xref: /netbsd-src/sys/arch/sun68k/stand/libsa/sun2.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: sun2.c,v 1.11 2009/12/11 18:42:05 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Gordon W. Ross and Matthew Fredette.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Standalone functions specific to the Sun2.
34  */
35 
36 /* Need to avoid conflicts on these: */
37 #define get_pte sun2_get_pte
38 #define set_pte sun2_set_pte
39 #define get_segmap sun2_get_segmap
40 #define set_segmap sun2_set_segmap
41 
42 /*
43  * We need to get the sun2 NBSG definition, even if we're
44  * building this with a different sun68k target.
45  */
46 #include <arch/sun2/include/pmap.h>
47 
48 #include <sys/param.h>
49 #include <machine/idprom.h>
50 #include <machine/mon.h>
51 
52 #include <arch/sun2/include/pte.h>
53 #include <arch/sun2/sun2/control.h>
54 #ifdef notyet
55 #include <arch/sun3/sun3/vme.h>
56 #else
57 #define VME16_BASE MBIO_BASE
58 #define VME16_MASK MBIO_MASK
59 #endif
60 #include <arch/sun2/sun2/mbmem.h>
61 #include <arch/sun2/sun2/mbio.h>
62 
63 #include <stand.h>
64 
65 #include "libsa.h"
66 #include "dvma.h"
67 #include "saio.h"	/* enum MAPTYPES */
68 
69 #define OBIO_MASK 0xFFFFFF
70 
71 u_int	get_pte(vaddr_t);
72 void	set_pte(vaddr_t, u_int);
73 void	dvma2_init(void);
74 char *	dvma2_alloc(int);
75 void	dvma2_free(char *, int);
76 char *	dvma2_mapin(char *, int);
77 void	dvma2_mapout(char *, int);
78 char *	dev2_mapin(int, u_long, int);
79 
80 struct mapinfo {
81 	int maptype;
82 	int pgtype;
83 	u_int base;
84 	u_int mask;
85 };
86 
87 #ifdef	notyet
88 struct mapinfo
89 sun2_mapinfo[MAP__NTYPES] = {
90 	/* On-board memory, I/O */
91 	{ MAP_MAINMEM,   PGT_OBMEM,   0,          ~0 },
92 	{ MAP_OBIO,      PGT_OBIO,    0,          OBIO_MASK },
93 	/* Multibus memory, I/O */
94 	{ MAP_MBMEM,     PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
95 	{ MAP_MBIO,      PGT_MBIO,  MBIO_BASE, MBIO_MASK },
96 	/* VME A16 */
97 	{ MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
98 	{ MAP_VME16A32D, 0, 0, 0 },
99 	/* VME A24 */
100 	{ MAP_VME24A16D, 0, 0, 0 },
101 	{ MAP_VME24A32D, 0, 0, 0 },
102 	/* VME A32 */
103 	{ MAP_VME32A16D, 0, 0, 0 },
104 	{ MAP_VME32A32D, 0, 0, 0 },
105 };
106 #endif
107 
108 /* The virtual address we will use for PROM device mappings. */
109 int sun2_devmap = SUN3_MONSHORTSEG;
110 
111 char *
112 dev2_mapin(int maptype, u_long physaddr, int length)
113 {
114 #ifdef	notyet
115 	u_int i, pa, pte, pgva, va;
116 
117 	if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
118 		panic("dev2_mapin: length=%d", length);
119 
120 	for (i = 0; i < MAP__NTYPES; i++)
121 		if (sun2_mapinfo[i].maptype == maptype)
122 			goto found;
123 	panic("dev2_mapin: bad maptype");
124 found:
125 
126 	if (physaddr & ~(sun2_mapinfo[i].mask))
127 		panic("dev2_mapin: bad address");
128 	pa = sun2_mapinfo[i].base += physaddr;
129 
130 	pte = PA_PGNUM(pa) | PG_PERM |
131 		sun2_mapinfo[i].pgtype;
132 
133 	va = pgva = sun2_devmap;
134 	do {
135 		set_pte(pgva, pte);
136 		pgva += NBPG;
137 		pte += 1;
138 		length -= NBPG;
139 	} while (length > 0);
140 	sun2_devmap = pgva;
141 	va += (physaddr & PGOFSET);
142 
143 #ifdef	DEBUG_PROM
144 	if (debug)
145 		printf("dev2_mapin: va=0x%x pte=0x%x\n",
146 			   va, get_pte(va));
147 #endif
148 	return ((char*)va);
149 #else
150 	panic("dev2_mapin");
151 	return(NULL);
152 #endif
153 }
154 
155 /*****************************************************************
156  * DVMA support
157  */
158 
159 /*
160  * The easiest way to deal with the need for DVMA mappings is to
161  * create a DVMA alias mapping of the entire address range used by
162  * the boot program.  That way, dvma_mapin can just compute the
163  * DVMA alias address, and dvma_mapout does nothing.
164  *
165  * Note that this assumes that standalone programs will do I/O
166  * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
167  */
168 
169 #define DVMA_BASE 0x00f00000
170 #define DVMA_MAPLEN  0x38000	/* 256K - 32K (save MONSHORTSEG) */
171 
172 #define SA_MIN_VA	0x220000
173 #define SA_MAX_VA	(SA_MIN_VA + DVMA_MAPLEN)
174 
175 /* This points to the end of the free DVMA space. */
176 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
177 
178 void
179 dvma2_init(void)
180 {
181 	int segva, dmava, sme;
182 
183 	segva = SA_MIN_VA;
184 	dmava = DVMA_BASE;
185 
186 	while (segva < SA_MAX_VA) {
187 		sme = get_segmap(segva);
188 		set_segmap(dmava, sme);
189 		segva += NBSG;
190 		dmava += NBSG;
191 	}
192 }
193 
194 /* Convert a local address to a DVMA address. */
195 char *
196 dvma2_mapin(char *addr, int len)
197 {
198 	int va = (int)addr;
199 
200 	/* Make sure the address is in the DVMA map. */
201 	if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
202 		panic("dvma2_mapin: 0x%x outside 0x%x..0x%x",
203 		    va, SA_MIN_VA, SA_MAX_VA);
204 
205 	va -= SA_MIN_VA;
206 	va += DVMA_BASE;
207 
208 	return ((char *) va);
209 }
210 
211 /* Destroy a DVMA address alias. */
212 void
213 dvma2_mapout(char *addr, int len)
214 {
215 	int va = (int)addr;
216 
217 	/* Make sure the address is in the DVMA map. */
218 	if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
219 		panic("dvma2_mapout");
220 }
221 
222 char *
223 dvma2_alloc(int len)
224 {
225 	len = m68k_round_page(len);
226 	dvma2_end -= len;
227 	return((char*)dvma2_end);
228 }
229 
230 void
231 dvma2_free(char *dvma, int len)
232 {
233 	/* not worth the trouble */
234 }
235 
236 /*****************************************************************
237  * Control space stuff...
238  */
239 
240 u_int
241 get_pte(vaddr_t va)
242 {
243 	u_int pte;
244 
245 	pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
246 	if (pte & PG_VALID) {
247 		/*
248 		 * This clears bit 30 (the kernel readable bit, which
249 		 * should always be set), bit 28 (which should always
250 		 * be set) and bit 26 (the user writable bit, which we
251 		 * always have tracking the kernel writable bit).  In
252 		 * the protection, this leaves bit 29 (the kernel
253 		 * writable bit) and bit 27 (the user readable bit).
254 		 * See pte2.h for more about this hack.
255 		 */
256 		pte &= ~(0x54000000);
257 		/*
258 		 * Flip bit 27 (the user readable bit) to become bit
259 		 * 27 (the PG_SYSTEM bit).
260 		 */
261 		pte ^= (PG_SYSTEM);
262 	}
263 	return (pte);
264 }
265 
266 void
267 set_pte(vaddr_t va, u_int pte)
268 {
269 	if (pte & PG_VALID) {
270 		/* Clear bit 26 (the user writable bit).  */
271 		pte &= (~0x04000000);
272 		/*
273 		 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
274 		 * (the user readable bit).
275 		 */
276 		pte ^= (PG_SYSTEM);
277 		/*
278 		 * Always set bits 30 (the kernel readable bit) and
279 		 * bit 28, and set bit 26 (the user writable bit) iff
280 		 * bit 29 (the kernel writable bit) is set *and* bit
281 		 * 27 (the user readable bit) is set.  This latter bit
282 		 * of logic is expressed in the bizarre second term
283 		 * below, chosen because it needs no branches.
284 		 */
285 #if (PG_WRITE >> 2) != PG_SYSTEM
286 #error	"PG_WRITE and PG_SYSTEM definitions don't match!"
287 #endif
288 		pte |= 0x50000000
289 		    | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
290 	}
291 	set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
292 }
293 
294 int
295 get_segmap(vaddr_t va)
296 {
297 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
298 	return (get_control_byte(va));
299 }
300 
301 void
302 set_segmap(vaddr_t va, int sme)
303 {
304 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
305 	set_control_byte(va, sme);
306 }
307 
308 /*
309  * Copy the IDPROM contents into the passed buffer.
310  * The caller (idprom.c) will do the checksum.
311  */
312 void
313 sun2_getidprom(u_char *dst)
314 {
315 	vaddr_t src;	/* control space address */
316 	int len, x;
317 
318 	src = IDPROM_BASE;
319 	len = sizeof(struct idprom);
320 	do {
321 		x = get_control_byte(src);
322 		src += NBPG;
323 		*dst++ = x;
324 	} while (--len > 0);
325 }
326 
327 /*****************************************************************
328  * Init our function pointers, etc.
329  */
330 
331 /*
332  * For booting, the PROM in fredette's Sun 2/120 doesn't map
333  * much main memory, and what is mapped is mapped strangely.
334  * Low virtual memory is mapped like:
335  *
336  * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
337  * 0x0c0000 - 0x0fffff virtual -> invalid
338  * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
339  * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
340  *
341  * I think the SunOS authors wanted to load kernels starting at
342  * physical zero, and assumed that kernels would be less
343  * than 768K (0x0c0000) long.  Also, the PROM maps physical
344  * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
345  * easy road and just add more mappings to use that physical
346  * memory while loading (the PROM might do DMA there).
347  *
348  * What we do, then, is assume a 4MB machine (you'll really
349  * need that to run NetBSD at all anyways), and we map two
350  * chunks of physical and virtual space:
351  *
352  * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
353  * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
354  *
355  * And then we load starting at virtual 0x400000.  We will do
356  * all of this mapping just by copying PMEGs.
357  *
358  * After the load is done, but before we enter the kernel, we're
359  * done with the PROM, so we copy the part of the kernel that
360  * got loaded at physical 0x2c0000 down to physical 0x0c0000.
361  * This can't just be a PMEG copy; we've actually got to move
362  * bytes in physical memory.
363  *
364  * These two chunks of physical and virtual space are defined
365  * in macros below.  Some of the macros are only for completeness:
366  */
367 #define MEM_CHUNK0_SIZE			(0x0c0000)
368 #define MEM_CHUNK0_LOAD_PHYS		(0x000000)
369 #define MEM_CHUNK0_LOAD_VIRT		(0x400000)
370 #define MEM_CHUNK0_LOAD_VIRT_PROM	MEM_CHUNK0_LOAD_PHYS
371 #define MEM_CHUNK0_COPY_PHYS		MEM_CHUNK0_LOAD_PHYS
372 #define MEM_CHUNK0_COPY_VIRT		MEM_CHUNK0_COPY_PHYS
373 
374 #define MEM_CHUNK1_SIZE			(0x140000)
375 #define MEM_CHUNK1_LOAD_PHYS		(0x2c0000)
376 #define MEM_CHUNK1_LOAD_VIRT		(MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
377 #define MEM_CHUNK1_LOAD_VIRT_PROM	MEM_CHUNK1_LOAD_PHYS
378 #define MEM_CHUNK1_COPY_PHYS		(MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
379 #define MEM_CHUNK1_COPY_VIRT		MEM_CHUNK1_COPY_PHYS
380 
381 /* Maps memory for loading. */
382 u_long
383 sun2_map_mem_load(void)
384 {
385 	vaddr_t off;
386 
387 	/* Map chunk zero for loading. */
388 	for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
389 		set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
390 			   get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
391 
392 	/* Map chunk one for loading. */
393 	for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
394 		set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
395 			   get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
396 
397 	/* Tell our caller where in virtual space to load. */
398 	return MEM_CHUNK0_LOAD_VIRT;
399 }
400 
401 /* Remaps memory for running. */
402 void *
403 sun2_map_mem_run(void *entry)
404 {
405 	vaddr_t off, off_end;
406 	int sme;
407 	u_int pte;
408 
409 	/* Chunk zero is already mapped and copied. */
410 
411 	/* Chunk one needs to be mapped and copied. */
412 	pte = (get_pte(0) & ~PG_FRAME);
413 	for(off = 0; off < MEM_CHUNK1_SIZE; ) {
414 
415 		/*
416 		 * We use the PMEG immediately before the
417 		 * segment we're copying in the PROM virtual
418 		 * mapping of the chunk.  If this is the first
419 		 * segment, this is the PMEG the PROM used to
420 		 * map 0x2b8000 virtual to 0x2b8000 physical,
421 		 * which I'll assume is unused.  For the second
422 		 * and subsequent segments, this will be the
423 		 * PMEG used to map the previous segment, which
424 		 * is now (since we already copied it) unused.
425 		 */
426 		sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
427 		set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
428 
429 		/* Set the PTEs in this new PMEG. */
430 		for(off_end = off + NBSG; off < off_end; off += NBPG)
431 			set_pte(MEM_CHUNK1_COPY_VIRT + off,
432 				pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
433 
434 		/* Copy this segment. */
435 		memcpy((void *)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
436 		       (void *)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
437 		       NBSG);
438 	}
439 
440 	/* Tell our caller where in virtual space to enter. */
441 	return ((char *)entry) - MEM_CHUNK0_LOAD_VIRT;
442 }
443 
444 void
445 sun2_init(void)
446 {
447 	/* Set the function pointers. */
448 	dev_mapin_p   = dev2_mapin;
449 	dvma_alloc_p  = dvma2_alloc;
450 	dvma_free_p   = dvma2_free;
451 	dvma_mapin_p  = dvma2_mapin;
452 	dvma_mapout_p = dvma2_mapout;
453 
454 	/* Prepare DVMA segment. */
455 	dvma2_init();
456 }
457