xref: /netbsd-src/sys/arch/vax/include/mutex.h (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: mutex.h,v 1.10 2007/11/21 11:15:50 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #ifndef _VAX_MUTEX_H_
40 #define	_VAX_MUTEX_H_
41 
42 /*
43  * The VAX mutex implementation is troublesome, because the VAX architecture
44  * lacks a compare-and-set operation, yet there are many SMP VAX
45  * machines in circulation.  SMP for spin mutexes is easy - we don't need
46  * to know who owns the lock.  For adaptive mutexes, we need an aditional
47  * interlock.  However, since we know that owners will be kernel addresses
48  * and all kernel addresses have the high bit set, we can use the high bit
49  * as an interlock.
50  *
51  * So we test the high bit with BBSSI and if clear
52  * kernels are always loaded above 0xe0000000, and the low 5 bits of any
53  * "struct lwp *" are always zero.  So, to record the lock owner, we only
54  * need 23 bits of space.  mtxa_owner contains the mutex owner's address
55  * shifted right by 5: the top three bits of which will always be 0xe,
56  * overlapping with the interlock at the top byte, which is always 0xff
57  * when the mutex is held.
58  *
59  * For a mutex acquisition, the owner field is set in two steps: first,
60  * acquire the interlock (top bit), and second OR in the owner's address.
61  * Once the owner field is non zero, it will appear that the mutex is held,
62  * by which LWP it does not matter: other LWPs competing for the lock will
63  * fall through to mutex_vector_enter(), and either spin or sleep.
64  *
65  * As a result there is no space for a waiters bit in the owner field.  No
66  * problem, because it would be hard to synchronise using one without a CAS
67  * operation.  Note that in order to do unlocked release of adaptive
68  * mutexes, we need the effect of MUTEX_SET_WAITERS() to be immediatley
69  * visible on the bus.  So, adaptive mutexes share the spin lock byte with
70  * spin mutexes (set with bb{cc,ss}i), but it is not treated as a lock in its
71  * own right, rather as a flag that can be atomically set or cleared.
72  *
73  * When releasing an adaptive mutex, we first clear the owners field, and
74  * then check to see if the waiters byte is set.  This ensures that there
75  * will always be someone to wake any sleeping waiters up (even it the mutex
76  * is acquired immediately after we release it, or if we are preempted
77  * immediatley after clearing the owners field).  The setting or clearing of
78  * the waiters byte is serialized by the turnstile chain lock associated
79  * with the mutex.
80  *
81  * See comments in kern_mutex.c about releasing adaptive mutexes without
82  * an interlocking step.
83  */
84 
85 #ifndef LOCKDEBUG
86 #define	MUTEX_COUNT_BIAS		1
87 #endif
88 
89 #ifndef __MUTEX_PRIVATE
90 
91 struct kmutex {
92 	uintptr_t	mtx_pad1;
93 	uint32_t	mtx_pad2;
94 };
95 
96 #else	/* __MUTEX_PRIVATE */
97 
98 struct kmutex {
99 	/* Adaptive mutex */
100 	union {
101 		volatile uintptr_t	u_owner;		/* 0-3 */
102 		struct {
103 			uint8_t			s_dummylo;	/* 0 */
104 			__cpu_simple_lock_t	s_lock;		/* 1 */
105 			ipl_cookie_t		s_ipl;		/* 2 */
106 			uint8_t			s_dummyhi;	/* 3 */
107 		} u_s;
108 	} mtx_u;
109 	uint32_t			mtx_flags;		/* 4-7 */
110 };
111 #define	mtx_owner	mtx_u.u_owner
112 #define	mtx_lock	mtx_u.u_s.s_lock
113 #define	mtx_ipl		mtx_u.u_s.s_ipl
114 
115 #define	__HAVE_MUTEX_STUBS		1
116 #define	__HAVE_SPIN_MUTEX_STUBS		1
117 
118 static inline uintptr_t
119 MUTEX_OWNER(uintptr_t owner)
120 {
121 	return owner & ~1;
122 }
123 
124 static inline bool
125 MUTEX_OWNED(uintptr_t owner)
126 {
127 	return owner != 0;
128 }
129 
130 static inline bool
131 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
132 {
133 	mtx->mtx_owner |= 1;
134  	return (mtx->mtx_owner & ~1) != 0;
135 }
136 
137 static inline bool
138 MUTEX_HAS_WAITERS(volatile kmutex_t *mtx)
139 {
140 	return (mtx->mtx_owner & 1) != 0;
141 }
142 
143 static inline void
144 MUTEX_CLEAR_WAITERS(volatile kmutex_t *mtx)
145 {
146 	mtx->mtx_owner &= ~1;
147 }
148 
149 static inline void
150 MUTEX_INITIALIZE_SPIN(kmutex_t *mtx, bool dodebug, int ipl)
151 {
152 	/* lock_stubs.S checks the lowest bit of mtx_flags using blbs/blbc */
153 	mtx->mtx_flags = (dodebug << 1) | 1;
154 	mtx->mtx_owner = 0x80000000;
155 	mtx->mtx_ipl = makeiplcookie(ipl);
156 	mtx->mtx_lock = 0;
157 }
158 
159 static inline void
160 MUTEX_INITIALIZE_ADAPTIVE(kmutex_t *mtx, bool dodebug)
161 {
162 	/* lock_stubs.S checks the lowest bit of mtx_flags using blbs/blbc */
163 	mtx->mtx_flags = (dodebug << 1);
164 	mtx->mtx_ipl = makeiplcookie(-1);
165 	mtx->mtx_owner = 0;
166 }
167 
168 static inline void
169 MUTEX_DESTROY(kmutex_t *mtx)
170 {
171 	mtx->mtx_owner = (uintptr_t)-1L;
172 	mtx->mtx_flags = 0xdeadface << 1;
173 }
174 
175 static inline bool
176 MUTEX_DEBUG_P(volatile kmutex_t *mtx)
177 {
178 	return mtx->mtx_flags >> 1;
179 }
180 
181 static inline bool
182 MUTEX_SPIN_P(volatile kmutex_t *mtx)
183 {
184 	return (mtx->mtx_flags & 1) != 0;
185 }
186 
187 static inline bool
188 MUTEX_ADAPTIVE_P(volatile kmutex_t *mtx)
189 {
190 	return (mtx->mtx_flags & 1) == 0;
191 }
192 
193 static inline bool
194 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
195 {
196 	int rv;
197 	__asm __volatile(
198 		"clrl %1;"
199 		"bbssi $31,%0,1f;"
200 		"incl %1;"
201 		"insv %2,$0,$31,%0;"
202 		"1:"
203 	    : "=m"(mtx->mtx_owner), "=r"(rv)
204 	    : "g"(curthread));
205 	return rv;
206 }
207 
208 static inline void
209 MUTEX_RELEASE(kmutex_t *mtx)
210 {
211 	__asm __volatile(
212 		"insv $0,$0,$31,%0;"
213 		"bbcci $31,%0,1f;"
214 		"1:"
215 	   : "=m" (mtx->mtx_owner));
216 }
217 
218 #endif	/* __MUTEX_PRIVATE */
219 
220 #endif /* _VAX_MUTEX_H_ */
221