1 /* $NetBSD: zs.c,v 1.35 2007/12/03 15:34:25 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 Minoura Makoto 5 * Copyright (c) 1996 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Gordon W. Ross. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Zilog Z8530 Dual UART driver (machine-dependent part) 42 * 43 * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port; 44 * while channel B is dedicated to the mouse. 45 * Extra Z8530's can be installed for serial ports. This driver 46 * supports up to 5 chips including the built-in one. 47 */ 48 49 #include <sys/cdefs.h> 50 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.35 2007/12/03 15:34:25 ad Exp $"); 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/conf.h> 55 #include <sys/device.h> 56 #include <sys/file.h> 57 #include <sys/ioctl.h> 58 #include <sys/kernel.h> 59 #include <sys/proc.h> 60 #include <sys/tty.h> 61 #include <sys/time.h> 62 #include <sys/syslog.h> 63 #include <sys/cpu.h> 64 #include <sys/bus.h> 65 #include <sys/intr.h> 66 67 #include <arch/x68k/dev/intiovar.h> 68 #include <machine/z8530var.h> 69 70 #include <dev/ic/z8530reg.h> 71 72 #include "zsc.h" /* NZSC */ 73 #include "opt_zsc.h" 74 #ifndef ZSCN_SPEED 75 #define ZSCN_SPEED 9600 76 #endif 77 #include "zstty.h" 78 79 80 extern void Debugger(void); 81 82 /* 83 * Some warts needed by z8530tty.c - 84 * The default parity REALLY needs to be the same as the PROM uses, 85 * or you can not see messages done with printf during boot-up... 86 */ 87 int zs_def_cflag = (CREAD | CS8 | HUPCL); 88 int zscn_def_cflag = (CREAD | CS8 | HUPCL); 89 90 /* 91 * X68k provides a 5.0 MHz clock to the ZS chips. 92 */ 93 #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */ 94 95 96 /* Default physical addresses. */ 97 #define ZS_MAXDEV 5 98 static bus_addr_t zs_physaddr[ZS_MAXDEV] = { 99 0x00e98000, 100 0x00eafc00, 101 0x00eafc10, 102 0x00eafc20, 103 0x00eafc30 104 }; 105 106 static u_char zs_init_reg[16] = { 107 0, /* 0: CMD (reset, etc.) */ 108 0, /* 1: No interrupts yet. */ 109 0x70, /* 2: XXX: IVECT */ 110 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 111 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 112 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 113 0, /* 6: TXSYNC/SYNCLO */ 114 0, /* 7: RXSYNC/SYNCHI */ 115 0, /* 8: alias for data port */ 116 ZSWR9_MASTER_IE, 117 ZSWR10_NRZ, /*10: Misc. TX/RX control bits */ 118 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 119 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 120 0, /*13: BAUDHI (default=9600) */ 121 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 122 ZSWR15_BREAK_IE, 123 }; 124 125 static volatile struct zschan *conschan = 0; 126 127 128 /**************************************************************** 129 * Autoconfig 130 ****************************************************************/ 131 132 /* Definition of the driver for autoconfig. */ 133 static int zs_match(struct device *, struct cfdata *, void *); 134 static void zs_attach(struct device *, struct device *, void *); 135 static int zs_print(void *, const char *name); 136 137 CFATTACH_DECL(zsc, sizeof(struct zsc_softc), 138 zs_match, zs_attach, NULL, NULL); 139 140 extern struct cfdriver zsc_cd; 141 142 static int zshard(void *); 143 static int zs_get_speed(struct zs_chanstate *); 144 145 146 /* 147 * Is the zs chip present? 148 */ 149 static int 150 zs_match(struct device *parent, struct cfdata *cf, void *aux) 151 { 152 struct intio_attach_args *ia = aux; 153 struct zsdevice *zsaddr = (void *)ia->ia_addr; 154 int i; 155 156 if (strcmp(ia->ia_name, "zsc") != 0) 157 return 0; 158 159 for (i = 0; i < ZS_MAXDEV; i++) 160 if (zsaddr == (void *)zs_physaddr[i]) /* XXX */ 161 break; 162 163 ia->ia_size = 8; 164 if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY)) 165 return 0; 166 167 if (zsaddr != (void *)zs_physaddr[i]) 168 return 0; 169 if (badaddr(INTIO_ADDR(zsaddr))) 170 return 0; 171 172 return (1); 173 } 174 175 /* 176 * Attach a found zs. 177 */ 178 static void 179 zs_attach(struct device *parent, struct device *self, void *aux) 180 { 181 struct zsc_softc *zsc = (void *)self; 182 struct intio_attach_args *ia = aux; 183 struct zsc_attach_args zsc_args; 184 volatile struct zschan *zc; 185 struct zs_chanstate *cs; 186 int r, s, zs_unit, channel; 187 188 zs_unit = device_unit(&zsc->zsc_dev); 189 zsc->zsc_addr = (void *)ia->ia_addr; 190 191 ia->ia_size = 8; 192 r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE); 193 #ifdef DIAGNOSTIC 194 if (r) 195 panic("zs: intio IO map corruption"); 196 #endif 197 198 printf("\n"); 199 200 /* 201 * Initialize software state for each channel. 202 */ 203 for (channel = 0; channel < 2; channel++) { 204 struct device *child; 205 206 zsc_args.channel = channel; 207 zsc_args.hwflags = 0; 208 cs = &zsc->zsc_cs_store[channel]; 209 zsc->zsc_cs[channel] = cs; 210 211 zs_lock_init(cs); 212 cs->cs_channel = channel; 213 cs->cs_private = NULL; 214 cs->cs_ops = &zsops_null; 215 cs->cs_brg_clk = PCLK / 16; 216 217 if (channel == 0) 218 zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_a); 219 else 220 zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_b); 221 cs->cs_reg_csr = &zc->zc_csr; 222 cs->cs_reg_data = &zc->zc_data; 223 224 zs_init_reg[2] = ia->ia_intr; 225 memcpy(cs->cs_creg, zs_init_reg, 16); 226 memcpy(cs->cs_preg, zs_init_reg, 16); 227 228 if (zc == conschan) { 229 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE; 230 cs->cs_defspeed = zs_get_speed(cs); 231 cs->cs_defcflag = zscn_def_cflag; 232 } else { 233 cs->cs_defspeed = 9600; 234 cs->cs_defcflag = zs_def_cflag; 235 } 236 237 /* Make these correspond to cs_defcflag (-crtscts) */ 238 cs->cs_rr0_dcd = ZSRR0_DCD; 239 cs->cs_rr0_cts = 0; 240 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 241 cs->cs_wr5_rts = 0; 242 243 /* 244 * Clear the master interrupt enable. 245 * The INTENA is common to both channels, 246 * so just do it on the A channel. 247 */ 248 if (channel == 0) { 249 s = splzs(); 250 zs_write_reg(cs, 9, 0); 251 splx(s); 252 } 253 254 /* 255 * Look for a child driver for this channel. 256 * The child attach will setup the hardware. 257 */ 258 child = config_found(self, (void *)&zsc_args, zs_print); 259 #if ZSTTY > 0 260 if (zc == conschan && 261 ((child && strcmp(child->dv_xname, "zstty0")) || 262 child == NULL)) /* XXX */ 263 panic("zs_attach: console device mismatch"); 264 #endif 265 if (child == NULL) { 266 /* No sub-driver. Just reset it. */ 267 u_char reset = (channel == 0) ? 268 ZSWR9_A_RESET : ZSWR9_B_RESET; 269 s = splzs(); 270 zs_write_reg(cs, 9, reset); 271 splx(s); 272 } 273 } 274 275 /* 276 * Now safe to install interrupt handlers. 277 */ 278 if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc)) 279 panic("zs_attach: interrupt vector busy"); 280 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL, 281 (void (*)(void *))zsc_intr_soft, zsc); 282 /* XXX; evcnt_attach() ? */ 283 284 /* 285 * Set the master interrupt enable and interrupt vector. 286 * (common to both channels, do it on A) 287 */ 288 cs = zsc->zsc_cs[0]; 289 s = splzs(); 290 /* interrupt vector */ 291 zs_write_reg(cs, 2, ia->ia_intr); 292 /* master interrupt control (enable) */ 293 zs_write_reg(cs, 9, zs_init_reg[9]); 294 splx(s); 295 } 296 297 static int 298 zs_print(void *aux, const char *name) 299 { 300 struct zsc_attach_args *args = aux; 301 302 if (name != NULL) 303 aprint_normal("%s: ", name); 304 305 if (args->channel != -1) 306 aprint_normal(" channel %d", args->channel); 307 308 return UNCONF; 309 } 310 311 312 /* 313 * For x68k-port, we don't use autovectored interrupt. 314 * We do not need to look at all of the zs chips. 315 */ 316 static int 317 zshard(void *arg) 318 { 319 struct zsc_softc *zsc = arg; 320 int rval; 321 int s; 322 323 /* 324 * Actually, zs hardware ipl is 5. 325 * Here we disable all interrupts to shorten the zshard 326 * handling time. Otherwise, too many characters are 327 * dropped. 328 */ 329 s = splhigh(); 330 rval = zsc_intr_hard(zsc); 331 332 /* We are at splzs here, so no need to lock. */ 333 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) 334 softint_schedule(zsc->zsc_softintr_cookie); 335 336 return (rval); 337 } 338 339 /* 340 * Compute the current baud rate given a ZS channel. 341 */ 342 static int 343 zs_get_speed(struct zs_chanstate *cs) 344 { 345 int tconst; 346 347 tconst = zs_read_reg(cs, 12); 348 tconst |= zs_read_reg(cs, 13) << 8; 349 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 350 } 351 352 /* 353 * MD functions for setting the baud rate and control modes. 354 */ 355 int 356 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) 357 { 358 int tconst, real_bps; 359 360 if (bps == 0) 361 return (0); 362 363 #ifdef DIAGNOSTIC 364 if (cs->cs_brg_clk == 0) 365 panic("zs_set_speed"); 366 #endif 367 368 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 369 if (tconst < 0) 370 return (EINVAL); 371 372 /* Convert back to make sure we can do it. */ 373 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 374 375 #if 0 /* XXX */ 376 /* XXX - Allow some tolerance here? */ 377 if (real_bps != bps) 378 return (EINVAL); 379 #else 380 /* 381 * Since our PCLK has somewhat strange value, 382 * we have to allow tolerance here. 383 */ 384 if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst) 385 return (EINVAL); 386 #endif 387 388 cs->cs_preg[12] = tconst; 389 cs->cs_preg[13] = tconst >> 8; 390 391 /* Caller will stuff the pending registers. */ 392 return (0); 393 } 394 395 int 396 zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */) 397 { 398 int s; 399 400 /* 401 * Output hardware flow control on the chip is horrendous: 402 * if carrier detect drops, the receiver is disabled, and if 403 * CTS drops, the transmitter is stoped IN MID CHARACTER! 404 * Therefore, NEVER set the HFC bit, and instead use the 405 * status interrupt to detect CTS changes. 406 */ 407 s = splzs(); 408 cs->cs_rr0_pps = 0; 409 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 410 cs->cs_rr0_dcd = 0; 411 if ((cflag & MDMBUF) == 0) 412 cs->cs_rr0_pps = ZSRR0_DCD; 413 } else 414 cs->cs_rr0_dcd = ZSRR0_DCD; 415 if ((cflag & CRTSCTS) != 0) { 416 cs->cs_wr5_dtr = ZSWR5_DTR; 417 cs->cs_wr5_rts = ZSWR5_RTS; 418 cs->cs_rr0_cts = ZSRR0_CTS; 419 } else if ((cflag & MDMBUF) != 0) { 420 cs->cs_wr5_dtr = 0; 421 cs->cs_wr5_rts = ZSWR5_DTR; 422 cs->cs_rr0_cts = ZSRR0_DCD; 423 } else { 424 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 425 cs->cs_wr5_rts = 0; 426 cs->cs_rr0_cts = 0; 427 } 428 splx(s); 429 430 /* Caller will stuff the pending registers. */ 431 return (0); 432 } 433 434 435 /* 436 * Read or write the chip with suitable delays. 437 */ 438 439 u_char 440 zs_read_reg(struct zs_chanstate *cs, u_char reg) 441 { 442 u_char val; 443 444 *cs->cs_reg_csr = reg; 445 ZS_DELAY(); 446 val = *cs->cs_reg_csr; 447 ZS_DELAY(); 448 return val; 449 } 450 451 void 452 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val) 453 { 454 *cs->cs_reg_csr = reg; 455 ZS_DELAY(); 456 *cs->cs_reg_csr = val; 457 ZS_DELAY(); 458 } 459 460 u_char 461 zs_read_csr(struct zs_chanstate *cs) 462 { 463 u_char val; 464 465 val = *cs->cs_reg_csr; 466 ZS_DELAY(); 467 return val; 468 } 469 470 void 471 zs_write_csr(struct zs_chanstate *cs, u_char val) 472 { 473 *cs->cs_reg_csr = val; 474 ZS_DELAY(); 475 } 476 477 u_char 478 zs_read_data(struct zs_chanstate *cs) 479 { 480 u_char val; 481 482 val = *cs->cs_reg_data; 483 ZS_DELAY(); 484 return val; 485 } 486 487 void 488 zs_write_data(struct zs_chanstate *cs, u_char val) 489 { 490 *cs->cs_reg_data = val; 491 ZS_DELAY(); 492 } 493 494 495 static struct zs_chanstate zscn_cs; 496 497 /**************************************************************** 498 * Console support functions (x68k specific!) 499 * Note: this code is allowed to know about the layout of 500 * the chip registers, and uses that to keep things simple. 501 * XXX - I think I like the mvme167 code better. -gwr 502 ****************************************************************/ 503 504 /* 505 * Handle user request to enter kernel debugger. 506 */ 507 void 508 zs_abort(struct zs_chanstate *cs) 509 { 510 int rr0; 511 512 /* Wait for end of break to avoid PROM abort. */ 513 /* XXX - Limit the wait? */ 514 do { 515 rr0 = *cs->cs_reg_csr; 516 ZS_DELAY(); 517 } while (rr0 & ZSRR0_BREAK); 518 519 #ifdef DDB 520 Debugger(); 521 #else 522 printf("BREAK!!\n"); 523 #endif 524 } 525 526 527 #if NZSTTY > 0 528 529 #include <dev/cons.h> 530 cons_decl(zs); 531 532 static int zs_getc(void); 533 static void zs_putc(int); 534 535 /* 536 * Polled input char. 537 */ 538 static int 539 zs_getc(void) 540 { 541 int s, c, rr0; 542 543 s = splzs(); 544 /* Wait for a character to arrive. */ 545 do { 546 rr0 = zs_read_csr(&zscn_cs); 547 } while ((rr0 & ZSRR0_RX_READY) == 0); 548 549 c = zs_read_data(&zscn_cs); 550 splx(s); 551 552 /* 553 * This is used by the kd driver to read scan codes, 554 * so don't translate '\r' ==> '\n' here... 555 */ 556 return (c); 557 } 558 559 /* 560 * Polled output char. 561 */ 562 static void 563 zs_putc(int c) 564 { 565 int s, rr0; 566 567 s = splzs(); 568 /* Wait for transmitter to become ready. */ 569 do { 570 rr0 = zs_read_csr(&zscn_cs); 571 } while ((rr0 & ZSRR0_TX_READY) == 0); 572 573 zs_write_data(&zscn_cs, c); 574 splx(s); 575 } 576 577 void 578 zscninit(struct consdev *cn) 579 { 580 volatile struct zschan *cnchan = (volatile void *)INTIO_ADDR(ZSCN_PHYSADDR); 581 int s; 582 583 memset(&zscn_cs, 0, sizeof(struct zs_chanstate)); 584 zscn_cs.cs_reg_csr = &cnchan->zc_csr; 585 zscn_cs.cs_reg_data = &cnchan->zc_data; 586 zscn_cs.cs_channel = 0; 587 zscn_cs.cs_brg_clk = PCLK / 16; 588 memcpy(zscn_cs.cs_preg, zs_init_reg, 16); 589 zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */ 590 zscn_cs.cs_preg[9] = 0; 591 zs_set_speed(&zscn_cs, ZSCN_SPEED); 592 s = splzs(); 593 zs_loadchannelregs(&zscn_cs); 594 splx(s); 595 conschan = cnchan; 596 } 597 598 /* 599 * Polled console input putchar. 600 */ 601 int 602 zscngetc(dev_t dev) 603 { 604 return (zs_getc()); 605 } 606 607 /* 608 * Polled console output putchar. 609 */ 610 void 611 zscnputc(dev_t dev, int c) 612 { 613 zs_putc(c); 614 } 615 616 void 617 zscnprobe(struct consdev *cd) 618 { 619 int maj; 620 extern const struct cdevsw zstty_cdevsw; 621 622 /* locate the major number */ 623 maj = cdevsw_lookup_major(&zstty_cdevsw); 624 /* XXX: minor number is 0 */ 625 626 if (maj == -1) 627 cd->cn_pri = CN_DEAD; 628 else { 629 #ifdef ZSCONSOLE 630 cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */ 631 #else 632 cd->cn_pri = CN_NORMAL; 633 #endif 634 cd->cn_dev = makedev(maj, 0); 635 } 636 } 637 638 void 639 zscnpollc(dev_t dev, int on) 640 { 641 } 642 643 #endif 644