1 /* $NetBSD: zs.c,v 1.40 2008/12/31 09:50:21 isaki Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 Minoura Makoto 5 * Copyright (c) 1996 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Gordon W. Ross. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Zilog Z8530 Dual UART driver (machine-dependent part) 35 * 36 * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port; 37 * while channel B is dedicated to the mouse. 38 * Extra Z8530's can be installed for serial ports. This driver 39 * supports up to 5 chips including the built-in one. 40 */ 41 42 #include <sys/cdefs.h> 43 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.40 2008/12/31 09:50:21 isaki Exp $"); 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/conf.h> 48 #include <sys/device.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/kernel.h> 52 #include <sys/proc.h> 53 #include <sys/tty.h> 54 #include <sys/time.h> 55 #include <sys/syslog.h> 56 #include <sys/cpu.h> 57 #include <sys/bus.h> 58 #include <sys/intr.h> 59 60 #include <arch/x68k/dev/intiovar.h> 61 #include <machine/z8530var.h> 62 63 #include <dev/ic/z8530reg.h> 64 65 #include "ioconf.h" 66 #include "zsc.h" /* NZSC */ 67 #include "opt_zsc.h" 68 #ifndef ZSCN_SPEED 69 #define ZSCN_SPEED 9600 70 #endif 71 #include "zstty.h" 72 73 74 extern void Debugger(void); 75 76 /* 77 * Some warts needed by z8530tty.c - 78 * The default parity REALLY needs to be the same as the PROM uses, 79 * or you can not see messages done with printf during boot-up... 80 */ 81 int zs_def_cflag = (CREAD | CS8 | HUPCL); 82 int zscn_def_cflag = (CREAD | CS8 | HUPCL); 83 84 /* 85 * X68k provides a 5.0 MHz clock to the ZS chips. 86 */ 87 #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */ 88 89 90 /* Default physical addresses. */ 91 #define ZS_MAXDEV 5 92 static bus_addr_t zs_physaddr[ZS_MAXDEV] = { 93 0x00e98000, 94 0x00eafc00, 95 0x00eafc10, 96 0x00eafc20, 97 0x00eafc30 98 }; 99 100 static uint8_t zs_init_reg[16] = { 101 0, /* 0: CMD (reset, etc.) */ 102 0, /* 1: No interrupts yet. */ 103 0x70, /* 2: XXX: IVECT */ 104 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 105 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 106 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 107 0, /* 6: TXSYNC/SYNCLO */ 108 0, /* 7: RXSYNC/SYNCHI */ 109 0, /* 8: alias for data port */ 110 ZSWR9_MASTER_IE, 111 ZSWR10_NRZ, /*10: Misc. TX/RX control bits */ 112 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 113 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 114 0, /*13: BAUDHI (default=9600) */ 115 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 116 ZSWR15_BREAK_IE, 117 }; 118 119 static volatile struct zschan *conschan = 0; 120 121 122 /**************************************************************** 123 * Autoconfig 124 ****************************************************************/ 125 126 /* Definition of the driver for autoconfig. */ 127 static int zs_match(device_t, cfdata_t, void *); 128 static void zs_attach(device_t, device_t, void *); 129 static int zs_print(void *, const char *name); 130 131 CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc), 132 zs_match, zs_attach, NULL, NULL); 133 134 static int zshard(void *); 135 static int zs_get_speed(struct zs_chanstate *); 136 137 138 /* 139 * Is the zs chip present? 140 */ 141 static int 142 zs_match(device_t parent, cfdata_t cf, void *aux) 143 { 144 struct intio_attach_args *ia = aux; 145 struct zsdevice *zsaddr = (void *)ia->ia_addr; 146 int i; 147 148 if (strcmp(ia->ia_name, "zsc") != 0) 149 return 0; 150 151 for (i = 0; i < ZS_MAXDEV; i++) 152 if (zsaddr == (void *)zs_physaddr[i]) /* XXX */ 153 break; 154 155 ia->ia_size = 8; 156 if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY)) 157 return 0; 158 159 if (zsaddr != (void *)zs_physaddr[i]) 160 return 0; 161 if (badaddr((void *)IIOV(zsaddr))) 162 return 0; 163 164 return (1); 165 } 166 167 /* 168 * Attach a found zs. 169 */ 170 static void 171 zs_attach(device_t parent, device_t self, void *aux) 172 { 173 struct zsc_softc *zsc = device_private(self); 174 struct intio_attach_args *ia = aux; 175 struct zsc_attach_args zsc_args; 176 volatile struct zschan *zc; 177 struct zs_chanstate *cs; 178 int r, s, zs_unit, channel; 179 180 zsc->zsc_dev = self; 181 aprint_normal("\n"); 182 183 zs_unit = device_unit(self); 184 zsc->zsc_addr = (void *)ia->ia_addr; 185 186 ia->ia_size = 8; 187 r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE); 188 #ifdef DIAGNOSTIC 189 if (r) 190 panic("zs: intio IO map corruption"); 191 #endif 192 193 /* 194 * Initialize software state for each channel. 195 */ 196 for (channel = 0; channel < 2; channel++) { 197 device_t child; 198 199 zsc_args.channel = channel; 200 zsc_args.hwflags = 0; 201 cs = &zsc->zsc_cs_store[channel]; 202 zsc->zsc_cs[channel] = cs; 203 204 zs_lock_init(cs); 205 cs->cs_channel = channel; 206 cs->cs_private = NULL; 207 cs->cs_ops = &zsops_null; 208 cs->cs_brg_clk = PCLK / 16; 209 210 if (channel == 0) 211 zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_a); 212 else 213 zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_b); 214 cs->cs_reg_csr = &zc->zc_csr; 215 cs->cs_reg_data = &zc->zc_data; 216 217 zs_init_reg[2] = ia->ia_intr; 218 memcpy(cs->cs_creg, zs_init_reg, 16); 219 memcpy(cs->cs_preg, zs_init_reg, 16); 220 221 if (zc == conschan) { 222 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE; 223 cs->cs_defspeed = zs_get_speed(cs); 224 cs->cs_defcflag = zscn_def_cflag; 225 } else { 226 cs->cs_defspeed = 9600; 227 cs->cs_defcflag = zs_def_cflag; 228 } 229 230 /* Make these correspond to cs_defcflag (-crtscts) */ 231 cs->cs_rr0_dcd = ZSRR0_DCD; 232 cs->cs_rr0_cts = 0; 233 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 234 cs->cs_wr5_rts = 0; 235 236 /* 237 * Clear the master interrupt enable. 238 * The INTENA is common to both channels, 239 * so just do it on the A channel. 240 */ 241 if (channel == 0) { 242 s = splzs(); 243 zs_write_reg(cs, 9, 0); 244 splx(s); 245 } 246 247 /* 248 * Look for a child driver for this channel. 249 * The child attach will setup the hardware. 250 */ 251 child = config_found(self, (void *)&zsc_args, zs_print); 252 #if ZSTTY > 0 253 if (zc == conschan && 254 ((child && strcmp(device_xname(child), "zstty0")) || 255 child == NULL)) /* XXX */ 256 panic("%s: console device mismatch", __func__); 257 #endif 258 if (child == NULL) { 259 /* No sub-driver. Just reset it. */ 260 uint8_t reset = (channel == 0) ? 261 ZSWR9_A_RESET : ZSWR9_B_RESET; 262 s = splzs(); 263 zs_write_reg(cs, 9, reset); 264 splx(s); 265 } 266 } 267 268 /* 269 * Now safe to install interrupt handlers. 270 */ 271 if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc)) 272 panic("%s: interrupt vector busy", __func__); 273 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL, 274 (void (*)(void *))zsc_intr_soft, zsc); 275 /* XXX; evcnt_attach() ? */ 276 277 /* 278 * Set the master interrupt enable and interrupt vector. 279 * (common to both channels, do it on A) 280 */ 281 cs = zsc->zsc_cs[0]; 282 s = splzs(); 283 /* interrupt vector */ 284 zs_write_reg(cs, 2, ia->ia_intr); 285 /* master interrupt control (enable) */ 286 zs_write_reg(cs, 9, zs_init_reg[9]); 287 splx(s); 288 } 289 290 static int 291 zs_print(void *aux, const char *name) 292 { 293 struct zsc_attach_args *args = aux; 294 295 if (name != NULL) 296 aprint_normal("%s: ", name); 297 298 if (args->channel != -1) 299 aprint_normal(" channel %d", args->channel); 300 301 return UNCONF; 302 } 303 304 305 /* 306 * For x68k-port, we don't use autovectored interrupt. 307 * We do not need to look at all of the zs chips. 308 */ 309 static int 310 zshard(void *arg) 311 { 312 struct zsc_softc *zsc = arg; 313 int rval; 314 int s; 315 316 /* 317 * Actually, zs hardware ipl is 5. 318 * Here we disable all interrupts to shorten the zshard 319 * handling time. Otherwise, too many characters are 320 * dropped. 321 */ 322 s = splhigh(); 323 rval = zsc_intr_hard(zsc); 324 325 /* We are at splzs here, so no need to lock. */ 326 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) 327 softint_schedule(zsc->zsc_softintr_cookie); 328 329 return (rval); 330 } 331 332 /* 333 * Compute the current baud rate given a ZS channel. 334 */ 335 static int 336 zs_get_speed(struct zs_chanstate *cs) 337 { 338 int tconst; 339 340 tconst = zs_read_reg(cs, 12); 341 tconst |= zs_read_reg(cs, 13) << 8; 342 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 343 } 344 345 /* 346 * MD functions for setting the baud rate and control modes. 347 */ 348 int 349 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) 350 { 351 int tconst, real_bps; 352 353 if (bps == 0) 354 return (0); 355 356 #ifdef DIAGNOSTIC 357 if (cs->cs_brg_clk == 0) 358 panic("zs_set_speed"); 359 #endif 360 361 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 362 if (tconst < 0) 363 return (EINVAL); 364 365 /* Convert back to make sure we can do it. */ 366 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 367 368 #if 0 /* XXX */ 369 /* XXX - Allow some tolerance here? */ 370 if (real_bps != bps) 371 return (EINVAL); 372 #else 373 /* 374 * Since our PCLK has somewhat strange value, 375 * we have to allow tolerance here. 376 */ 377 if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst) 378 return (EINVAL); 379 #endif 380 381 cs->cs_preg[12] = tconst; 382 cs->cs_preg[13] = tconst >> 8; 383 384 /* Caller will stuff the pending registers. */ 385 return (0); 386 } 387 388 int 389 zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */) 390 { 391 int s; 392 393 /* 394 * Output hardware flow control on the chip is horrendous: 395 * if carrier detect drops, the receiver is disabled, and if 396 * CTS drops, the transmitter is stoped IN MID CHARACTER! 397 * Therefore, NEVER set the HFC bit, and instead use the 398 * status interrupt to detect CTS changes. 399 */ 400 s = splzs(); 401 cs->cs_rr0_pps = 0; 402 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 403 cs->cs_rr0_dcd = 0; 404 if ((cflag & MDMBUF) == 0) 405 cs->cs_rr0_pps = ZSRR0_DCD; 406 } else 407 cs->cs_rr0_dcd = ZSRR0_DCD; 408 if ((cflag & CRTSCTS) != 0) { 409 cs->cs_wr5_dtr = ZSWR5_DTR; 410 cs->cs_wr5_rts = ZSWR5_RTS; 411 cs->cs_rr0_cts = ZSRR0_CTS; 412 } else if ((cflag & MDMBUF) != 0) { 413 cs->cs_wr5_dtr = 0; 414 cs->cs_wr5_rts = ZSWR5_DTR; 415 cs->cs_rr0_cts = ZSRR0_DCD; 416 } else { 417 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 418 cs->cs_wr5_rts = 0; 419 cs->cs_rr0_cts = 0; 420 } 421 splx(s); 422 423 /* Caller will stuff the pending registers. */ 424 return (0); 425 } 426 427 428 /* 429 * Read or write the chip with suitable delays. 430 */ 431 432 uint8_t 433 zs_read_reg(struct zs_chanstate *cs, uint8_t reg) 434 { 435 uint8_t val; 436 437 *cs->cs_reg_csr = reg; 438 ZS_DELAY(); 439 val = *cs->cs_reg_csr; 440 ZS_DELAY(); 441 return val; 442 } 443 444 void 445 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) 446 { 447 *cs->cs_reg_csr = reg; 448 ZS_DELAY(); 449 *cs->cs_reg_csr = val; 450 ZS_DELAY(); 451 } 452 453 uint8_t 454 zs_read_csr(struct zs_chanstate *cs) 455 { 456 uint8_t val; 457 458 val = *cs->cs_reg_csr; 459 ZS_DELAY(); 460 return val; 461 } 462 463 void 464 zs_write_csr(struct zs_chanstate *cs, uint8_t val) 465 { 466 *cs->cs_reg_csr = val; 467 ZS_DELAY(); 468 } 469 470 uint8_t 471 zs_read_data(struct zs_chanstate *cs) 472 { 473 uint8_t val; 474 475 val = *cs->cs_reg_data; 476 ZS_DELAY(); 477 return val; 478 } 479 480 void 481 zs_write_data(struct zs_chanstate *cs, uint8_t val) 482 { 483 *cs->cs_reg_data = val; 484 ZS_DELAY(); 485 } 486 487 488 /**************************************************************** 489 * Console support functions (x68k specific!) 490 * Note: this code is allowed to know about the layout of 491 * the chip registers, and uses that to keep things simple. 492 * XXX - I think I like the mvme167 code better. -gwr 493 ****************************************************************/ 494 495 /* 496 * Handle user request to enter kernel debugger. 497 */ 498 void 499 zs_abort(struct zs_chanstate *cs) 500 { 501 int rr0; 502 503 /* Wait for end of break to avoid PROM abort. */ 504 /* XXX - Limit the wait? */ 505 do { 506 rr0 = *cs->cs_reg_csr; 507 ZS_DELAY(); 508 } while (rr0 & ZSRR0_BREAK); 509 510 #ifdef DDB 511 Debugger(); 512 #else 513 printf("BREAK!!\n"); 514 #endif 515 } 516 517 518 #if NZSTTY > 0 519 520 #include <dev/cons.h> 521 cons_decl(zs); 522 523 static int zs_getc(void); 524 static void zs_putc(int); 525 526 static struct zs_chanstate zscn_cs; 527 528 /* 529 * Polled input char. 530 */ 531 static int 532 zs_getc(void) 533 { 534 int s, c, rr0; 535 536 s = splzs(); 537 /* Wait for a character to arrive. */ 538 do { 539 rr0 = zs_read_csr(&zscn_cs); 540 } while ((rr0 & ZSRR0_RX_READY) == 0); 541 542 c = zs_read_data(&zscn_cs); 543 splx(s); 544 545 /* 546 * This is used by the kd driver to read scan codes, 547 * so don't translate '\r' ==> '\n' here... 548 */ 549 return (c); 550 } 551 552 /* 553 * Polled output char. 554 */ 555 static void 556 zs_putc(int c) 557 { 558 int s, rr0; 559 560 s = splzs(); 561 /* Wait for transmitter to become ready. */ 562 do { 563 rr0 = zs_read_csr(&zscn_cs); 564 } while ((rr0 & ZSRR0_TX_READY) == 0); 565 566 zs_write_data(&zscn_cs, c); 567 splx(s); 568 } 569 570 void 571 zscninit(struct consdev *cn) 572 { 573 volatile struct zschan *cnchan = (volatile void *)IIOV(ZSCN_PHYSADDR); 574 int s; 575 576 memset(&zscn_cs, 0, sizeof(struct zs_chanstate)); 577 zscn_cs.cs_reg_csr = &cnchan->zc_csr; 578 zscn_cs.cs_reg_data = &cnchan->zc_data; 579 zscn_cs.cs_channel = 0; 580 zscn_cs.cs_brg_clk = PCLK / 16; 581 memcpy(zscn_cs.cs_preg, zs_init_reg, 16); 582 zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */ 583 zscn_cs.cs_preg[9] = 0; 584 zs_set_speed(&zscn_cs, ZSCN_SPEED); 585 s = splzs(); 586 zs_loadchannelregs(&zscn_cs); 587 splx(s); 588 conschan = cnchan; 589 } 590 591 /* 592 * Polled console input putchar. 593 */ 594 int 595 zscngetc(dev_t dev) 596 { 597 return (zs_getc()); 598 } 599 600 /* 601 * Polled console output putchar. 602 */ 603 void 604 zscnputc(dev_t dev, int c) 605 { 606 zs_putc(c); 607 } 608 609 void 610 zscnprobe(struct consdev *cd) 611 { 612 int maj; 613 extern const struct cdevsw zstty_cdevsw; 614 615 /* locate the major number */ 616 maj = cdevsw_lookup_major(&zstty_cdevsw); 617 /* XXX: minor number is 0 */ 618 619 if (maj == -1) 620 cd->cn_pri = CN_DEAD; 621 else { 622 #ifdef ZSCONSOLE 623 cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */ 624 #else 625 cd->cn_pri = CN_NORMAL; 626 #endif 627 cd->cn_dev = makedev(maj, 0); 628 } 629 } 630 631 void 632 zscnpollc(dev_t dev, int on) 633 { 634 } 635 636 #endif 637