1 /* $NetBSD: hdc9224.c,v 1.51 2010/12/14 23:31:16 matt Exp $ */ 2 /* 3 * Copyright (c) 1996 Ludd, University of Lule}, Sweden. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Ludd by Bertram Barth. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed at Ludd, University of 19 * Lule}, Sweden and its contributors. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * with much help from (in alphabetical order): 37 * Jeremy 38 * Roger Ivie 39 * Rick Macklem 40 * Mike Young 41 * 42 * Rewritten by Ragge 25 Jun 2000. New features: 43 * - Uses interrupts instead of polling to signal ready. 44 * - Can cooperate with the SCSI routines WRT. the DMA area. 45 * 46 * TODO: 47 * - Floppy support missing. 48 * - Bad block forwarding missing. 49 * - Statistics collection. 50 */ 51 #undef RDDEBUG 52 53 #include <sys/cdefs.h> 54 __KERNEL_RCSID(0, "$NetBSD: hdc9224.c,v 1.51 2010/12/14 23:31:16 matt Exp $"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/buf.h> 59 #include <sys/bufq.h> 60 #include <sys/cpu.h> 61 #include <sys/conf.h> 62 #include <sys/device.h> 63 #include <sys/disklabel.h> 64 #include <sys/disk.h> 65 #include <sys/file.h> 66 #include <sys/ioctl.h> 67 #include <sys/proc.h> 68 #include <sys/stat.h> 69 #include <sys/syslog.h> 70 71 #include <uvm/uvm_extern.h> 72 73 #include <ufs/ufs/dinode.h> /* For BBSIZE */ 74 #include <ufs/ffs/fs.h> 75 76 #include <machine/sid.h> 77 #include <machine/ka410.h> 78 #include <machine/vsbus.h> 79 #include <machine/rpb.h> 80 #include <machine/scb.h> 81 82 #include <dev/mscp/mscp.h> /* For DEC disk encoding */ 83 84 #include <vax/vsa/hdc9224.h> 85 86 #include "ioconf.h" 87 #include "locators.h" 88 89 90 /* 91 * on-disk geometry block 92 */ 93 #define _aP __attribute__ ((packed)) /* force byte-alignment */ 94 struct rdgeom { 95 char mbz[10]; /* 10 bytes of zero */ 96 long xbn_count _aP; /* number of XBNs */ 97 long dbn_count _aP; /* number of DBNs */ 98 long lbn_count _aP; /* number of LBNs (Logical-Block-Numbers) */ 99 long rbn_count _aP; /* number of RBNs (Replacement-Block-Numbers) */ 100 short nspt; /* number of sectors per track */ 101 short ntracks; /* number of tracks */ 102 short ncylinders; /* number of cylinders */ 103 short precomp; /* first cylinder for write precompensation */ 104 short reduced; /* first cylinder for reduced write current */ 105 short seek_rate; /* seek rate or zero for buffered seeks */ 106 short crc_eec; /* 0 if CRC, 1 if ECC is being used */ 107 short rct; /* "replacement control table" (RCT) */ 108 short rct_ncopies; /* number of copies of the RCT */ 109 long media_id _aP; /* media identifier */ 110 short interleave; /* sector-to-sector interleave */ 111 short headskew; /* head-to-head skew */ 112 short cylskew; /* cylinder-to-cylinder skew */ 113 short gap0_size; /* size of GAP 0 in the MFM format */ 114 short gap1_size; /* size of GAP 1 in the MFM format */ 115 short gap2_size; /* size of GAP 2 in the MFM format */ 116 short gap3_size; /* size of GAP 3 in the MFM format */ 117 short sync_value; /* sync value used when formatting */ 118 char reserved[32]; /* reserved for use by the RQDX formatter */ 119 short serial_number; /* serial number */ 120 #if 0 /* we don't need these 412 useless bytes ... */ 121 char fill[412-2]; /* Filler bytes to the end of the block */ 122 short checksum; /* checksum over the XBN */ 123 #endif 124 }; 125 126 /* 127 * Software status 128 */ 129 struct rdsoftc { 130 device_t sc_dev; /* must be here! (pseudo-OOP:) */ 131 struct hdcsoftc *sc_hdc; 132 struct disk sc_disk; /* disklabel etc. */ 133 struct rdgeom sc_xbn; /* on-disk geometry information */ 134 int sc_drive; /* physical unit number */ 135 }; 136 137 struct hdcsoftc { 138 device_t sc_dev; /* must be here (pseudo-OOP:) */ 139 struct evcnt sc_intrcnt; 140 struct vsbus_dma sc_vd; 141 vaddr_t sc_regs; /* register addresses */ 142 struct bufq_state *sc_q; 143 struct buf *sc_active; 144 struct hdc9224_UDCreg sc_creg; /* (command) registers to be written */ 145 struct hdc9224_UDCreg sc_sreg; /* (status) registers being read */ 146 void * sc_dmabase; /* */ 147 int sc_dmasize; 148 void *sc_bufaddr; /* Current in-core address */ 149 int sc_diskblk; /* Current block on disk */ 150 int sc_bytecnt; /* How much left to transfer */ 151 int sc_xfer; /* Current transfer size */ 152 int sc_retries; 153 volatile u_char sc_status; /* last status from interrupt */ 154 char sc_intbit; 155 }; 156 157 struct hdc_attach_args { 158 int ha_drive; 159 }; 160 161 /* 162 * prototypes for (almost) all the internal routines 163 */ 164 static int hdcmatch(device_t, cfdata_t, void *); 165 static void hdcattach(device_t, device_t, void *); 166 static int hdcprint(void *, const char *); 167 static int rdmatch(device_t, cfdata_t, void *); 168 static void rdattach(device_t, device_t, void *); 169 static void hdcintr(void *); 170 static int hdc_command(struct hdcsoftc *, int); 171 static void rd_readgeom(struct hdcsoftc *, struct rdsoftc *); 172 #ifdef RDDEBUG 173 static void hdc_printgeom( struct rdgeom *); 174 #endif 175 static void hdc_writeregs(struct hdcsoftc *); 176 static void hdcstart(struct hdcsoftc *, struct buf *); 177 static int hdc_rdselect(struct hdcsoftc *, int); 178 static void rdmakelabel(struct disklabel *, struct rdgeom *); 179 static void hdc_writeregs(struct hdcsoftc *); 180 static void hdc_readregs(struct hdcsoftc *); 181 static void hdc_qstart(void *); 182 183 CFATTACH_DECL_NEW(hdc, sizeof(struct hdcsoftc), 184 hdcmatch, hdcattach, NULL, NULL); 185 186 CFATTACH_DECL_NEW(rd, sizeof(struct rdsoftc), 187 rdmatch, rdattach, NULL, NULL); 188 189 static dev_type_open(rdopen); 190 static dev_type_close(rdclose); 191 static dev_type_read(rdread); 192 static dev_type_write(rdwrite); 193 static dev_type_ioctl(rdioctl); 194 static dev_type_strategy(rdstrategy); 195 static dev_type_size(rdpsize); 196 197 const struct bdevsw rd_bdevsw = { 198 .d_open = rdopen, 199 .d_close = rdclose, 200 .d_strategy = rdstrategy, 201 .d_ioctl = rdioctl, 202 .d_dump = nulldump, 203 .d_psize = rdpsize, 204 .d_flag = D_DISK 205 }; 206 207 const struct cdevsw rd_cdevsw = { 208 .d_open = rdopen, 209 .d_close = rdclose, 210 .d_read = rdread, 211 .d_write = rdwrite, 212 .d_ioctl = rdioctl, 213 .d_stop = nostop, 214 .d_tty = notty, 215 .d_poll = nopoll, 216 .d_mmap = nommap, 217 .d_kqfilter = nokqfilter, 218 .d_flag = D_DISK 219 }; 220 221 /* At least 0.7 uS between register accesses */ 222 static int rd_dmasize, inq = 0; 223 static volatile int u; 224 #define WAIT __asm("movl %0,%0;movl %0,%0;movl %0,%0; movl %0,%0" :: "m"(u)) 225 226 #define HDC_WREG(x) *(volatile char *)(sc->sc_regs) = (x) 227 #define HDC_RREG *(volatile char *)(sc->sc_regs) 228 #define HDC_WCMD(x) *(volatile char *)(sc->sc_regs + 4) = (x) 229 #define HDC_RSTAT *(volatile char *)(sc->sc_regs + 4) 230 231 /* 232 * new-config's hdcmatch() is similiar to old-config's hdcprobe(), 233 * thus we probe for the existence of the controller and reset it. 234 * NB: we can't initialize the controller yet, since space for hdcsoftc 235 * is not yet allocated. Thus we do this in hdcattach()... 236 */ 237 int 238 hdcmatch(device_t parent, cfdata_t cf, void *aux) 239 { 240 struct vsbus_attach_args * const va = aux; 241 volatile char * const hdc_csr = (volatile char *)va->va_addr; 242 int i; 243 244 u = 8; /* !!! - GCC */ 245 246 if (vax_boardtype == VAX_BTYP_49 || vax_boardtype == VAX_BTYP_46 247 || vax_boardtype == VAX_BTYP_48 || vax_boardtype == VAX_BTYP_53) 248 return 0; 249 250 hdc_csr[4] = DKC_CMD_RESET; /* reset chip */ 251 for (i = 0; i < 1000; i++) { 252 DELAY(1000); 253 if (hdc_csr[4] & DKC_ST_DONE) 254 break; 255 } 256 if (i == 100) 257 return 0; /* No response to reset */ 258 259 hdc_csr[4] = DKC_CMD_SETREGPTR|UDC_TERM; 260 WAIT; 261 hdc_csr[0] = UDC_TC_CRCPRE|UDC_TC_INTDONE; 262 WAIT; 263 hdc_csr[4] = DKC_CMD_DRDESELECT; /* Should be harmless */ 264 DELAY(1000); 265 return (1); 266 } 267 268 int 269 hdcprint(void *aux, const char *name) 270 { 271 struct hdc_attach_args * const ha = aux; 272 273 if (name) 274 aprint_normal ("RD?? at %s drive %d", name, ha->ha_drive); 275 return UNCONF; 276 } 277 278 /* 279 * hdc_attach() probes for all possible devices 280 */ 281 void 282 hdcattach(device_t parent, device_t self, void *aux) 283 { 284 struct vsbus_attach_args * const va = aux; 285 struct hdcsoftc * const sc = device_private(self); 286 struct hdc_attach_args ha; 287 int status, i; 288 289 aprint_normal("\n"); 290 291 sc->sc_dev = self; 292 293 /* 294 * Get interrupt vector, enable instrumentation. 295 */ 296 scb_vecalloc(va->va_cvec, hdcintr, sc, SCB_ISTACK, &sc->sc_intrcnt); 297 evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL, 298 device_xname(self), "intr"); 299 300 sc->sc_regs = vax_map_physmem(va->va_paddr, 1); 301 sc->sc_dmabase = (void *)va->va_dmaaddr; 302 sc->sc_dmasize = va->va_dmasize; 303 sc->sc_intbit = va->va_maskno; 304 rd_dmasize = min(MAXPHYS, sc->sc_dmasize); /* Used in rd_minphys */ 305 306 sc->sc_vd.vd_go = hdc_qstart; 307 sc->sc_vd.vd_arg = sc; 308 /* 309 * Reset controller. 310 */ 311 HDC_WCMD(DKC_CMD_RESET); 312 DELAY(1000); 313 status = HDC_RSTAT; 314 if (status != (DKC_ST_DONE|DKC_TC_SUCCESS)) { 315 aprint_error_dev(self, "RESET failed, status 0x%x\n", status); 316 return; 317 } 318 bufq_alloc(&sc->sc_q, "disksort", BUFQ_SORT_CYLINDER); 319 320 /* 321 * now probe for all possible hard drives 322 */ 323 for (i = 0; i < 4; i++) { 324 if (i == 2) /* Floppy, needs special handling */ 325 continue; 326 HDC_WCMD(DKC_CMD_DRSELECT | i); 327 DELAY(1000); 328 status = HDC_RSTAT; 329 ha.ha_drive = i; 330 if ((status & DKC_ST_TERMCOD) == DKC_TC_SUCCESS) 331 config_found(self, (void *)&ha, hdcprint); 332 } 333 } 334 335 /* 336 * rdmatch() probes for the existence of a RD-type disk/floppy 337 */ 338 int 339 rdmatch(device_t parent, cfdata_t cf, void *aux) 340 { 341 struct hdc_attach_args * const ha = aux; 342 343 if (cf->cf_loc[HDCCF_DRIVE] != HDCCF_DRIVE_DEFAULT && 344 cf->cf_loc[HDCCF_DRIVE] != ha->ha_drive) 345 return 0; 346 347 if (ha->ha_drive == 2) /* Always floppy, not supported */ 348 return 0; 349 350 return 1; 351 } 352 353 void 354 rdattach(device_t parent, device_t self, void *aux) 355 { 356 struct hdcsoftc * const sc = device_private(parent); 357 struct rdsoftc * const rd = device_private(self); 358 struct hdc_attach_args * const ha = aux; 359 struct disklabel *dl; 360 const char *msg; 361 362 rd->sc_dev = self; 363 rd->sc_drive = ha->ha_drive; 364 rd->sc_hdc = sc; 365 /* 366 * Initialize and attach the disk structure. 367 */ 368 disk_init(&rd->sc_disk, device_xname(rd->sc_dev), NULL); 369 disk_attach(&rd->sc_disk); 370 371 /* 372 * if it's not a floppy then evaluate the on-disk geometry. 373 * if necessary correct the label... 374 */ 375 rd_readgeom(sc, rd); 376 disk_printtype(rd->sc_drive, rd->sc_xbn.media_id); 377 dl = rd->sc_disk.dk_label; 378 rdmakelabel(dl, &rd->sc_xbn); 379 msg = readdisklabel(MAKEDISKDEV(cdevsw_lookup_major(&rd_cdevsw), 380 device_unit(rd->sc_dev), RAW_PART), 381 rdstrategy, dl, NULL); 382 if (msg) 383 aprint_normal_dev(self, "%s: size %u sectors", 384 msg, dl->d_secperunit); 385 else 386 aprint_normal_dev(self, "size %u sectors\n", dl->d_secperunit); 387 #ifdef RDDEBUG 388 hdc_printgeom(&rd->sc_xbn); 389 #endif 390 } 391 392 void 393 hdcintr(void *arg) 394 { 395 struct hdcsoftc * const sc = arg; 396 struct buf *bp; 397 398 sc->sc_status = HDC_RSTAT; 399 if (sc->sc_active == 0) 400 return; /* Complain? */ 401 402 if ((sc->sc_status & (DKC_ST_INTPEND|DKC_ST_DONE)) != 403 (DKC_ST_INTPEND|DKC_ST_DONE)) 404 return; /* Why spurious ints sometimes??? */ 405 406 bp = sc->sc_active; 407 sc->sc_active = 0; 408 if ((sc->sc_status & DKC_ST_TERMCOD) != DKC_TC_SUCCESS) { 409 int i; 410 u_char *g = (u_char *)&sc->sc_sreg; 411 412 if (sc->sc_retries++ < 3) { /* Allow 3 retries */ 413 hdcstart(sc, bp); 414 return; 415 } 416 aprint_error_dev(sc->sc_dev, "failed, status 0x%x\n", 417 sc->sc_status); 418 hdc_readregs(sc); 419 for (i = 0; i < 10; i++) 420 aprint_error("%i: %x\n", i, g[i]); 421 bp->b_error = ENXIO; 422 bp->b_resid = bp->b_bcount; 423 biodone(bp); 424 vsbus_dma_intr(); 425 return; 426 } 427 428 if (bp->b_flags & B_READ) { 429 vsbus_copytoproc(bp->b_proc, sc->sc_dmabase, sc->sc_bufaddr, 430 sc->sc_xfer); 431 } 432 sc->sc_diskblk += (sc->sc_xfer/DEV_BSIZE); 433 sc->sc_bytecnt -= sc->sc_xfer; 434 sc->sc_bufaddr = (char *)sc->sc_bufaddr + sc->sc_xfer; 435 436 if (sc->sc_bytecnt == 0) { /* Finished transfer */ 437 biodone(bp); 438 vsbus_dma_intr(); 439 } else 440 hdcstart(sc, bp); 441 } 442 443 /* 444 * 445 */ 446 void 447 rdstrategy(struct buf *bp) 448 { 449 struct rdsoftc *rd; 450 struct hdcsoftc *sc; 451 struct disklabel *lp; 452 int s; 453 454 if ((rd = device_lookup_private(&rd_cd, DISKUNIT(bp->b_dev))) == NULL) { 455 bp->b_error = ENXIO; 456 goto done; 457 } 458 sc = rd->sc_hdc; 459 460 lp = rd->sc_disk.dk_label; 461 if ((bounds_check_with_label(&rd->sc_disk, bp, 1)) <= 0) 462 goto done; 463 464 if (bp->b_bcount == 0) 465 goto done; 466 467 bp->b_rawblkno = 468 bp->b_blkno + lp->d_partitions[DISKPART(bp->b_dev)].p_offset; 469 bp->b_cylinder = bp->b_rawblkno / lp->d_secpercyl; 470 471 s = splbio(); 472 bufq_put(sc->sc_q, bp); 473 if (inq == 0) { 474 inq = 1; 475 vsbus_dma_start(&sc->sc_vd); 476 } 477 splx(s); 478 return; 479 480 done: biodone(bp); 481 } 482 483 void 484 hdc_qstart(void *arg) 485 { 486 struct hdcsoftc * const sc = arg; 487 488 inq = 0; 489 490 hdcstart(sc, 0); 491 if (bufq_peek(sc->sc_q)) { 492 vsbus_dma_start(&sc->sc_vd); /* More to go */ 493 inq = 1; 494 } 495 } 496 497 void 498 hdcstart(struct hdcsoftc *sc, struct buf *ob) 499 { 500 struct hdc9224_UDCreg * const p = &sc->sc_creg; 501 struct disklabel *lp; 502 struct rdsoftc *rd; 503 struct buf *bp; 504 int cn, sn, tn, bn, blks; 505 volatile char ch; 506 507 if (sc->sc_active) 508 return; /* Already doing something */ 509 510 if (ob == 0) { 511 bp = bufq_get(sc->sc_q); 512 if (bp == NULL) 513 return; /* Nothing to do */ 514 sc->sc_bufaddr = bp->b_data; 515 sc->sc_diskblk = bp->b_rawblkno; 516 sc->sc_bytecnt = bp->b_bcount; 517 sc->sc_retries = 0; 518 bp->b_resid = 0; 519 } else 520 bp = ob; 521 522 rd = device_lookup_private(&rd_cd, DISKUNIT(bp->b_dev)); 523 hdc_rdselect(sc, rd->sc_drive); 524 sc->sc_active = bp; 525 526 bn = sc->sc_diskblk; 527 lp = rd->sc_disk.dk_label; 528 if (bn) { 529 cn = bn / lp->d_secpercyl; 530 sn = bn % lp->d_secpercyl; 531 tn = sn / lp->d_nsectors; 532 sn = sn % lp->d_nsectors; 533 } else 534 cn = sn = tn = 0; 535 536 cn++; /* first cylinder is reserved */ 537 538 memset(p, 0, sizeof(struct hdc9224_UDCreg)); 539 540 /* 541 * Tricky thing: the controller do itself only increase the sector 542 * number, not the track or cylinder number. Therefore the driver 543 * is not allowed to have transfers that crosses track boundaries. 544 */ 545 blks = sc->sc_bytecnt/DEV_BSIZE; 546 if ((sn + blks) > lp->d_nsectors) 547 blks = lp->d_nsectors - sn; 548 549 p->udc_dsect = sn; 550 p->udc_dcyl = cn & 0xff; 551 p->udc_dhead = ((cn >> 4) & 0x70) | tn; 552 p->udc_scnt = blks; 553 554 p->udc_rtcnt = UDC_RC_RTRYCNT; 555 p->udc_mode = UDC_MD_HDD; 556 p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWRFLT; 557 hdc_writeregs(sc); 558 559 /* Count up vars */ 560 sc->sc_xfer = blks * DEV_BSIZE; 561 562 ch = HDC_RSTAT; /* Avoid pending interrupts */ 563 WAIT; 564 vsbus_clrintr(sc->sc_intbit); /* Clear pending int's */ 565 566 if (bp->b_flags & B_READ) { 567 HDC_WCMD(DKC_CMD_READ_HDD); 568 } else { 569 vsbus_copyfromproc(bp->b_proc, sc->sc_bufaddr, sc->sc_dmabase, 570 sc->sc_xfer); 571 HDC_WCMD(DKC_CMD_WRITE_HDD); 572 } 573 } 574 575 void 576 rd_readgeom(struct hdcsoftc *sc, struct rdsoftc *rd) 577 { 578 struct hdc9224_UDCreg * const p = &sc->sc_creg; 579 580 hdc_rdselect(sc, rd->sc_drive); /* select drive right now */ 581 582 memset(p, 0, sizeof(*p)); 583 584 p->udc_scnt = 1; 585 p->udc_rtcnt = UDC_RC_RTRYCNT; 586 p->udc_mode = UDC_MD_HDD; 587 p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWPROT; 588 hdc_writeregs(sc); 589 sc->sc_status = 0; 590 HDC_WCMD(DKC_CMD_READ_HDD|2); 591 while ((sc->sc_status & DKC_ST_INTPEND) == 0) 592 ; 593 memcpy(&rd->sc_xbn, sc->sc_dmabase, sizeof(struct rdgeom)); 594 } 595 596 #ifdef RDDEBUG 597 /* 598 * display the contents of the on-disk geometry structure 599 */ 600 void 601 hdc_printgeom(struct rdgeom *p) 602 { 603 printf ("**DiskData** XBNs: %ld, DBNs: %ld, LBNs: %ld, RBNs: %ld\n", 604 p->xbn_count, p->dbn_count, p->lbn_count, p->rbn_count); 605 printf ("sec/track: %d, tracks: %d, cyl: %d, precomp/reduced: %d/%d\n", 606 p->nspt, p->ntracks, p->ncylinders, p->precomp, p->reduced); 607 printf ("seek-rate: %d, crc/eec: %s, RCT: %d, RCT-copies: %d\n", 608 p->seek_rate, p->crc_eec?"EEC":"CRC", p->rct, p->rct_ncopies); 609 printf ("media-ID: %lx, interleave: %d, headskew: %d, cylskew: %d\n", 610 p->media_id, p->interleave, p->headskew, p->cylskew); 611 printf ("gap0: %d, gap1: %d, gap2: %d, gap3: %d, sync-value: %d\n", 612 p->gap0_size, p->gap1_size, p->gap2_size, p->gap3_size, 613 p->sync_value); 614 } 615 #endif 616 617 /* 618 * Return the size of a partition, if known, or -1 if not. 619 */ 620 int 621 rdpsize(dev_t dev) 622 { 623 struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev)); 624 const int part = DISKPART(dev); 625 626 if (rd == NULL || part >= rd->sc_disk.dk_label->d_npartitions) 627 return -1; 628 629 return rd->sc_disk.dk_label->d_partitions[part].p_size * 630 (rd->sc_disk.dk_label->d_secsize / DEV_BSIZE); 631 } 632 633 /* 634 * 635 */ 636 int 637 rdopen(dev_t dev, int flag, int fmt, struct lwp *l) 638 { 639 struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev)); 640 const int part = DISKPART(dev); 641 642 if (rd == NULL || part >= rd->sc_disk.dk_label->d_npartitions) 643 return ENXIO; 644 645 switch (fmt) { 646 case S_IFCHR: 647 rd->sc_disk.dk_copenmask |= (1 << part); 648 break; 649 case S_IFBLK: 650 rd->sc_disk.dk_bopenmask |= (1 << part); 651 break; 652 } 653 rd->sc_disk.dk_openmask = 654 rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask; 655 656 return 0; 657 } 658 659 /* 660 * 661 */ 662 int 663 rdclose(dev_t dev, int flag, int fmt, struct lwp *l) 664 { 665 struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev)); 666 const int part = DISKPART(dev); 667 668 switch (fmt) { 669 case S_IFCHR: 670 rd->sc_disk.dk_copenmask &= ~(1 << part); 671 break; 672 case S_IFBLK: 673 rd->sc_disk.dk_bopenmask &= ~(1 << part); 674 break; 675 } 676 rd->sc_disk.dk_openmask = 677 rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask; 678 679 return (0); 680 } 681 682 /* 683 * 684 */ 685 int 686 rdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) 687 { 688 struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev)); 689 struct disklabel * const lp = rd->sc_disk.dk_label; 690 int error = 0; 691 692 switch (cmd) { 693 case DIOCGDINFO: 694 *(struct disklabel *)addr = *lp; 695 break; 696 697 case DIOCGPART: 698 ((struct partinfo *)addr)->disklab = lp; 699 ((struct partinfo *)addr)->part = 700 &lp->d_partitions[DISKPART(dev)]; 701 break; 702 703 case DIOCWDINFO: 704 case DIOCSDINFO: 705 if ((flag & FWRITE) == 0) 706 return EBADF; 707 error = (cmd == DIOCSDINFO ? 708 setdisklabel(lp, (struct disklabel *)addr, 0, 0) : 709 writedisklabel(dev, rdstrategy, lp, 0)); 710 break; 711 712 case DIOCGDEFLABEL: 713 memset(lp, 0, sizeof(*lp)); 714 rdmakelabel(lp, &rd->sc_xbn); 715 break; 716 717 case DIOCWLABEL: 718 if ((flag & FWRITE) == 0) 719 error = EBADF; 720 break; 721 722 default: 723 error = ENOTTY; 724 } 725 return error; 726 } 727 728 /* 729 * 730 */ 731 int 732 rdread(dev_t dev, struct uio *uio, int flag) 733 { 734 return (physio (rdstrategy, NULL, dev, B_READ, minphys, uio)); 735 } 736 737 /* 738 * 739 */ 740 int 741 rdwrite(dev_t dev, struct uio *uio, int flag) 742 { 743 return (physio (rdstrategy, NULL, dev, B_WRITE, minphys, uio)); 744 } 745 746 /* 747 * we have to wait 0.7 usec between two accesses to any of the 748 * dkc-registers, on a VS2000 with 1 MIPS, this is roughly one 749 * instruction. Thus the loop-overhead will be enough... 750 */ 751 static void 752 hdc_readregs(struct hdcsoftc *sc) 753 { 754 int i; 755 char *p; 756 757 HDC_WCMD(DKC_CMD_SETREGPTR); 758 WAIT; 759 p = (void*)&sc->sc_sreg; 760 for (i=0; i<10; i++) { 761 *p++ = HDC_RREG; /* dkc_reg auto-increments */ 762 WAIT; 763 } 764 } 765 766 static void 767 hdc_writeregs(struct hdcsoftc *sc) 768 { 769 int i; 770 char *p; 771 772 HDC_WCMD(DKC_CMD_SETREGPTR); 773 p = (void*)&sc->sc_creg; 774 for (i=0; i<10; i++) { 775 HDC_WREG(*p++); /* dkc_reg auto-increments */ 776 WAIT; 777 } 778 } 779 780 /* 781 * hdc_command() issues a command and polls the intreq-register 782 * to find when command has completed 783 */ 784 int 785 hdc_command(struct hdcsoftc *sc, int cmd) 786 { 787 hdc_writeregs(sc); /* write the prepared registers */ 788 HDC_WCMD(cmd); 789 WAIT; 790 return (0); 791 } 792 793 int 794 hdc_rdselect(struct hdcsoftc *sc, int unit) 795 { 796 struct hdc9224_UDCreg * const p = &sc->sc_creg; 797 int error; 798 799 /* 800 * bring "creg" in some known-to-work state and 801 * select the drive with the DRIVE SELECT command. 802 */ 803 memset(p, 0, sizeof(*p)); 804 805 p->udc_rtcnt = UDC_RC_HDD_READ; 806 p->udc_mode = UDC_MD_HDD; 807 p->udc_term = UDC_TC_HDD; 808 809 error = hdc_command(sc, DKC_CMD_DRSEL_HDD | unit); 810 811 return error; 812 } 813 814 void 815 rdmakelabel(struct disklabel *dl, struct rdgeom *g) 816 { 817 int n, p = 0; 818 819 dl->d_bbsize = BBSIZE; 820 dl->d_sbsize = SBLOCKSIZE; 821 dl->d_typename[p++] = MSCP_MID_CHAR(2, g->media_id); 822 dl->d_typename[p++] = MSCP_MID_CHAR(1, g->media_id); 823 if (MSCP_MID_ECH(0, g->media_id)) 824 dl->d_typename[p++] = MSCP_MID_CHAR(0, g->media_id); 825 n = MSCP_MID_NUM(g->media_id); 826 if (n > 99) { 827 dl->d_typename[p++] = '1'; 828 n -= 100; 829 } 830 if (n > 9) { 831 dl->d_typename[p++] = (n / 10) + '0'; 832 n %= 10; 833 } 834 dl->d_typename[p++] = n + '0'; 835 dl->d_typename[p] = 0; 836 dl->d_type = DTYPE_MSCP; /* XXX - what to use here??? */ 837 dl->d_rpm = 3600; 838 dl->d_secsize = DEV_BSIZE; 839 840 dl->d_secperunit = g->lbn_count; 841 dl->d_nsectors = g->nspt; 842 dl->d_ntracks = g->ntracks; 843 dl->d_secpercyl = dl->d_nsectors * dl->d_ntracks; 844 dl->d_ncylinders = dl->d_secperunit / dl->d_secpercyl; 845 846 dl->d_npartitions = MAXPARTITIONS; 847 dl->d_partitions[0].p_size = dl->d_partitions[2].p_size = 848 dl->d_secperunit; 849 dl->d_partitions[0].p_offset = dl->d_partitions[2].p_offset = 0; 850 dl->d_interleave = dl->d_headswitch = 1; 851 dl->d_magic = dl->d_magic2 = DISKMAGIC; 852 dl->d_checksum = dkcksum(dl); 853 } 854