1 /* $NetBSD: zs.c,v 1.48 2022/05/26 14:30:11 tsutsui Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 Minoura Makoto 5 * Copyright (c) 1996 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Gordon W. Ross. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Zilog Z8530 Dual UART driver (machine-dependent part) 35 * 36 * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port; 37 * while channel B is dedicated to the mouse. 38 * Extra Z8530's can be installed for serial ports. This driver 39 * supports up to 5 chips including the built-in one. 40 */ 41 42 #include <sys/cdefs.h> 43 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.48 2022/05/26 14:30:11 tsutsui Exp $"); 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/conf.h> 48 #include <sys/device.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/kernel.h> 52 #include <sys/proc.h> 53 #include <sys/tty.h> 54 #include <sys/time.h> 55 #include <sys/syslog.h> 56 #include <sys/cpu.h> 57 #include <sys/bus.h> 58 #include <sys/intr.h> 59 60 #include <arch/x68k/dev/intiovar.h> 61 #include <machine/z8530var.h> 62 63 #include <dev/ic/z8530reg.h> 64 65 #include "ioconf.h" 66 #include "zsc.h" /* NZSC */ 67 #include "opt_zsc.h" 68 #ifndef ZSCN_SPEED 69 #define ZSCN_SPEED 9600 70 #endif 71 #include "zstty.h" 72 73 74 extern void Debugger(void); 75 76 /* 77 * Some warts needed by z8530tty.c - 78 * The default parity REALLY needs to be the same as the PROM uses, 79 * or you can not see messages done with printf during boot-up... 80 */ 81 int zs_def_cflag = (CREAD | CS8 | HUPCL); 82 int zscn_def_cflag = (CREAD | CS8 | HUPCL); 83 84 /* 85 * X68k provides a 5.0 MHz clock to the ZS chips. 86 */ 87 #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */ 88 89 90 /* Default physical addresses. */ 91 #define ZS_MAXDEV 5 92 static const bus_addr_t zs_physaddr[ZS_MAXDEV] = { 93 0x00e98000, 94 0x00eafc00, 95 0x00eafc10, 96 0x00eafc20, 97 0x00eafc30 98 }; 99 100 static uint8_t zs_init_reg[16] = { 101 0, /* 0: CMD (reset, etc.) */ 102 0, /* 1: No interrupts yet. */ 103 0x70, /* 2: XXX: IVECT */ 104 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 105 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 106 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 107 0, /* 6: TXSYNC/SYNCLO */ 108 0, /* 7: RXSYNC/SYNCHI */ 109 0, /* 8: alias for data port */ 110 ZSWR9_MASTER_IE, 111 ZSWR10_NRZ, /*10: Misc. TX/RX control bits */ 112 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 113 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 114 0, /*13: BAUDHI (default=9600) */ 115 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 116 ZSWR15_BREAK_IE, 117 }; 118 119 static volatile struct zschan *conschan = 0; 120 121 122 /**************************************************************** 123 * Autoconfig 124 ****************************************************************/ 125 126 /* Definition of the driver for autoconfig. */ 127 static int zs_match(device_t, cfdata_t, void *); 128 static void zs_attach(device_t, device_t, void *); 129 static int zs_print(void *, const char *name); 130 131 CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc), 132 zs_match, zs_attach, NULL, NULL); 133 134 static int zshard(void *); 135 static int zs_get_speed(struct zs_chanstate *); 136 137 138 /* 139 * Is the zs chip present? 140 */ 141 static int 142 zs_match(device_t parent, cfdata_t cf, void *aux) 143 { 144 struct intio_attach_args *ia = aux; 145 struct zsdevice *zsaddr = (void *)ia->ia_addr; 146 int i; 147 148 if (strcmp(ia->ia_name, "zsc") != 0) 149 return 0; 150 151 for (i = 0; i < ZS_MAXDEV; i++) 152 if (zsaddr == (void *)zs_physaddr[i]) /* XXX */ 153 break; 154 if (i == ZS_MAXDEV) { 155 /* not a recognized address */ 156 return 0; 157 } 158 159 ia->ia_size = 8; 160 if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY)) 161 return 0; 162 163 if (badaddr((void *)IIOV(zsaddr))) 164 return 0; 165 166 return (1); 167 } 168 169 /* 170 * Attach a found zs. 171 */ 172 static void 173 zs_attach(device_t parent, device_t self, void *aux) 174 { 175 struct zsc_softc *zsc = device_private(self); 176 struct intio_attach_args *ia = aux; 177 struct zsc_attach_args zsc_args; 178 volatile struct zschan *zc; 179 struct zs_chanstate *cs; 180 int r __diagused; 181 int s, channel; 182 183 zsc->zsc_dev = self; 184 aprint_normal("\n"); 185 186 zsc->zsc_addr = (void *)ia->ia_addr; 187 188 ia->ia_size = 8; 189 r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE); 190 #ifdef DIAGNOSTIC 191 if (r) 192 panic("zs: intio IO map corruption"); 193 #endif 194 195 /* 196 * Initialize software state for each channel. 197 */ 198 for (channel = 0; channel < 2; channel++) { 199 device_t child; 200 201 zsc_args.channel = channel; 202 zsc_args.hwflags = 0; 203 cs = &zsc->zsc_cs_store[channel]; 204 zsc->zsc_cs[channel] = cs; 205 206 zs_lock_init(cs); 207 cs->cs_channel = channel; 208 cs->cs_private = NULL; 209 cs->cs_ops = &zsops_null; 210 cs->cs_brg_clk = PCLK / 16; 211 212 if (channel == 0) 213 zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_a); 214 else 215 zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_b); 216 cs->cs_reg_csr = &zc->zc_csr; 217 cs->cs_reg_data = &zc->zc_data; 218 219 zs_init_reg[2] = ia->ia_intr; 220 memcpy(cs->cs_creg, zs_init_reg, 16); 221 memcpy(cs->cs_preg, zs_init_reg, 16); 222 223 if (zc == conschan) { 224 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE; 225 cs->cs_defspeed = zs_get_speed(cs); 226 cs->cs_defcflag = zscn_def_cflag; 227 } else { 228 cs->cs_defspeed = 9600; 229 cs->cs_defcflag = zs_def_cflag; 230 } 231 232 /* Make these correspond to cs_defcflag (-crtscts) */ 233 cs->cs_rr0_dcd = ZSRR0_DCD; 234 cs->cs_rr0_cts = 0; 235 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 236 cs->cs_wr5_rts = 0; 237 238 /* 239 * Clear the master interrupt enable. 240 * The INTENA is common to both channels, 241 * so just do it on the A channel. 242 */ 243 if (channel == 0) { 244 s = splzs(); 245 zs_write_reg(cs, 9, 0); 246 splx(s); 247 } 248 249 /* 250 * Look for a child driver for this channel. 251 * The child attach will setup the hardware. 252 */ 253 child = config_found(self, (void *)&zsc_args, zs_print, 254 CFARGS_NONE); 255 #if ZSTTY > 0 256 if (zc == conschan && 257 ((child && strcmp(device_xname(child), "zstty0")) || 258 child == NULL)) /* XXX */ 259 panic("%s: console device mismatch", __func__); 260 #endif 261 if (child == NULL) { 262 /* No sub-driver. Just reset it. */ 263 uint8_t reset = (channel == 0) ? 264 ZSWR9_A_RESET : ZSWR9_B_RESET; 265 s = splzs(); 266 zs_write_reg(cs, 9, reset); 267 splx(s); 268 } 269 } 270 271 /* 272 * Now safe to install interrupt handlers. 273 */ 274 if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc)) 275 panic("%s: interrupt vector busy", __func__); 276 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL, 277 (void (*)(void *))zsc_intr_soft, zsc); 278 /* XXX; evcnt_attach() ? */ 279 280 /* 281 * Set the master interrupt enable and interrupt vector. 282 * (common to both channels, do it on A) 283 */ 284 cs = zsc->zsc_cs[0]; 285 s = splzs(); 286 /* interrupt vector */ 287 zs_write_reg(cs, 2, ia->ia_intr); 288 /* master interrupt control (enable) */ 289 zs_write_reg(cs, 9, zs_init_reg[9]); 290 splx(s); 291 } 292 293 static int 294 zs_print(void *aux, const char *name) 295 { 296 struct zsc_attach_args *args = aux; 297 298 if (name != NULL) 299 aprint_normal("%s: ", name); 300 301 if (args->channel != -1) 302 aprint_normal(" channel %d", args->channel); 303 304 return UNCONF; 305 } 306 307 308 /* 309 * For x68k-port, we don't use autovectored interrupt. 310 * We do not need to look at all of the zs chips. 311 */ 312 static int 313 zshard(void *arg) 314 { 315 struct zsc_softc *zsc = arg; 316 int rval; 317 int s; 318 319 /* 320 * Actually, zs hardware ipl is 5. 321 * Here we disable all interrupts to shorten the zshard 322 * handling time. Otherwise, too many characters are 323 * dropped. 324 */ 325 s = splhigh(); 326 rval = zsc_intr_hard(zsc); 327 328 /* We are at splzs here, so no need to lock. */ 329 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) 330 softint_schedule(zsc->zsc_softintr_cookie); 331 splx(s); 332 333 return (rval); 334 } 335 336 /* 337 * Compute the current baud rate given a ZS channel. 338 */ 339 static int 340 zs_get_speed(struct zs_chanstate *cs) 341 { 342 int tconst; 343 344 tconst = zs_read_reg(cs, 12); 345 tconst |= zs_read_reg(cs, 13) << 8; 346 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 347 } 348 349 /* 350 * MD functions for setting the baud rate and control modes. 351 */ 352 int 353 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) 354 { 355 int tconst, real_bps; 356 357 if (bps == 0) 358 return (0); 359 360 #ifdef DIAGNOSTIC 361 if (cs->cs_brg_clk == 0) 362 panic("zs_set_speed"); 363 #endif 364 365 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 366 if (tconst < 0) 367 return (EINVAL); 368 369 /* Convert back to make sure we can do it. */ 370 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 371 372 #if 0 /* XXX */ 373 /* XXX - Allow some tolerance here? */ 374 if (real_bps != bps) 375 return (EINVAL); 376 #else 377 /* 378 * Since our PCLK has somewhat strange value, 379 * we have to allow tolerance here. 380 */ 381 if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst) 382 return (EINVAL); 383 #endif 384 385 cs->cs_preg[12] = tconst; 386 cs->cs_preg[13] = tconst >> 8; 387 388 /* Caller will stuff the pending registers. */ 389 return (0); 390 } 391 392 int 393 zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */) 394 { 395 int s; 396 397 /* 398 * Output hardware flow control on the chip is horrendous: 399 * if carrier detect drops, the receiver is disabled, and if 400 * CTS drops, the transmitter is stopped IN MID CHARACTER! 401 * Therefore, NEVER set the HFC bit, and instead use the 402 * status interrupt to detect CTS changes. 403 */ 404 s = splzs(); 405 cs->cs_rr0_pps = 0; 406 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 407 cs->cs_rr0_dcd = 0; 408 if ((cflag & MDMBUF) == 0) 409 cs->cs_rr0_pps = ZSRR0_DCD; 410 } else 411 cs->cs_rr0_dcd = ZSRR0_DCD; 412 if ((cflag & CRTSCTS) != 0) { 413 cs->cs_wr5_dtr = ZSWR5_DTR; 414 cs->cs_wr5_rts = ZSWR5_RTS; 415 cs->cs_rr0_cts = ZSRR0_CTS; 416 } else if ((cflag & MDMBUF) != 0) { 417 cs->cs_wr5_dtr = 0; 418 cs->cs_wr5_rts = ZSWR5_DTR; 419 cs->cs_rr0_cts = ZSRR0_DCD; 420 } else { 421 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 422 cs->cs_wr5_rts = 0; 423 cs->cs_rr0_cts = 0; 424 } 425 splx(s); 426 427 /* Caller will stuff the pending registers. */ 428 return (0); 429 } 430 431 432 /* 433 * Read or write the chip with suitable delays. 434 */ 435 436 uint8_t 437 zs_read_reg(struct zs_chanstate *cs, uint8_t reg) 438 { 439 uint8_t val; 440 441 *cs->cs_reg_csr = reg; 442 ZS_DELAY(); 443 val = *cs->cs_reg_csr; 444 ZS_DELAY(); 445 return val; 446 } 447 448 void 449 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) 450 { 451 *cs->cs_reg_csr = reg; 452 ZS_DELAY(); 453 *cs->cs_reg_csr = val; 454 ZS_DELAY(); 455 } 456 457 uint8_t 458 zs_read_csr(struct zs_chanstate *cs) 459 { 460 uint8_t val; 461 462 val = *cs->cs_reg_csr; 463 ZS_DELAY(); 464 return val; 465 } 466 467 void 468 zs_write_csr(struct zs_chanstate *cs, uint8_t val) 469 { 470 *cs->cs_reg_csr = val; 471 ZS_DELAY(); 472 } 473 474 uint8_t 475 zs_read_data(struct zs_chanstate *cs) 476 { 477 uint8_t val; 478 479 val = *cs->cs_reg_data; 480 ZS_DELAY(); 481 return val; 482 } 483 484 void 485 zs_write_data(struct zs_chanstate *cs, uint8_t val) 486 { 487 *cs->cs_reg_data = val; 488 ZS_DELAY(); 489 } 490 491 492 /**************************************************************** 493 * Console support functions (x68k specific!) 494 * Note: this code is allowed to know about the layout of 495 * the chip registers, and uses that to keep things simple. 496 * XXX - I think I like the mvme167 code better. -gwr 497 ****************************************************************/ 498 499 /* 500 * Handle user request to enter kernel debugger. 501 */ 502 void 503 zs_abort(struct zs_chanstate *cs) 504 { 505 int rr0; 506 507 /* Wait for end of break to avoid PROM abort. */ 508 /* XXX - Limit the wait? */ 509 do { 510 rr0 = *cs->cs_reg_csr; 511 ZS_DELAY(); 512 } while (rr0 & ZSRR0_BREAK); 513 514 #ifdef DDB 515 Debugger(); 516 #else 517 printf("BREAK!!\n"); 518 #endif 519 } 520 521 522 #if NZSTTY > 0 523 524 #include <dev/cons.h> 525 cons_decl(zs); 526 527 static int zs_getc(void); 528 static void zs_putc(int); 529 530 static struct zs_chanstate zscn_cs; 531 532 /* 533 * Polled input char. 534 */ 535 static int 536 zs_getc(void) 537 { 538 int s, c, rr0; 539 540 s = splzs(); 541 /* Wait for a character to arrive. */ 542 do { 543 rr0 = zs_read_csr(&zscn_cs); 544 } while ((rr0 & ZSRR0_RX_READY) == 0); 545 546 c = zs_read_data(&zscn_cs); 547 splx(s); 548 549 /* 550 * This is used by the kd driver to read scan codes, 551 * so don't translate '\r' ==> '\n' here... 552 */ 553 return (c); 554 } 555 556 /* 557 * Polled output char. 558 */ 559 static void 560 zs_putc(int c) 561 { 562 int s, rr0; 563 564 s = splzs(); 565 /* Wait for transmitter to become ready. */ 566 do { 567 rr0 = zs_read_csr(&zscn_cs); 568 } while ((rr0 & ZSRR0_TX_READY) == 0); 569 570 zs_write_data(&zscn_cs, c); 571 splx(s); 572 } 573 574 void 575 zscninit(struct consdev *cn) 576 { 577 volatile struct zschan *cnchan = (volatile void *)IIOV(ZSCN_PHYSADDR); 578 int s; 579 580 memset(&zscn_cs, 0, sizeof(struct zs_chanstate)); 581 zscn_cs.cs_reg_csr = &cnchan->zc_csr; 582 zscn_cs.cs_reg_data = &cnchan->zc_data; 583 zscn_cs.cs_channel = 0; 584 zscn_cs.cs_brg_clk = PCLK / 16; 585 memcpy(zscn_cs.cs_preg, zs_init_reg, 16); 586 zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */ 587 zscn_cs.cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS; 588 zs_set_speed(&zscn_cs, ZSCN_SPEED); 589 s = splzs(); 590 zs_write_reg(&zscn_cs, 9, 0); 591 zs_write_reg(&zscn_cs, 9, ZSWR9_HARD_RESET); 592 zs_loadchannelregs(&zscn_cs); 593 splx(s); 594 conschan = cnchan; 595 } 596 597 /* 598 * Polled console input putchar. 599 */ 600 int 601 zscngetc(dev_t dev) 602 { 603 return (zs_getc()); 604 } 605 606 /* 607 * Polled console output putchar. 608 */ 609 void 610 zscnputc(dev_t dev, int c) 611 { 612 zs_putc(c); 613 } 614 615 void 616 zscnprobe(struct consdev *cd) 617 { 618 int maj; 619 extern const struct cdevsw zstty_cdevsw; 620 621 /* locate the major number */ 622 maj = cdevsw_lookup_major(&zstty_cdevsw); 623 /* XXX: minor number is 0 */ 624 625 if (maj == -1) 626 cd->cn_pri = CN_DEAD; 627 else { 628 #ifdef ZSCONSOLE 629 cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */ 630 #else 631 cd->cn_pri = CN_NORMAL; 632 #endif 633 cd->cn_dev = makedev(maj, 0); 634 } 635 } 636 637 void 638 zscnpollc(dev_t dev, int on) 639 { 640 } 641 642 #endif 643