;
757 		}
758 	}
759 
760 	return EIO;
761 }
762 
763 int
764 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
765 {
766 	uint64_t val = 0;
767 
768 	if (__predict_false(ps->ps_control_addr == 0))
769 		return EINVAL;
770 
771 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
772 		return acpicpu_md_pstate_fidvid_set(ps);
773 
774 	/*
775 	 * If the mask is set, do a read-modify-write.
776 	 */
777 	if (__predict_true(ps->ps_control_mask != 0)) {
778 		val = rdmsr(ps->ps_control_addr);
779 		val &= ~ps->ps_control_mask;
780 	}
781 
782 	val |= ps->ps_control;
783 
784 	wrmsr(ps->ps_control_addr, val);
785 	DELAY(ps->ps_latency);
786 
787 	return 0;
788 }
789 
790 static int
791 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
792 {
793 	struct acpicpu_pstate *ps;
794 	uint32_t fid, i, vid;
795 	uint32_t cfid, cvid;
796 	int rv;
797 
798 	/*
799 	 * AMD family 0Fh needs special treatment.
800 	 * While it wants to use ACPI, it does not
801 	 * comply with the ACPI specifications.
802 	 */
803 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
804 
805 	if (rv != 0)
806 		return rv;
807 
808 	for (i = 0; i < sc->sc_pstate_count; i++) {
809 
810 		ps = &sc->sc_pstate[i];
811 
812 		if (__predict_false(ps->ps_freq == 0))
813 			continue;
814 
815 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
816 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
817 
818 		if (cfid == fid && cvid == vid) {
819 			*freq = ps->ps_freq;
820 			return 0;
821 		}
822 	}
823 
824 	return EIO;
825 }
826 
827 static int
828 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
829 {
830 	const uint64_t ctrl = ps->ps_control;
831 	uint32_t cfid, cvid, fid, i, irt;
832 	uint32_t pll, vco_cfid, vco_fid;
833 	uint32_t val, vid, vst;
834 	int rv;
835 
836 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
837 
838 	if (rv != 0)
839 		return rv;
840 
841 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
842 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
843 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
844 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
845 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
846 
847 	vst = vst * 20;
848 	pll = pll * 1000 / 5;
849 	irt = 10 * __BIT(irt);
850 
851 	/*
852 	 * Phase 1.
853 	 */
854 	while (cvid > vid) {
855 
856 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
857 		val = (val > cvid) ? 0 : cvid - val;
858 
859 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
860 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
861 
862 		if (rv != 0)
863 			return rv;
864 	}
865 
866 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
867 
868 	for (; i > 0 && cvid > 0; --i) {
869 
870 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
871 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
872 
873 		if (rv != 0)
874 			return rv;
875 	}
876 
877 	/*
878 	 * Phase 2.
879 	 */
880 	if (cfid != fid) {
881 
882 		vco_fid  = FID_TO_VCO_FID(fid);
883 		vco_cfid = FID_TO_VCO_FID(cfid);
884 
885 		while (abs(vco_fid - vco_cfid) > 2) {
886 
887 			if (fid <= cfid)
888 				val = cfid - 2;
889 			else {
890 				val = (cfid > 6) ? cfid + 2 :
891 				    FID_TO_VCO_FID(cfid) + 2;
892 			}
893 
894 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
895 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
896 
897 			if (rv != 0)
898 				return rv;
899 
900 			vco_cfid = FID_TO_VCO_FID(cfid);
901 		}
902 
903 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
904 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
905 
906 		if (rv != 0)
907 			return rv;
908 	}
909 
910 	/*
911 	 * Phase 3.
912 	 */
913 	if (cvid != vid) {
914 
915 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
916 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
917 
918 		if (rv != 0)
919 			return rv;
920 	}
921 
922 	return 0;
923 }
924 
925 static int
926 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
927 {
928 	int i = ACPICPU_P_STATE_RETRY * 100;
929 	uint64_t val;
930 
931 	do {
932 		val = rdmsr(MSR_0FH_STATUS);
933 
934 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
935 
936 	if (i == 0)
937 		return EAGAIN;
938 
939 	if (cfid != NULL)
940 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
941 
942 	if (cvid != NULL)
943 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
944 
945 	return 0;
946 }
947 
948 static void
949 acpicpu_md_pstate_fidvid_write(uint32_t fid,
950     uint32_t vid, uint32_t cnt, uint32_t tmo)
951 {
952 	uint64_t val = 0;
953 
954 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
955 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
956 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
957 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
958 
959 	wrmsr(MSR_0FH_CONTROL, val);
960 	DELAY(tmo);
961 }
962 
963 int
964 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
965 {
966 	struct acpicpu_tstate *ts;
967 	uint64_t val;
968 	uint32_t i;
969 
970 	val = rdmsr(MSR_THERM_CONTROL);
971 
972 	for (i = 0; i < sc->sc_tstate_count; i++) {
973 
974 		ts = &sc->sc_tstate[i];
975 
976 		if (ts->ts_percent == 0)
977 			continue;
978 
979 		if (val == ts->ts_status) {
980 			*percent = ts->ts_percent;
981 			return 0;
982 		}
983 	}
984 
985 	return EIO;
986 }
987 
988 int
989 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
990 {
991 	uint64_t val;
992 	uint8_t i;
993 
994 	val = ts->ts_control;
995 	val = val & __BITS(1, 4);
996 
997 	wrmsr(MSR_THERM_CONTROL, val);
998 
999 	if (ts->ts_status == 0) {
1000 		DELAY(ts->ts_latency);
1001 		return 0;
1002 	}
1003 
1004 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1005 
1006 		val = rdmsr(MSR_THERM_CONTROL);
1007 
1008 		if (val == ts->ts_status)
1009 			return 0;
1010 
1011 		DELAY(ts->ts_latency);
1012 	}
1013 
1014 	return EAGAIN;
1015 }
1016 
1017 /*
1018  * A kludge for backwards compatibility.
1019  */
1020 static int
1021 acpicpu_md_pstate_sysctl_init(void)
1022 {
1023 	const struct sysctlnode	*fnode, *mnode, *rnode;
1024 	const char *str;
1025 	int rv;
1026 
1027 	switch (cpu_vendor) {
1028 
1029 	case CPUVENDOR_IDT:
1030 	case CPUVENDOR_INTEL:
1031 		str = "est";
1032 		break;
1033 
1034 	case CPUVENDOR_AMD:
1035 		str = "powernow";
1036 		break;
1037 
1038 	default:
1039 		return ENODEV;
1040 	}
1041 
1042 
1043 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1044 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1045 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1046 
1047 	if (rv != 0)
1048 		goto fail;
1049 
1050 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1051 	    0, CTLTYPE_NODE, str, NULL,
1052 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1053 
1054 	if (rv != 0)
1055 		goto fail;
1056 
1057 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1058 	    0, CTLTYPE_NODE, "frequency", NULL,
1059 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1060 
1061 	if (rv != 0)
1062 		goto fail;
1063 
1064 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1065 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1066 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1067 
1068 	if (rv != 0)
1069 		goto fail;
1070 
1071 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1072 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1073 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1074 
1075 	if (rv != 0)
1076 		goto fail;
1077 
1078 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1079 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1080 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1081 
1082 	if (rv != 0)
1083 		goto fail;
1084 
1085 	return 0;
1086 
1087 fail:
1088 	if (acpicpu_log != NULL) {
1089 		sysctl_teardown(&acpicpu_log);
1090 		acpicpu_log = NULL;
1091 	}
1092 
1093 	return rv;
1094 }
1095 
1096 static int
1097 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1098 {
1099 	struct sysctlnode node;
1100 	uint32_t freq;
1101 	int err;
1102 
1103 	freq = cpufreq_get(curcpu());
1104 
1105 	if (freq == 0)
1106 		return ENXIO;
1107 
1108 	node = *rnode;
1109 	node.sysctl_data = &freq;
1110 
1111 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
1112 
1113 	if (err != 0 || newp == NULL)
1114 		return err;
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1121 {
1122 	struct sysctlnode node;
1123 	uint32_t freq;
1124 	int err;
1125 
1126 	freq = cpufreq_get(curcpu());
1127 
1128 	if (freq == 0)
1129 		return ENXIO;
1130 
1131 	node = *rnode;
1132 	node.sysctl_data = &freq;
1133 
1134 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
1135 
1136 	if (err != 0 || newp == NULL)
1137 		return err;
1138 
1139 	cpufreq_set_all(freq);
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1146 {
1147 	struct cpu_info *ci = curcpu();
1148 	struct acpicpu_softc *sc;
1149 	struct sysctlnode node;
1150 	char buf[1024];
1151 	size_t len;
1152 	uint32_t i;
1153 	int err;
1154 
1155 	sc = acpicpu_sc[ci->ci_acpiid];
1156 
1157 	if (sc == NULL)
1158 		return ENXIO;
1159 
1160 	(void)memset(&buf, 0, sizeof(buf));
1161 
1162 	mutex_enter(&sc->sc_mtx);
1163 
1164 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1165 
1166 		if (sc->sc_pstate[i].ps_freq == 0)
1167 			continue;
1168 
1169 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1170 		    sc->sc_pstate[i].ps_freq,
1171 		    i < (sc->sc_pstate_count - 1) ? " " : "");
1172 	}
1173 
1174 	mutex_exit(&sc->sc_mtx);
1175 
1176 	node = *rnode;
1177 	node.sysctl_data = buf;
1178 
1179 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
1180 
1181 	if (err != 0 || newp == NULL)
1182 		return err;
1183 
1184 	return 0;
1185 }
1186 
1187