1 /* $NetBSD: pmap.c,v 1.86 2005/01/22 15:36:11 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jeremy Cooper. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * XXX These comments aren't quite accurate. Need to change. 41 * The sun3x uses the MC68851 Memory Management Unit, which is built 42 * into the CPU. The 68851 maps virtual to physical addresses using 43 * a multi-level table lookup, which is stored in the very memory that 44 * it maps. The number of levels of lookup is configurable from one 45 * to four. In this implementation, we use three, named 'A' through 'C'. 46 * 47 * The MMU translates virtual addresses into physical addresses by 48 * traversing these tables in a process called a 'table walk'. The most 49 * significant 7 bits of the Virtual Address ('VA') being translated are 50 * used as an index into the level A table, whose base in physical memory 51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The 52 * address found at that index in the A table is used as the base 53 * address for the next table, the B table. The next six bits of the VA are 54 * used as an index into the B table, which in turn gives the base address 55 * of the third and final C table. 56 * 57 * The next six bits of the VA are used as an index into the C table to 58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory 59 * to which the remaining 13 bits of the VA are added, producing the 60 * mapped physical address. 61 * 62 * To map the entire memory space in this manner would require 2114296 bytes 63 * of page tables per process - quite expensive. Instead we will 64 * allocate a fixed but considerably smaller space for the page tables at 65 * the time the VM system is initialized. When the pmap code is asked by 66 * the kernel to map a VA to a PA, it allocates tables as needed from this 67 * pool. When there are no more tables in the pool, tables are stolen 68 * from the oldest mapped entries in the tree. This is only possible 69 * because all memory mappings are stored in the kernel memory map 70 * structures, independent of the pmap structures. A VA which references 71 * one of these invalidated maps will cause a page fault. The kernel 72 * will determine that the page fault was caused by a task using a valid 73 * VA, but for some reason (which does not concern it), that address was 74 * not mapped. It will ask the pmap code to re-map the entry and then 75 * it will resume executing the faulting task. 76 * 77 * In this manner the most efficient use of the page table space is 78 * achieved. Tasks which do not execute often will have their tables 79 * stolen and reused by tasks which execute more frequently. The best 80 * size for the page table pool will probably be determined by 81 * experimentation. 82 * 83 * You read all of the comments so far. Good for you. 84 * Now go play! 85 */ 86 87 /*** A Note About the 68851 Address Translation Cache 88 * The MC68851 has a 64 entry cache, called the Address Translation Cache 89 * or 'ATC'. This cache stores the most recently used page descriptors 90 * accessed by the MMU when it does translations. Using a marker called a 91 * 'task alias' the MMU can store the descriptors from 8 different table 92 * spaces concurrently. The task alias is associated with the base 93 * address of the level A table of that address space. When an address 94 * space is currently active (the CRP currently points to its A table) 95 * the only cached descriptors that will be obeyed are ones which have a 96 * matching task alias of the current space associated with them. 97 * 98 * Since the cache is always consulted before any table lookups are done, 99 * it is important that it accurately reflect the state of the MMU tables. 100 * Whenever a change has been made to a table that has been loaded into 101 * the MMU, the code must be sure to flush any cached entries that are 102 * affected by the change. These instances are documented in the code at 103 * various points. 104 */ 105 /*** A Note About the Note About the 68851 Address Translation Cache 106 * 4 months into this code I discovered that the sun3x does not have 107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the 108 * the 68030 CPU. 109 * All though it behaves very similarly to the 68851, it only has 1 task 110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph 111 * of the previous note does not apply to the sun3x pmap. 112 */ 113 114 #include <sys/cdefs.h> 115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.86 2005/01/22 15:36:11 chs Exp $"); 116 117 #include "opt_ddb.h" 118 #include "opt_pmap_debug.h" 119 120 #include <sys/param.h> 121 #include <sys/systm.h> 122 #include <sys/proc.h> 123 #include <sys/malloc.h> 124 #include <sys/pool.h> 125 #include <sys/user.h> 126 #include <sys/queue.h> 127 #include <sys/kcore.h> 128 129 #include <uvm/uvm.h> 130 131 #include <machine/cpu.h> 132 #include <machine/kcore.h> 133 #include <machine/mon.h> 134 #include <machine/pmap.h> 135 #include <machine/pte.h> 136 #include <machine/vmparam.h> 137 #include <m68k/cacheops.h> 138 139 #include <sun3/sun3/cache.h> 140 #include <sun3/sun3/machdep.h> 141 142 #include "pmap_pvt.h" 143 144 /* XXX - What headers declare these? */ 145 extern struct pcb *curpcb; 146 extern int physmem; 147 148 /* Defined in locore.s */ 149 extern char kernel_text[]; 150 151 /* Defined by the linker */ 152 extern char etext[], edata[], end[]; 153 extern char *esym; /* DDB */ 154 155 /*************************** DEBUGGING DEFINITIONS *********************** 156 * Macros, preprocessor defines and variables used in debugging can make * 157 * code hard to read. Anything used exclusively for debugging purposes * 158 * is defined here to avoid having such mess scattered around the file. * 159 *************************************************************************/ 160 #ifdef PMAP_DEBUG 161 /* 162 * To aid the debugging process, macros should be expanded into smaller steps 163 * that accomplish the same goal, yet provide convenient places for placing 164 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the 165 * 'INLINE' keyword is defined to an empty string. This way, any function 166 * defined to be a 'static INLINE' will become 'outlined' and compiled as 167 * a separate function, which is much easier to debug. 168 */ 169 #define INLINE /* nothing */ 170 171 /* 172 * It is sometimes convenient to watch the activity of a particular table 173 * in the system. The following variables are used for that purpose. 174 */ 175 a_tmgr_t *pmap_watch_atbl = 0; 176 b_tmgr_t *pmap_watch_btbl = 0; 177 c_tmgr_t *pmap_watch_ctbl = 0; 178 179 int pmap_debug = 0; 180 #define DPRINT(args) if (pmap_debug) printf args 181 182 #else /********** Stuff below is defined if NOT debugging **************/ 183 184 #define INLINE inline 185 #define DPRINT(args) /* nada */ 186 187 #endif /* PMAP_DEBUG */ 188 /*********************** END OF DEBUGGING DEFINITIONS ********************/ 189 190 /*** Management Structure - Memory Layout 191 * For every MMU table in the sun3x pmap system there must be a way to 192 * manage it; we must know which process is using it, what other tables 193 * depend on it, and whether or not it contains any locked pages. This 194 * is solved by the creation of 'table management' or 'tmgr' 195 * structures. One for each MMU table in the system. 196 * 197 * MAP OF MEMORY USED BY THE PMAP SYSTEM 198 * 199 * towards lower memory 200 * kernAbase -> +-------------------------------------------------------+ 201 * | Kernel MMU A level table | 202 * kernBbase -> +-------------------------------------------------------+ 203 * | Kernel MMU B level tables | 204 * kernCbase -> +-------------------------------------------------------+ 205 * | | 206 * | Kernel MMU C level tables | 207 * | | 208 * mmuCbase -> +-------------------------------------------------------+ 209 * | User MMU C level tables | 210 * mmuAbase -> +-------------------------------------------------------+ 211 * | | 212 * | User MMU A level tables | 213 * | | 214 * mmuBbase -> +-------------------------------------------------------+ 215 * | User MMU B level tables | 216 * tmgrAbase -> +-------------------------------------------------------+ 217 * | TMGR A level table structures | 218 * tmgrBbase -> +-------------------------------------------------------+ 219 * | TMGR B level table structures | 220 * tmgrCbase -> +-------------------------------------------------------+ 221 * | TMGR C level table structures | 222 * pvbase -> +-------------------------------------------------------+ 223 * | Physical to Virtual mapping table (list heads) | 224 * pvebase -> +-------------------------------------------------------+ 225 * | Physical to Virtual mapping table (list elements) | 226 * | | 227 * +-------------------------------------------------------+ 228 * towards higher memory 229 * 230 * For every A table in the MMU A area, there will be a corresponding 231 * a_tmgr structure in the TMGR A area. The same will be true for 232 * the B and C tables. This arrangement will make it easy to find the 233 * controling tmgr structure for any table in the system by use of 234 * (relatively) simple macros. 235 */ 236 237 /* 238 * Global variables for storing the base addresses for the areas 239 * labeled above. 240 */ 241 static vaddr_t kernAphys; 242 static mmu_long_dte_t *kernAbase; 243 static mmu_short_dte_t *kernBbase; 244 static mmu_short_pte_t *kernCbase; 245 static mmu_short_pte_t *mmuCbase; 246 static mmu_short_dte_t *mmuBbase; 247 static mmu_long_dte_t *mmuAbase; 248 static a_tmgr_t *Atmgrbase; 249 static b_tmgr_t *Btmgrbase; 250 static c_tmgr_t *Ctmgrbase; 251 static pv_t *pvbase; 252 static pv_elem_t *pvebase; 253 struct pmap kernel_pmap; 254 255 /* 256 * This holds the CRP currently loaded into the MMU. 257 */ 258 struct mmu_rootptr kernel_crp; 259 260 /* 261 * Just all around global variables. 262 */ 263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool; 264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool; 265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool; 266 267 268 /* 269 * Flags used to mark the safety/availability of certain operations or 270 * resources. 271 */ 272 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/ 273 int tmp_vpages_inuse; /* Temporary virtual pages are in use */ 274 275 /* 276 * XXX: For now, retain the traditional variables that were 277 * used in the old pmap/vm interface (without NONCONTIG). 278 */ 279 /* Kernel virtual address space available: */ 280 vaddr_t virtual_avail, virtual_end; 281 /* Physical address space available: */ 282 paddr_t avail_start, avail_end; 283 284 /* This keep track of the end of the contiguously mapped range. */ 285 vaddr_t virtual_contig_end; 286 287 /* Physical address used by pmap_next_page() */ 288 paddr_t avail_next; 289 290 /* These are used by pmap_copy_page(), etc. */ 291 vaddr_t tmp_vpages[2]; 292 293 /* memory pool for pmap structures */ 294 struct pool pmap_pmap_pool; 295 296 /* 297 * The 3/80 is the only member of the sun3x family that has non-contiguous 298 * physical memory. Memory is divided into 4 banks which are physically 299 * locatable on the system board. Although the size of these banks varies 300 * with the size of memory they contain, their base addresses are 301 * permenently fixed. The following structure, which describes these 302 * banks, is initialized by pmap_bootstrap() after it reads from a similar 303 * structure provided by the ROM Monitor. 304 * 305 * For the other machines in the sun3x architecture which do have contiguous 306 * RAM, this list will have only one entry, which will describe the entire 307 * range of available memory. 308 */ 309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS]; 310 u_int total_phys_mem; 311 312 /*************************************************************************/ 313 314 /* 315 * XXX - Should "tune" these based on statistics. 316 * 317 * My first guess about the relative numbers of these needed is 318 * based on the fact that a "typical" process will have several 319 * pages mapped at low virtual addresses (text, data, bss), then 320 * some mapped shared libraries, and then some stack pages mapped 321 * near the high end of the VA space. Each process can use only 322 * one A table, and most will use only two B tables (maybe three) 323 * and probably about four C tables. Therefore, the first guess 324 * at the relative numbers of these needed is 1:2:4 -gwr 325 * 326 * The number of C tables needed is closely related to the amount 327 * of physical memory available plus a certain amount attributable 328 * to the use of double mappings. With a few simulation statistics 329 * we can find a reasonably good estimation of this unknown value. 330 * Armed with that and the above ratios, we have a good idea of what 331 * is needed at each level. -j 332 * 333 * Note: It is not physical memory memory size, but the total mapped 334 * virtual space required by the combined working sets of all the 335 * currently _runnable_ processes. (Sleeping ones don't count.) 336 * The amount of physical memory should be irrelevant. -gwr 337 */ 338 #ifdef FIXED_NTABLES 339 #define NUM_A_TABLES 16 340 #define NUM_B_TABLES 32 341 #define NUM_C_TABLES 64 342 #else 343 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES; 344 #endif /* FIXED_NTABLES */ 345 346 /* 347 * This determines our total virtual mapping capacity. 348 * Yes, it is a FIXED value so we can pre-allocate. 349 */ 350 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE) 351 352 /* 353 * The size of the Kernel Virtual Address Space (KVAS) 354 * for purposes of MMU table allocation is -KERNBASE 355 * (length from KERNBASE to 0xFFFFffff) 356 */ 357 #define KVAS_SIZE (-KERNBASE) 358 359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */ 360 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT) 361 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT) 362 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT) 363 364 /*************************** MISCELANEOUS MACROS *************************/ 365 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock) 366 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock) 367 #define pmap_add_ref(pmap) ++pmap->pm_refcount 368 #define pmap_del_ref(pmap) --pmap->pm_refcount 369 #define pmap_refcount(pmap) pmap->pm_refcount 370 371 void *pmap_bootstrap_alloc(int); 372 373 static INLINE void *mmu_ptov(paddr_t); 374 static INLINE paddr_t mmu_vtop(void *); 375 376 #if 0 377 static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *); 378 #endif /* 0 */ 379 static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *); 380 static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *); 381 382 static INLINE pv_t *pa2pv(paddr_t); 383 static INLINE int pteidx(mmu_short_pte_t *); 384 static INLINE pmap_t current_pmap(void); 385 386 /* 387 * We can always convert between virtual and physical addresses 388 * for anything in the range [KERNBASE ... avail_start] because 389 * that range is GUARANTEED to be mapped linearly. 390 * We rely heavily upon this feature! 391 */ 392 static INLINE void * 393 mmu_ptov(paddr_t pa) 394 { 395 vaddr_t va; 396 397 va = (pa + KERNBASE); 398 #ifdef PMAP_DEBUG 399 if ((va < KERNBASE) || (va >= virtual_contig_end)) 400 panic("mmu_ptov"); 401 #endif 402 return ((void*)va); 403 } 404 405 static INLINE paddr_t 406 mmu_vtop(void *vva) 407 { 408 vaddr_t va; 409 410 va = (vaddr_t)vva; 411 #ifdef PMAP_DEBUG 412 if ((va < KERNBASE) || (va >= virtual_contig_end)) 413 panic("mmu_vtop"); 414 #endif 415 return (va - KERNBASE); 416 } 417 418 /* 419 * These macros map MMU tables to their corresponding manager structures. 420 * They are needed quite often because many of the pointers in the pmap 421 * system reference MMU tables and not the structures that control them. 422 * There needs to be a way to find one when given the other and these 423 * macros do so by taking advantage of the memory layout described above. 424 * Here's a quick step through the first macro, mmuA2tmgr(): 425 * 426 * 1) find the offset of the given MMU A table from the base of its table 427 * pool (table - mmuAbase). 428 * 2) convert this offset into a table index by dividing it by the 429 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE) 430 * 3) use this index to select the corresponding 'A' table manager 431 * structure from the 'A' table manager pool (Atmgrbase[index]). 432 */ 433 /* This function is not currently used. */ 434 #if 0 435 static INLINE a_tmgr_t * 436 mmuA2tmgr(mmu_long_dte_t *mmuAtbl) 437 { 438 int idx; 439 440 /* Which table is this in? */ 441 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE; 442 #ifdef PMAP_DEBUG 443 if ((idx < 0) || (idx >= NUM_A_TABLES)) 444 panic("mmuA2tmgr"); 445 #endif 446 return (&Atmgrbase[idx]); 447 } 448 #endif /* 0 */ 449 450 static INLINE b_tmgr_t * 451 mmuB2tmgr(mmu_short_dte_t *mmuBtbl) 452 { 453 int idx; 454 455 /* Which table is this in? */ 456 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE; 457 #ifdef PMAP_DEBUG 458 if ((idx < 0) || (idx >= NUM_B_TABLES)) 459 panic("mmuB2tmgr"); 460 #endif 461 return (&Btmgrbase[idx]); 462 } 463 464 /* mmuC2tmgr INTERNAL 465 ** 466 * Given a pte known to belong to a C table, return the address of 467 * that table's management structure. 468 */ 469 static INLINE c_tmgr_t * 470 mmuC2tmgr(mmu_short_pte_t *mmuCtbl) 471 { 472 int idx; 473 474 /* Which table is this in? */ 475 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE; 476 #ifdef PMAP_DEBUG 477 if ((idx < 0) || (idx >= NUM_C_TABLES)) 478 panic("mmuC2tmgr"); 479 #endif 480 return (&Ctmgrbase[idx]); 481 } 482 483 /* This is now a function call below. 484 * #define pa2pv(pa) \ 485 * (&pvbase[(unsigned long)\ 486 * m68k_btop(pa)\ 487 * ]) 488 */ 489 490 /* pa2pv INTERNAL 491 ** 492 * Return the pv_list_head element which manages the given physical 493 * address. 494 */ 495 static INLINE pv_t * 496 pa2pv(paddr_t pa) 497 { 498 struct pmap_physmem_struct *bank; 499 int idx; 500 501 bank = &avail_mem[0]; 502 while (pa >= bank->pmem_end) 503 bank = bank->pmem_next; 504 505 pa -= bank->pmem_start; 506 idx = bank->pmem_pvbase + m68k_btop(pa); 507 #ifdef PMAP_DEBUG 508 if ((idx < 0) || (idx >= physmem)) 509 panic("pa2pv"); 510 #endif 511 return &pvbase[idx]; 512 } 513 514 /* pteidx INTERNAL 515 ** 516 * Return the index of the given PTE within the entire fixed table of 517 * PTEs. 518 */ 519 static INLINE int 520 pteidx(mmu_short_pte_t *pte) 521 { 522 return (pte - kernCbase); 523 } 524 525 /* 526 * This just offers a place to put some debugging checks, 527 * and reduces the number of places "curlwp" appears... 528 */ 529 static INLINE pmap_t 530 current_pmap(void) 531 { 532 struct vmspace *vm; 533 struct vm_map *map; 534 pmap_t pmap; 535 536 if (curlwp == NULL) 537 pmap = &kernel_pmap; 538 else { 539 vm = curproc->p_vmspace; 540 map = &vm->vm_map; 541 pmap = vm_map_pmap(map); 542 } 543 544 return (pmap); 545 } 546 547 548 /*************************** FUNCTION DEFINITIONS ************************ 549 * These appear here merely for the compiler to enforce type checking on * 550 * all function calls. * 551 *************************************************************************/ 552 553 /** Internal functions 554 ** Most functions used only within this module are defined in 555 ** pmap_pvt.h (why not here if used only here?) 556 **/ 557 static void pmap_page_upload(void); 558 559 /** Interface functions 560 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG 561 ** defined. 562 **/ 563 void pmap_pinit(pmap_t); 564 void pmap_release(pmap_t); 565 566 /********************************** CODE ******************************** 567 * Functions that are called from other parts of the kernel are labeled * 568 * as 'INTERFACE' functions. Functions that are only called from * 569 * within the pmap module are labeled as 'INTERNAL' functions. * 570 * Functions that are internal, but are not (currently) used at all are * 571 * labeled 'INTERNAL_X'. * 572 ************************************************************************/ 573 574 /* pmap_bootstrap INTERNAL 575 ** 576 * Initializes the pmap system. Called at boot time from 577 * locore2.c:_vm_init() 578 * 579 * Reminder: having a pmap_bootstrap_alloc() and also having the VM 580 * system implement pmap_steal_memory() is redundant. 581 * Don't release this code without removing one or the other! 582 */ 583 void 584 pmap_bootstrap(vaddr_t nextva) 585 { 586 struct physmemory *membank; 587 struct pmap_physmem_struct *pmap_membank; 588 vaddr_t va, eva; 589 paddr_t pa; 590 int b, c, i, j; /* running table counts */ 591 int size, resvmem; 592 593 /* 594 * This function is called by __bootstrap after it has 595 * determined the type of machine and made the appropriate 596 * patches to the ROM vectors (XXX- I don't quite know what I meant 597 * by that.) It allocates and sets up enough of the pmap system 598 * to manage the kernel's address space. 599 */ 600 601 /* 602 * Determine the range of kernel virtual and physical 603 * space available. Note that we ABSOLUTELY DEPEND on 604 * the fact that the first bank of memory (4MB) is 605 * mapped linearly to KERNBASE (which we guaranteed in 606 * the first instructions of locore.s). 607 * That is plenty for our bootstrap work. 608 */ 609 virtual_avail = m68k_round_page(nextva); 610 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */ 611 virtual_end = VM_MAX_KERNEL_ADDRESS; 612 /* Don't need avail_start til later. */ 613 614 /* We may now call pmap_bootstrap_alloc(). */ 615 bootstrap_alloc_enabled = TRUE; 616 617 /* 618 * This is a somewhat unwrapped loop to deal with 619 * copying the PROM's 'phsymem' banks into the pmap's 620 * banks. The following is always assumed: 621 * 1. There is always at least one bank of memory. 622 * 2. There is always a last bank of memory, and its 623 * pmem_next member must be set to NULL. 624 */ 625 membank = romVectorPtr->v_physmemory; 626 pmap_membank = avail_mem; 627 total_phys_mem = 0; 628 629 for (;;) { /* break on !membank */ 630 pmap_membank->pmem_start = membank->address; 631 pmap_membank->pmem_end = membank->address + membank->size; 632 total_phys_mem += membank->size; 633 membank = membank->next; 634 if (!membank) 635 break; 636 /* This silly syntax arises because pmap_membank 637 * is really a pre-allocated array, but it is put into 638 * use as a linked list. 639 */ 640 pmap_membank->pmem_next = pmap_membank + 1; 641 pmap_membank = pmap_membank->pmem_next; 642 } 643 /* This is the last element. */ 644 pmap_membank->pmem_next = NULL; 645 646 /* 647 * Note: total_phys_mem, physmem represent 648 * actual physical memory, including that 649 * reserved for the PROM monitor. 650 */ 651 physmem = btoc(total_phys_mem); 652 653 /* 654 * Avail_end is set to the first byte of physical memory 655 * after the end of the last bank. We use this only to 656 * determine if a physical address is "managed" memory. 657 * This address range should be reduced to prevent the 658 * physical pages needed by the PROM monitor from being used 659 * in the VM system. 660 */ 661 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail); 662 resvmem = m68k_round_page(resvmem); 663 avail_end = pmap_membank->pmem_end - resvmem; 664 665 /* 666 * First allocate enough kernel MMU tables to map all 667 * of kernel virtual space from KERNBASE to 0xFFFFFFFF. 668 * Note: All must be aligned on 256 byte boundaries. 669 * Start with the level-A table (one of those). 670 */ 671 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE; 672 kernAbase = pmap_bootstrap_alloc(size); 673 memset(kernAbase, 0, size); 674 675 /* Now the level-B kernel tables... */ 676 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES; 677 kernBbase = pmap_bootstrap_alloc(size); 678 memset(kernBbase, 0, size); 679 680 /* Now the level-C kernel tables... */ 681 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES; 682 kernCbase = pmap_bootstrap_alloc(size); 683 memset(kernCbase, 0, size); 684 /* 685 * Note: In order for the PV system to work correctly, the kernel 686 * and user-level C tables must be allocated contiguously. 687 * Nothing should be allocated between here and the allocation of 688 * mmuCbase below. XXX: Should do this as one allocation, and 689 * then compute a pointer for mmuCbase instead of this... 690 * 691 * Allocate user MMU tables. 692 * These must be contiguous with the preceding. 693 */ 694 695 #ifndef FIXED_NTABLES 696 /* 697 * The number of user-level C tables that should be allocated is 698 * related to the size of physical memory. In general, there should 699 * be enough tables to map four times the amount of available RAM. 700 * The extra amount is needed because some table space is wasted by 701 * fragmentation. 702 */ 703 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE); 704 NUM_B_TABLES = NUM_C_TABLES / 2; 705 NUM_A_TABLES = NUM_B_TABLES / 2; 706 #endif /* !FIXED_NTABLES */ 707 708 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES; 709 mmuCbase = pmap_bootstrap_alloc(size); 710 711 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES; 712 mmuBbase = pmap_bootstrap_alloc(size); 713 714 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES; 715 mmuAbase = pmap_bootstrap_alloc(size); 716 717 /* 718 * Fill in the never-changing part of the kernel tables. 719 * For simplicity, the kernel's mappings will be editable as a 720 * flat array of page table entries at kernCbase. The 721 * higher level 'A' and 'B' tables must be initialized to point 722 * to this lower one. 723 */ 724 b = c = 0; 725 726 /* 727 * Invalidate all mappings below KERNBASE in the A table. 728 * This area has already been zeroed out, but it is good 729 * practice to explicitly show that we are interpreting 730 * it as a list of A table descriptors. 731 */ 732 for (i = 0; i < MMU_TIA(KERNBASE); i++) { 733 kernAbase[i].addr.raw = 0; 734 } 735 736 /* 737 * Set up the kernel A and B tables so that they will reference the 738 * correct spots in the contiguous table of PTEs allocated for the 739 * kernel's virtual memory space. 740 */ 741 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) { 742 kernAbase[i].attr.raw = 743 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT; 744 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]); 745 746 for (j=0; j < MMU_B_TBL_SIZE; j++) { 747 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c]) 748 | MMU_DT_SHORT; 749 c += MMU_C_TBL_SIZE; 750 } 751 b += MMU_B_TBL_SIZE; 752 } 753 754 pmap_alloc_usermmu(); /* Allocate user MMU tables. */ 755 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/ 756 pmap_alloc_pv(); /* Allocate physical->virtual map. */ 757 758 /* 759 * We are now done with pmap_bootstrap_alloc(). Round up 760 * `virtual_avail' to the nearest page, and set the flag 761 * to prevent use of pmap_bootstrap_alloc() hereafter. 762 */ 763 pmap_bootstrap_aalign(PAGE_SIZE); 764 bootstrap_alloc_enabled = FALSE; 765 766 /* 767 * Now that we are done with pmap_bootstrap_alloc(), we 768 * must save the virtual and physical addresses of the 769 * end of the linearly mapped range, which are stored in 770 * virtual_contig_end and avail_start, respectively. 771 * These variables will never change after this point. 772 */ 773 virtual_contig_end = virtual_avail; 774 avail_start = virtual_avail - KERNBASE; 775 776 /* 777 * `avail_next' is a running pointer used by pmap_next_page() to 778 * keep track of the next available physical page to be handed 779 * to the VM system during its initialization, in which it 780 * asks for physical pages, one at a time. 781 */ 782 avail_next = avail_start; 783 784 /* 785 * Now allocate some virtual addresses, but not the physical pages 786 * behind them. Note that virtual_avail is already page-aligned. 787 * 788 * tmp_vpages[] is an array of two virtual pages used for temporary 789 * kernel mappings in the pmap module to facilitate various physical 790 * address-oritented operations. 791 */ 792 tmp_vpages[0] = virtual_avail; 793 virtual_avail += PAGE_SIZE; 794 tmp_vpages[1] = virtual_avail; 795 virtual_avail += PAGE_SIZE; 796 797 /** Initialize the PV system **/ 798 pmap_init_pv(); 799 800 /* 801 * Fill in the kernel_pmap structure and kernel_crp. 802 */ 803 kernAphys = mmu_vtop(kernAbase); 804 kernel_pmap.pm_a_tmgr = NULL; 805 kernel_pmap.pm_a_phys = kernAphys; 806 kernel_pmap.pm_refcount = 1; /* always in use */ 807 simple_lock_init(&kernel_pmap.pm_lock); 808 809 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG; 810 kernel_crp.rp_addr = kernAphys; 811 812 /* 813 * Now pmap_enter_kernel() may be used safely and will be 814 * the main interface used hereafter to modify the kernel's 815 * virtual address space. Note that since we are still running 816 * under the PROM's address table, none of these table modifications 817 * actually take effect until pmap_takeover_mmu() is called. 818 * 819 * Note: Our tables do NOT have the PROM linear mappings! 820 * Only the mappings created here exist in our tables, so 821 * remember to map anything we expect to use. 822 */ 823 va = (vaddr_t)KERNBASE; 824 pa = 0; 825 826 /* 827 * The first page of the kernel virtual address space is the msgbuf 828 * page. The page attributes (data, non-cached) are set here, while 829 * the address is assigned to this global pointer in cpu_startup(). 830 * It is non-cached, mostly due to paranoia. 831 */ 832 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL); 833 va += PAGE_SIZE; pa += PAGE_SIZE; 834 835 /* Next page is used as the temporary stack. */ 836 pmap_enter_kernel(va, pa, VM_PROT_ALL); 837 va += PAGE_SIZE; pa += PAGE_SIZE; 838 839 /* 840 * Map all of the kernel's text segment as read-only and cacheable. 841 * (Cacheable is implied by default). Unfortunately, the last bytes 842 * of kernel text and the first bytes of kernel data will often be 843 * sharing the same page. Therefore, the last page of kernel text 844 * has to be mapped as read/write, to accomodate the data. 845 */ 846 eva = m68k_trunc_page((vaddr_t)etext); 847 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE) 848 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE); 849 850 /* 851 * Map all of the kernel's data as read/write and cacheable. 852 * This includes: data, BSS, symbols, and everything in the 853 * contiguous memory used by pmap_bootstrap_alloc() 854 */ 855 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE) 856 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE); 857 858 /* 859 * At this point we are almost ready to take over the MMU. But first 860 * we must save the PROM's address space in our map, as we call its 861 * routines and make references to its data later in the kernel. 862 */ 863 pmap_bootstrap_copyprom(); 864 pmap_takeover_mmu(); 865 pmap_bootstrap_setprom(); 866 867 /* Notify the VM system of our page size. */ 868 uvmexp.pagesize = PAGE_SIZE; 869 uvm_setpagesize(); 870 871 pmap_page_upload(); 872 } 873 874 875 /* pmap_alloc_usermmu INTERNAL 876 ** 877 * Called from pmap_bootstrap() to allocate MMU tables that will 878 * eventually be used for user mappings. 879 */ 880 void 881 pmap_alloc_usermmu(void) 882 { 883 /* XXX: Moved into caller. */ 884 } 885 886 /* pmap_alloc_pv INTERNAL 887 ** 888 * Called from pmap_bootstrap() to allocate the physical 889 * to virtual mapping list. Each physical page of memory 890 * in the system has a corresponding element in this list. 891 */ 892 void 893 pmap_alloc_pv(void) 894 { 895 int i; 896 unsigned int total_mem; 897 898 /* 899 * Allocate a pv_head structure for every page of physical 900 * memory that will be managed by the system. Since memory on 901 * the 3/80 is non-contiguous, we cannot arrive at a total page 902 * count by subtraction of the lowest available address from the 903 * highest, but rather we have to step through each memory 904 * bank and add the number of pages in each to the total. 905 * 906 * At this time we also initialize the offset of each bank's 907 * starting pv_head within the pv_head list so that the physical 908 * memory state routines (pmap_is_referenced(), 909 * pmap_is_modified(), et al.) can quickly find coresponding 910 * pv_heads in spite of the non-contiguity. 911 */ 912 total_mem = 0; 913 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 914 avail_mem[i].pmem_pvbase = m68k_btop(total_mem); 915 total_mem += avail_mem[i].pmem_end - 916 avail_mem[i].pmem_start; 917 if (avail_mem[i].pmem_next == NULL) 918 break; 919 } 920 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) * 921 m68k_btop(total_phys_mem)); 922 } 923 924 /* pmap_alloc_usertmgr INTERNAL 925 ** 926 * Called from pmap_bootstrap() to allocate the structures which 927 * facilitate management of user MMU tables. Each user MMU table 928 * in the system has one such structure associated with it. 929 */ 930 void 931 pmap_alloc_usertmgr(void) 932 { 933 /* Allocate user MMU table managers */ 934 /* It would be a lot simpler to just make these BSS, but */ 935 /* we may want to change their size at boot time... -j */ 936 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t) 937 * NUM_A_TABLES); 938 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t) 939 * NUM_B_TABLES); 940 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t) 941 * NUM_C_TABLES); 942 943 /* 944 * Allocate PV list elements for the physical to virtual 945 * mapping system. 946 */ 947 pvebase = (pv_elem_t *) pmap_bootstrap_alloc( 948 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES)); 949 } 950 951 /* pmap_bootstrap_copyprom() INTERNAL 952 ** 953 * Copy the PROM mappings into our own tables. Note, we 954 * can use physical addresses until __bootstrap returns. 955 */ 956 void 957 pmap_bootstrap_copyprom(void) 958 { 959 struct sunromvec *romp; 960 int *mon_ctbl; 961 mmu_short_pte_t *kpte; 962 int i, len; 963 964 romp = romVectorPtr; 965 966 /* 967 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND 968 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE 969 */ 970 mon_ctbl = *romp->monptaddr; 971 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE); 972 kpte = &kernCbase[i]; 973 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE); 974 975 for (i = 0; i < len; i++) { 976 kpte[i].attr.raw = mon_ctbl[i]; 977 } 978 979 /* 980 * Copy the mappings at MON_DVMA_BASE (to the end). 981 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE. 982 * Actually, we only want the last page, which the 983 * PROM has set up for use by the "ie" driver. 984 * (The i82686 needs its SCP there.) 985 * If we copy all the mappings, pmap_enter_kernel 986 * may complain about finding valid PTEs that are 987 * not recorded in our PV lists... 988 */ 989 mon_ctbl = *romp->shadowpteaddr; 990 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE); 991 kpte = &kernCbase[i]; 992 len = m68k_btop(SUN3X_MON_DVMA_SIZE); 993 for (i = (len-1); i < len; i++) { 994 kpte[i].attr.raw = mon_ctbl[i]; 995 } 996 } 997 998 /* pmap_takeover_mmu INTERNAL 999 ** 1000 * Called from pmap_bootstrap() after it has copied enough of the 1001 * PROM mappings into the kernel map so that we can use our own 1002 * MMU table. 1003 */ 1004 void 1005 pmap_takeover_mmu(void) 1006 { 1007 1008 loadcrp(&kernel_crp); 1009 } 1010 1011 /* pmap_bootstrap_setprom() INTERNAL 1012 ** 1013 * Set the PROM mappings so it can see kernel space. 1014 * Note that physical addresses are used here, which 1015 * we can get away with because this runs with the 1016 * low 1GB set for transparent translation. 1017 */ 1018 void 1019 pmap_bootstrap_setprom(void) 1020 { 1021 mmu_long_dte_t *mon_dte; 1022 extern struct mmu_rootptr mon_crp; 1023 int i; 1024 1025 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr; 1026 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) { 1027 mon_dte[i].attr.raw = kernAbase[i].attr.raw; 1028 mon_dte[i].addr.raw = kernAbase[i].addr.raw; 1029 } 1030 } 1031 1032 1033 /* pmap_init INTERFACE 1034 ** 1035 * Called at the end of vm_init() to set up the pmap system to go 1036 * into full time operation. All initialization of kernel_pmap 1037 * should be already done by now, so this should just do things 1038 * needed for user-level pmaps to work. 1039 */ 1040 void 1041 pmap_init(void) 1042 { 1043 /** Initialize the manager pools **/ 1044 TAILQ_INIT(&a_pool); 1045 TAILQ_INIT(&b_pool); 1046 TAILQ_INIT(&c_pool); 1047 1048 /************************************************************** 1049 * Initialize all tmgr structures and MMU tables they manage. * 1050 **************************************************************/ 1051 /** Initialize A tables **/ 1052 pmap_init_a_tables(); 1053 /** Initialize B tables **/ 1054 pmap_init_b_tables(); 1055 /** Initialize C tables **/ 1056 pmap_init_c_tables(); 1057 1058 /** Initialize the pmap pools **/ 1059 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl", 1060 &pool_allocator_nointr); 1061 } 1062 1063 /* pmap_init_a_tables() INTERNAL 1064 ** 1065 * Initializes all A managers, their MMU A tables, and inserts 1066 * them into the A manager pool for use by the system. 1067 */ 1068 void 1069 pmap_init_a_tables(void) 1070 { 1071 int i; 1072 a_tmgr_t *a_tbl; 1073 1074 for (i = 0; i < NUM_A_TABLES; i++) { 1075 /* Select the next available A manager from the pool */ 1076 a_tbl = &Atmgrbase[i]; 1077 1078 /* 1079 * Clear its parent entry. Set its wired and valid 1080 * entry count to zero. 1081 */ 1082 a_tbl->at_parent = NULL; 1083 a_tbl->at_wcnt = a_tbl->at_ecnt = 0; 1084 1085 /* Assign it the next available MMU A table from the pool */ 1086 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE]; 1087 1088 /* 1089 * Initialize the MMU A table with the table in the `proc0', 1090 * or kernel, mapping. This ensures that every process has 1091 * the kernel mapped in the top part of its address space. 1092 */ 1093 memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE * 1094 sizeof(mmu_long_dte_t)); 1095 1096 /* 1097 * Finally, insert the manager into the A pool, 1098 * making it ready to be used by the system. 1099 */ 1100 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1101 } 1102 } 1103 1104 /* pmap_init_b_tables() INTERNAL 1105 ** 1106 * Initializes all B table managers, their MMU B tables, and 1107 * inserts them into the B manager pool for use by the system. 1108 */ 1109 void 1110 pmap_init_b_tables(void) 1111 { 1112 int i, j; 1113 b_tmgr_t *b_tbl; 1114 1115 for (i = 0; i < NUM_B_TABLES; i++) { 1116 /* Select the next available B manager from the pool */ 1117 b_tbl = &Btmgrbase[i]; 1118 1119 b_tbl->bt_parent = NULL; /* clear its parent, */ 1120 b_tbl->bt_pidx = 0; /* parent index, */ 1121 b_tbl->bt_wcnt = 0; /* wired entry count, */ 1122 b_tbl->bt_ecnt = 0; /* valid entry count. */ 1123 1124 /* Assign it the next available MMU B table from the pool */ 1125 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE]; 1126 1127 /* Invalidate every descriptor in the table */ 1128 for (j=0; j < MMU_B_TBL_SIZE; j++) 1129 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID; 1130 1131 /* Insert the manager into the B pool */ 1132 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1133 } 1134 } 1135 1136 /* pmap_init_c_tables() INTERNAL 1137 ** 1138 * Initializes all C table managers, their MMU C tables, and 1139 * inserts them into the C manager pool for use by the system. 1140 */ 1141 void 1142 pmap_init_c_tables(void) 1143 { 1144 int i, j; 1145 c_tmgr_t *c_tbl; 1146 1147 for (i = 0; i < NUM_C_TABLES; i++) { 1148 /* Select the next available C manager from the pool */ 1149 c_tbl = &Ctmgrbase[i]; 1150 1151 c_tbl->ct_parent = NULL; /* clear its parent, */ 1152 c_tbl->ct_pidx = 0; /* parent index, */ 1153 c_tbl->ct_wcnt = 0; /* wired entry count, */ 1154 c_tbl->ct_ecnt = 0; /* valid entry count, */ 1155 c_tbl->ct_pmap = NULL; /* parent pmap, */ 1156 c_tbl->ct_va = 0; /* base of managed range */ 1157 1158 /* Assign it the next available MMU C table from the pool */ 1159 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE]; 1160 1161 for (j=0; j < MMU_C_TBL_SIZE; j++) 1162 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID; 1163 1164 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1165 } 1166 } 1167 1168 /* pmap_init_pv() INTERNAL 1169 ** 1170 * Initializes the Physical to Virtual mapping system. 1171 */ 1172 void 1173 pmap_init_pv(void) 1174 { 1175 int i; 1176 1177 /* Initialize every PV head. */ 1178 for (i = 0; i < m68k_btop(total_phys_mem); i++) { 1179 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */ 1180 pvbase[i].pv_flags = 0; /* Zero out page flags */ 1181 } 1182 } 1183 1184 /* get_a_table INTERNAL 1185 ** 1186 * Retrieve and return a level A table for use in a user map. 1187 */ 1188 a_tmgr_t * 1189 get_a_table(void) 1190 { 1191 a_tmgr_t *tbl; 1192 pmap_t pmap; 1193 1194 /* Get the top A table in the pool */ 1195 tbl = TAILQ_FIRST(&a_pool); 1196 if (tbl == NULL) { 1197 /* 1198 * XXX - Instead of panicking here and in other get_x_table 1199 * functions, we do have the option of sleeping on the head of 1200 * the table pool. Any function which updates the table pool 1201 * would then issue a wakeup() on the head, thus waking up any 1202 * processes waiting for a table. 1203 * 1204 * Actually, the place to sleep would be when some process 1205 * asks for a "wired" mapping that would run us short of 1206 * mapping resources. This design DEPENDS on always having 1207 * some mapping resources in the pool for stealing, so we 1208 * must make sure we NEVER let the pool become empty. -gwr 1209 */ 1210 panic("get_a_table: out of A tables."); 1211 } 1212 1213 TAILQ_REMOVE(&a_pool, tbl, at_link); 1214 /* 1215 * If the table has a non-null parent pointer then it is in use. 1216 * Forcibly abduct it from its parent and clear its entries. 1217 * No re-entrancy worries here. This table would not be in the 1218 * table pool unless it was available for use. 1219 * 1220 * Note that the second argument to free_a_table() is FALSE. This 1221 * indicates that the table should not be relinked into the A table 1222 * pool. That is a job for the function that called us. 1223 */ 1224 if (tbl->at_parent) { 1225 pmap = tbl->at_parent; 1226 free_a_table(tbl, FALSE); 1227 pmap->pm_a_tmgr = NULL; 1228 pmap->pm_a_phys = kernAphys; 1229 } 1230 return tbl; 1231 } 1232 1233 /* get_b_table INTERNAL 1234 ** 1235 * Return a level B table for use. 1236 */ 1237 b_tmgr_t * 1238 get_b_table(void) 1239 { 1240 b_tmgr_t *tbl; 1241 1242 /* See 'get_a_table' for comments. */ 1243 tbl = TAILQ_FIRST(&b_pool); 1244 if (tbl == NULL) 1245 panic("get_b_table: out of B tables."); 1246 TAILQ_REMOVE(&b_pool, tbl, bt_link); 1247 if (tbl->bt_parent) { 1248 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID; 1249 tbl->bt_parent->at_ecnt--; 1250 free_b_table(tbl, FALSE); 1251 } 1252 return tbl; 1253 } 1254 1255 /* get_c_table INTERNAL 1256 ** 1257 * Return a level C table for use. 1258 */ 1259 c_tmgr_t * 1260 get_c_table(void) 1261 { 1262 c_tmgr_t *tbl; 1263 1264 /* See 'get_a_table' for comments */ 1265 tbl = TAILQ_FIRST(&c_pool); 1266 if (tbl == NULL) 1267 panic("get_c_table: out of C tables."); 1268 TAILQ_REMOVE(&c_pool, tbl, ct_link); 1269 if (tbl->ct_parent) { 1270 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID; 1271 tbl->ct_parent->bt_ecnt--; 1272 free_c_table(tbl, FALSE); 1273 } 1274 return tbl; 1275 } 1276 1277 /* 1278 * The following 'free_table' and 'steal_table' functions are called to 1279 * detach tables from their current obligations (parents and children) and 1280 * prepare them for reuse in another mapping. 1281 * 1282 * Free_table is used when the calling function will handle the fate 1283 * of the parent table, such as returning it to the free pool when it has 1284 * no valid entries. Functions that do not want to handle this should 1285 * call steal_table, in which the parent table's descriptors and entry 1286 * count are automatically modified when this table is removed. 1287 */ 1288 1289 /* free_a_table INTERNAL 1290 ** 1291 * Unmaps the given A table and all child tables from their current 1292 * mappings. Returns the number of pages that were invalidated. 1293 * If 'relink' is true, the function will return the table to the head 1294 * of the available table pool. 1295 * 1296 * Cache note: The MC68851 will automatically flush all 1297 * descriptors derived from a given A table from its 1298 * Automatic Translation Cache (ATC) if we issue a 1299 * 'PFLUSHR' instruction with the base address of the 1300 * table. This function should do, and does so. 1301 * Note note: We are using an MC68030 - there is no 1302 * PFLUSHR. 1303 */ 1304 int 1305 free_a_table(a_tmgr_t *a_tbl, boolean_t relink) 1306 { 1307 int i, removed_cnt; 1308 mmu_long_dte_t *dte; 1309 mmu_short_dte_t *dtbl; 1310 b_tmgr_t *tmgr; 1311 1312 /* 1313 * Flush the ATC cache of all cached descriptors derived 1314 * from this table. 1315 * Sun3x does not use 68851's cached table feature 1316 * flush_atc_crp(mmu_vtop(a_tbl->dte)); 1317 */ 1318 1319 /* 1320 * Remove any pending cache flushes that were designated 1321 * for the pmap this A table belongs to. 1322 * a_tbl->parent->atc_flushq[0] = 0; 1323 * Not implemented in sun3x. 1324 */ 1325 1326 /* 1327 * All A tables in the system should retain a map for the 1328 * kernel. If the table contains any valid descriptors 1329 * (other than those for the kernel area), invalidate them all, 1330 * stopping short of the kernel's entries. 1331 */ 1332 removed_cnt = 0; 1333 if (a_tbl->at_ecnt) { 1334 dte = a_tbl->at_dtbl; 1335 for (i=0; i < MMU_TIA(KERNBASE); i++) { 1336 /* 1337 * If a table entry points to a valid B table, free 1338 * it and its children. 1339 */ 1340 if (MMU_VALID_DT(dte[i])) { 1341 /* 1342 * The following block does several things, 1343 * from innermost expression to the 1344 * outermost: 1345 * 1) It extracts the base (cc 1996) 1346 * address of the B table pointed 1347 * to in the A table entry dte[i]. 1348 * 2) It converts this base address into 1349 * the virtual address it can be 1350 * accessed with. (all MMU tables point 1351 * to physical addresses.) 1352 * 3) It finds the corresponding manager 1353 * structure which manages this MMU table. 1354 * 4) It frees the manager structure. 1355 * (This frees the MMU table and all 1356 * child tables. See 'free_b_table' for 1357 * details.) 1358 */ 1359 dtbl = mmu_ptov(dte[i].addr.raw); 1360 tmgr = mmuB2tmgr(dtbl); 1361 removed_cnt += free_b_table(tmgr, TRUE); 1362 dte[i].attr.raw = MMU_DT_INVALID; 1363 } 1364 } 1365 a_tbl->at_ecnt = 0; 1366 } 1367 if (relink) { 1368 a_tbl->at_parent = NULL; 1369 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1370 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 1371 } 1372 return removed_cnt; 1373 } 1374 1375 /* free_b_table INTERNAL 1376 ** 1377 * Unmaps the given B table and all its children from their current 1378 * mappings. Returns the number of pages that were invalidated. 1379 * (For comments, see 'free_a_table()'). 1380 */ 1381 int 1382 free_b_table(b_tmgr_t *b_tbl, boolean_t relink) 1383 { 1384 int i, removed_cnt; 1385 mmu_short_dte_t *dte; 1386 mmu_short_pte_t *dtbl; 1387 c_tmgr_t *tmgr; 1388 1389 removed_cnt = 0; 1390 if (b_tbl->bt_ecnt) { 1391 dte = b_tbl->bt_dtbl; 1392 for (i=0; i < MMU_B_TBL_SIZE; i++) { 1393 if (MMU_VALID_DT(dte[i])) { 1394 dtbl = mmu_ptov(MMU_DTE_PA(dte[i])); 1395 tmgr = mmuC2tmgr(dtbl); 1396 removed_cnt += free_c_table(tmgr, TRUE); 1397 dte[i].attr.raw = MMU_DT_INVALID; 1398 } 1399 } 1400 b_tbl->bt_ecnt = 0; 1401 } 1402 1403 if (relink) { 1404 b_tbl->bt_parent = NULL; 1405 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1406 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 1407 } 1408 return removed_cnt; 1409 } 1410 1411 /* free_c_table INTERNAL 1412 ** 1413 * Unmaps the given C table from use and returns it to the pool for 1414 * re-use. Returns the number of pages that were invalidated. 1415 * 1416 * This function preserves any physical page modification information 1417 * contained in the page descriptors within the C table by calling 1418 * 'pmap_remove_pte().' 1419 */ 1420 int 1421 free_c_table(c_tmgr_t *c_tbl, boolean_t relink) 1422 { 1423 int i, removed_cnt; 1424 1425 removed_cnt = 0; 1426 if (c_tbl->ct_ecnt) { 1427 for (i=0; i < MMU_C_TBL_SIZE; i++) { 1428 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) { 1429 pmap_remove_pte(&c_tbl->ct_dtbl[i]); 1430 removed_cnt++; 1431 } 1432 } 1433 c_tbl->ct_ecnt = 0; 1434 } 1435 1436 if (relink) { 1437 c_tbl->ct_parent = NULL; 1438 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1439 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 1440 } 1441 return removed_cnt; 1442 } 1443 1444 1445 /* pmap_remove_pte INTERNAL 1446 ** 1447 * Unmap the given pte and preserve any page modification 1448 * information by transfering it to the pv head of the 1449 * physical page it maps to. This function does not update 1450 * any reference counts because it is assumed that the calling 1451 * function will do so. 1452 */ 1453 void 1454 pmap_remove_pte(mmu_short_pte_t *pte) 1455 { 1456 u_short pv_idx, targ_idx; 1457 paddr_t pa; 1458 pv_t *pv; 1459 1460 pa = MMU_PTE_PA(*pte); 1461 if (is_managed(pa)) { 1462 pv = pa2pv(pa); 1463 targ_idx = pteidx(pte); /* Index of PTE being removed */ 1464 1465 /* 1466 * If the PTE being removed is the first (or only) PTE in 1467 * the list of PTEs currently mapped to this page, remove the 1468 * PTE by changing the index found on the PV head. Otherwise 1469 * a linear search through the list will have to be executed 1470 * in order to find the PVE which points to the PTE being 1471 * removed, so that it may be modified to point to its new 1472 * neighbor. 1473 */ 1474 1475 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */ 1476 if (pv_idx == targ_idx) { 1477 pv->pv_idx = pvebase[targ_idx].pve_next; 1478 } else { 1479 1480 /* 1481 * Find the PV element pointing to the target 1482 * element. Note: may have pv_idx==PVE_EOL 1483 */ 1484 1485 for (;;) { 1486 if (pv_idx == PVE_EOL) { 1487 goto pv_not_found; 1488 } 1489 if (pvebase[pv_idx].pve_next == targ_idx) 1490 break; 1491 pv_idx = pvebase[pv_idx].pve_next; 1492 } 1493 1494 /* 1495 * At this point, pv_idx is the index of the PV 1496 * element just before the target element in the list. 1497 * Unlink the target. 1498 */ 1499 1500 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next; 1501 } 1502 1503 /* 1504 * Save the mod/ref bits of the pte by simply 1505 * ORing the entire pte onto the pv_flags member 1506 * of the pv structure. 1507 * There is no need to use a separate bit pattern 1508 * for usage information on the pv head than that 1509 * which is used on the MMU ptes. 1510 */ 1511 1512 pv_not_found: 1513 pv->pv_flags |= (u_short) pte->attr.raw; 1514 } 1515 pte->attr.raw = MMU_DT_INVALID; 1516 } 1517 1518 /* pmap_stroll INTERNAL 1519 ** 1520 * Retrieve the addresses of all table managers involved in the mapping of 1521 * the given virtual address. If the table walk completed successfully, 1522 * return TRUE. If it was only partially successful, return FALSE. 1523 * The table walk performed by this function is important to many other 1524 * functions in this module. 1525 * 1526 * Note: This function ought to be easier to read. 1527 */ 1528 boolean_t 1529 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl, 1530 c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx, 1531 int *pte_idx) 1532 { 1533 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1534 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1535 1536 if (pmap == pmap_kernel()) 1537 return FALSE; 1538 1539 /* Does the given pmap have its own A table? */ 1540 *a_tbl = pmap->pm_a_tmgr; 1541 if (*a_tbl == NULL) 1542 return FALSE; /* No. Return unknown. */ 1543 /* Does the A table have a valid B table 1544 * under the corresponding table entry? 1545 */ 1546 *a_idx = MMU_TIA(va); 1547 a_dte = &((*a_tbl)->at_dtbl[*a_idx]); 1548 if (!MMU_VALID_DT(*a_dte)) 1549 return FALSE; /* No. Return unknown. */ 1550 /* Yes. Extract B table from the A table. */ 1551 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw)); 1552 /* Does the B table have a valid C table 1553 * under the corresponding table entry? 1554 */ 1555 *b_idx = MMU_TIB(va); 1556 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]); 1557 if (!MMU_VALID_DT(*b_dte)) 1558 return FALSE; /* No. Return unknown. */ 1559 /* Yes. Extract C table from the B table. */ 1560 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte))); 1561 *pte_idx = MMU_TIC(va); 1562 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]); 1563 1564 return TRUE; 1565 } 1566 1567 /* pmap_enter INTERFACE 1568 ** 1569 * Called by the kernel to map a virtual address 1570 * to a physical address in the given process map. 1571 * 1572 * Note: this function should apply an exclusive lock 1573 * on the pmap system for its duration. (it certainly 1574 * would save my hair!!) 1575 * This function ought to be easier to read. 1576 */ 1577 int 1578 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) 1579 { 1580 boolean_t insert, managed; /* Marks the need for PV insertion.*/ 1581 u_short nidx; /* PV list index */ 1582 int mapflags; /* Flags for the mapping (see NOTE1) */ 1583 u_int a_idx, b_idx, pte_idx; /* table indices */ 1584 a_tmgr_t *a_tbl; /* A: long descriptor table manager */ 1585 b_tmgr_t *b_tbl; /* B: short descriptor table manager */ 1586 c_tmgr_t *c_tbl; /* C: short page table manager */ 1587 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1588 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1589 mmu_short_pte_t *c_pte; /* C: short page descriptor table */ 1590 pv_t *pv; /* pv list head */ 1591 boolean_t wired; /* is the mapping to be wired? */ 1592 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */ 1593 1594 if (pmap == pmap_kernel()) { 1595 pmap_enter_kernel(va, pa, prot); 1596 return 0; 1597 } 1598 1599 /* 1600 * Determine if the mapping should be wired. 1601 */ 1602 wired = ((flags & PMAP_WIRED) != 0); 1603 1604 /* 1605 * NOTE1: 1606 * 1607 * On November 13, 1999, someone changed the pmap_enter() API such 1608 * that it now accepts a 'flags' argument. This new argument 1609 * contains bit-flags for the architecture-independent (UVM) system to 1610 * use in signalling certain mapping requirements to the architecture- 1611 * dependent (pmap) system. The argument it replaces, 'wired', is now 1612 * one of the flags within it. 1613 * 1614 * In addition to flags signaled by the architecture-independent 1615 * system, parts of the architecture-dependent section of the sun3x 1616 * kernel pass their own flags in the lower, unused bits of the 1617 * physical address supplied to this function. These flags are 1618 * extracted and stored in the temporary variable 'mapflags'. 1619 * 1620 * Extract sun3x specific flags from the physical address. 1621 */ 1622 mapflags = (pa & ~MMU_PAGE_MASK); 1623 pa &= MMU_PAGE_MASK; 1624 1625 /* 1626 * Determine if the physical address being mapped is on-board RAM. 1627 * Any other area of the address space is likely to belong to a 1628 * device and hence it would be disasterous to cache its contents. 1629 */ 1630 if ((managed = is_managed(pa)) == FALSE) 1631 mapflags |= PMAP_NC; 1632 1633 /* 1634 * For user mappings we walk along the MMU tables of the given 1635 * pmap, reaching a PTE which describes the virtual page being 1636 * mapped or changed. If any level of the walk ends in an invalid 1637 * entry, a table must be allocated and the entry must be updated 1638 * to point to it. 1639 * There is a bit of confusion as to whether this code must be 1640 * re-entrant. For now we will assume it is. To support 1641 * re-entrancy we must unlink tables from the table pool before 1642 * we assume we may use them. Tables are re-linked into the pool 1643 * when we are finished with them at the end of the function. 1644 * But I don't feel like doing that until we have proof that this 1645 * needs to be re-entrant. 1646 * 'llevel' records which tables need to be relinked. 1647 */ 1648 llevel = NONE; 1649 1650 /* 1651 * Step 1 - Retrieve the A table from the pmap. If it has no 1652 * A table, allocate a new one from the available pool. 1653 */ 1654 1655 a_tbl = pmap->pm_a_tmgr; 1656 if (a_tbl == NULL) { 1657 /* 1658 * This pmap does not currently have an A table. Allocate 1659 * a new one. 1660 */ 1661 a_tbl = get_a_table(); 1662 a_tbl->at_parent = pmap; 1663 1664 /* 1665 * Assign this new A table to the pmap, and calculate its 1666 * physical address so that loadcrp() can be used to make 1667 * the table active. 1668 */ 1669 pmap->pm_a_tmgr = a_tbl; 1670 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl); 1671 1672 /* 1673 * If the process receiving a new A table is the current 1674 * process, we are responsible for setting the MMU so that 1675 * it becomes the current address space. This only adds 1676 * new mappings, so no need to flush anything. 1677 */ 1678 if (pmap == current_pmap()) { 1679 kernel_crp.rp_addr = pmap->pm_a_phys; 1680 loadcrp(&kernel_crp); 1681 } 1682 1683 if (!wired) 1684 llevel = NEWA; 1685 } else { 1686 /* 1687 * Use the A table already allocated for this pmap. 1688 * Unlink it from the A table pool if necessary. 1689 */ 1690 if (wired && !a_tbl->at_wcnt) 1691 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1692 } 1693 1694 /* 1695 * Step 2 - Walk into the B table. If there is no valid B table, 1696 * allocate one. 1697 */ 1698 1699 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */ 1700 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */ 1701 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */ 1702 /* The descriptor is valid. Use the B table it points to. */ 1703 /************************************* 1704 * a_idx * 1705 * v * 1706 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- * 1707 * | | | | | | | | | | | | * 1708 * +-+-+-+-+-+-+-+-+-+-+-+- * 1709 * | * 1710 * \- b_tbl -> +-+- * 1711 * | | * 1712 * +-+- * 1713 *************************************/ 1714 b_dte = mmu_ptov(a_dte->addr.raw); 1715 b_tbl = mmuB2tmgr(b_dte); 1716 1717 /* 1718 * If the requested mapping must be wired, but this table 1719 * being used to map it is not, the table must be removed 1720 * from the available pool and its wired entry count 1721 * incremented. 1722 */ 1723 if (wired && !b_tbl->bt_wcnt) { 1724 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1725 a_tbl->at_wcnt++; 1726 } 1727 } else { 1728 /* The descriptor is invalid. Allocate a new B table. */ 1729 b_tbl = get_b_table(); 1730 1731 /* Point the parent A table descriptor to this new B table. */ 1732 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl); 1733 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT; 1734 a_tbl->at_ecnt++; /* Update parent's valid entry count */ 1735 1736 /* Create the necessary back references to the parent table */ 1737 b_tbl->bt_parent = a_tbl; 1738 b_tbl->bt_pidx = a_idx; 1739 1740 /* 1741 * If this table is to be wired, make sure the parent A table 1742 * wired count is updated to reflect that it has another wired 1743 * entry. 1744 */ 1745 if (wired) 1746 a_tbl->at_wcnt++; 1747 else if (llevel == NONE) 1748 llevel = NEWB; 1749 } 1750 1751 /* 1752 * Step 3 - Walk into the C table, if there is no valid C table, 1753 * allocate one. 1754 */ 1755 1756 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */ 1757 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */ 1758 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */ 1759 /* The descriptor is valid. Use the C table it points to. */ 1760 /************************************** 1761 * c_idx * 1762 * | v * 1763 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- * 1764 * | | | | | | | | | | | * 1765 * +-+-+-+-+-+-+-+-+-+-+- * 1766 * | * 1767 * \- c_tbl -> +-+-- * 1768 * | | | * 1769 * +-+-- * 1770 **************************************/ 1771 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte)); 1772 c_tbl = mmuC2tmgr(c_pte); 1773 1774 /* If mapping is wired and table is not */ 1775 if (wired && !c_tbl->ct_wcnt) { 1776 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1777 b_tbl->bt_wcnt++; 1778 } 1779 } else { 1780 /* The descriptor is invalid. Allocate a new C table. */ 1781 c_tbl = get_c_table(); 1782 1783 /* Point the parent B table descriptor to this new C table. */ 1784 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl); 1785 b_dte->attr.raw |= MMU_DT_SHORT; 1786 b_tbl->bt_ecnt++; /* Update parent's valid entry count */ 1787 1788 /* Create the necessary back references to the parent table */ 1789 c_tbl->ct_parent = b_tbl; 1790 c_tbl->ct_pidx = b_idx; 1791 /* 1792 * Store the pmap and base virtual managed address for faster 1793 * retrieval in the PV functions. 1794 */ 1795 c_tbl->ct_pmap = pmap; 1796 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK)); 1797 1798 /* 1799 * If this table is to be wired, make sure the parent B table 1800 * wired count is updated to reflect that it has another wired 1801 * entry. 1802 */ 1803 if (wired) 1804 b_tbl->bt_wcnt++; 1805 else if (llevel == NONE) 1806 llevel = NEWC; 1807 } 1808 1809 /* 1810 * Step 4 - Deposit a page descriptor (PTE) into the appropriate 1811 * slot of the C table, describing the PA to which the VA is mapped. 1812 */ 1813 1814 pte_idx = MMU_TIC(va); 1815 c_pte = &c_tbl->ct_dtbl[pte_idx]; 1816 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */ 1817 /* 1818 * The PTE is currently valid. This particular call 1819 * is just a synonym for one (or more) of the following 1820 * operations: 1821 * change protection of a page 1822 * change wiring status of a page 1823 * remove the mapping of a page 1824 * 1825 * XXX - Semi critical: This code should unwire the PTE 1826 * and, possibly, associated parent tables if this is a 1827 * change wiring operation. Currently it does not. 1828 * 1829 * This may be ok if pmap_unwire() is the only 1830 * interface used to UNWIRE a page. 1831 */ 1832 1833 /* First check if this is a wiring operation. */ 1834 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) { 1835 /* 1836 * The PTE is already wired. To prevent it from being 1837 * counted as a new wiring operation, reset the 'wired' 1838 * variable. 1839 */ 1840 wired = FALSE; 1841 } 1842 1843 /* Is the new address the same as the old? */ 1844 if (MMU_PTE_PA(*c_pte) == pa) { 1845 /* 1846 * Yes, mark that it does not need to be reinserted 1847 * into the PV list. 1848 */ 1849 insert = FALSE; 1850 1851 /* 1852 * Clear all but the modified, referenced and wired 1853 * bits on the PTE. 1854 */ 1855 c_pte->attr.raw &= (MMU_SHORT_PTE_M 1856 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED); 1857 } else { 1858 /* No, remove the old entry */ 1859 pmap_remove_pte(c_pte); 1860 insert = TRUE; 1861 } 1862 1863 /* 1864 * TLB flush is only necessary if modifying current map. 1865 * However, in pmap_enter(), the pmap almost always IS 1866 * the current pmap, so don't even bother to check. 1867 */ 1868 TBIS(va); 1869 } else { 1870 /* 1871 * The PTE is invalid. Increment the valid entry count in 1872 * the C table manager to reflect the addition of a new entry. 1873 */ 1874 c_tbl->ct_ecnt++; 1875 1876 /* XXX - temporarily make sure the PTE is cleared. */ 1877 c_pte->attr.raw = 0; 1878 1879 /* It will also need to be inserted into the PV list. */ 1880 insert = TRUE; 1881 } 1882 1883 /* 1884 * If page is changing from unwired to wired status, set an unused bit 1885 * within the PTE to indicate that it is wired. Also increment the 1886 * wired entry count in the C table manager. 1887 */ 1888 if (wired) { 1889 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED; 1890 c_tbl->ct_wcnt++; 1891 } 1892 1893 /* 1894 * Map the page, being careful to preserve modify/reference/wired 1895 * bits. At this point it is assumed that the PTE either has no bits 1896 * set, or if there are set bits, they are only modified, reference or 1897 * wired bits. If not, the following statement will cause erratic 1898 * behavior. 1899 */ 1900 #ifdef PMAP_DEBUG 1901 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M | 1902 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) { 1903 printf("pmap_enter: junk left in PTE at %p\n", c_pte); 1904 Debugger(); 1905 } 1906 #endif 1907 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE); 1908 1909 /* 1910 * If the mapping should be read-only, set the write protect 1911 * bit in the PTE. 1912 */ 1913 if (!(prot & VM_PROT_WRITE)) 1914 c_pte->attr.raw |= MMU_SHORT_PTE_WP; 1915 1916 /* 1917 * If the mapping should be cache inhibited (indicated by the flag 1918 * bits found on the lower order of the physical address.) 1919 * mark the PTE as a cache inhibited page. 1920 */ 1921 if (mapflags & PMAP_NC) 1922 c_pte->attr.raw |= MMU_SHORT_PTE_CI; 1923 1924 /* 1925 * If the physical address being mapped is managed by the PV 1926 * system then link the pte into the list of pages mapped to that 1927 * address. 1928 */ 1929 if (insert && managed) { 1930 pv = pa2pv(pa); 1931 nidx = pteidx(c_pte); 1932 1933 pvebase[nidx].pve_next = pv->pv_idx; 1934 pv->pv_idx = nidx; 1935 } 1936 1937 /* Move any allocated tables back into the active pool. */ 1938 1939 switch (llevel) { 1940 case NEWA: 1941 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1942 /* FALLTHROUGH */ 1943 case NEWB: 1944 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1945 /* FALLTHROUGH */ 1946 case NEWC: 1947 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1948 /* FALLTHROUGH */ 1949 default: 1950 break; 1951 } 1952 1953 return 0; 1954 } 1955 1956 /* pmap_enter_kernel INTERNAL 1957 ** 1958 * Map the given virtual address to the given physical address within the 1959 * kernel address space. This function exists because the kernel map does 1960 * not do dynamic table allocation. It consists of a contiguous array of ptes 1961 * and can be edited directly without the need to walk through any tables. 1962 * 1963 * XXX: "Danger, Will Robinson!" 1964 * Note that the kernel should never take a fault on any page 1965 * between [ KERNBASE .. virtual_avail ] and this is checked in 1966 * trap.c for kernel-mode MMU faults. This means that mappings 1967 * created in that range must be implicily wired. -gwr 1968 */ 1969 void 1970 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot) 1971 { 1972 boolean_t was_valid, insert; 1973 u_short pte_idx; 1974 int flags; 1975 mmu_short_pte_t *pte; 1976 pv_t *pv; 1977 paddr_t old_pa; 1978 1979 flags = (pa & ~MMU_PAGE_MASK); 1980 pa &= MMU_PAGE_MASK; 1981 1982 if (is_managed(pa)) 1983 insert = TRUE; 1984 else 1985 insert = FALSE; 1986 1987 /* 1988 * Calculate the index of the PTE being modified. 1989 */ 1990 pte_idx = (u_long) m68k_btop(va - KERNBASE); 1991 1992 /* This array is traditionally named "Sysmap" */ 1993 pte = &kernCbase[pte_idx]; 1994 1995 if (MMU_VALID_DT(*pte)) { 1996 was_valid = TRUE; 1997 /* 1998 * If the PTE already maps a different 1999 * physical address, umap and pv_unlink. 2000 */ 2001 old_pa = MMU_PTE_PA(*pte); 2002 if (pa != old_pa) 2003 pmap_remove_pte(pte); 2004 else { 2005 /* 2006 * Old PA and new PA are the same. No need to 2007 * relink the mapping within the PV list. 2008 */ 2009 insert = FALSE; 2010 2011 /* 2012 * Save any mod/ref bits on the PTE. 2013 */ 2014 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M); 2015 } 2016 } else { 2017 pte->attr.raw = MMU_DT_INVALID; 2018 was_valid = FALSE; 2019 } 2020 2021 /* 2022 * Map the page. Being careful to preserve modified/referenced bits 2023 * on the PTE. 2024 */ 2025 pte->attr.raw |= (pa | MMU_DT_PAGE); 2026 2027 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */ 2028 pte->attr.raw |= MMU_SHORT_PTE_WP; 2029 if (flags & PMAP_NC) 2030 pte->attr.raw |= MMU_SHORT_PTE_CI; 2031 if (was_valid) 2032 TBIS(va); 2033 2034 /* 2035 * Insert the PTE into the PV system, if need be. 2036 */ 2037 if (insert) { 2038 pv = pa2pv(pa); 2039 pvebase[pte_idx].pve_next = pv->pv_idx; 2040 pv->pv_idx = pte_idx; 2041 } 2042 } 2043 2044 void 2045 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 2046 { 2047 mmu_short_pte_t *pte; 2048 2049 /* This array is traditionally named "Sysmap" */ 2050 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)]; 2051 2052 KASSERT(!MMU_VALID_DT(*pte)); 2053 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK); 2054 if (!(prot & VM_PROT_WRITE)) 2055 pte->attr.raw |= MMU_SHORT_PTE_WP; 2056 } 2057 2058 void 2059 pmap_kremove(vaddr_t va, vsize_t len) 2060 { 2061 int idx, eidx; 2062 2063 #ifdef PMAP_DEBUG 2064 if ((sva & PGOFSET) || (eva & PGOFSET)) 2065 panic("pmap_kremove: alignment"); 2066 #endif 2067 2068 idx = m68k_btop(va - KERNBASE); 2069 eidx = m68k_btop(va + len - KERNBASE); 2070 2071 while (idx < eidx) { 2072 kernCbase[idx++].attr.raw = MMU_DT_INVALID; 2073 TBIS(va); 2074 va += PAGE_SIZE; 2075 } 2076 } 2077 2078 /* pmap_map INTERNAL 2079 ** 2080 * Map a contiguous range of physical memory into a contiguous range of 2081 * the kernel virtual address space. 2082 * 2083 * Used for device mappings and early mapping of the kernel text/data/bss. 2084 * Returns the first virtual address beyond the end of the range. 2085 */ 2086 vaddr_t 2087 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot) 2088 { 2089 int sz; 2090 2091 sz = endpa - pa; 2092 do { 2093 pmap_enter_kernel(va, pa, prot); 2094 va += PAGE_SIZE; 2095 pa += PAGE_SIZE; 2096 sz -= PAGE_SIZE; 2097 } while (sz > 0); 2098 pmap_update(pmap_kernel()); 2099 return(va); 2100 } 2101 2102 /* pmap_protect INTERFACE 2103 ** 2104 * Apply the given protection to the given virtual address range within 2105 * the given map. 2106 * 2107 * It is ok for the protection applied to be stronger than what is 2108 * specified. We use this to our advantage when the given map has no 2109 * mapping for the virtual address. By skipping a page when this 2110 * is discovered, we are effectively applying a protection of VM_PROT_NONE, 2111 * and therefore do not need to map the page just to apply a protection 2112 * code. Only pmap_enter() needs to create new mappings if they do not exist. 2113 * 2114 * XXX - This function could be speeded up by using pmap_stroll() for inital 2115 * setup, and then manual scrolling in the for() loop. 2116 */ 2117 void 2118 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2119 { 2120 boolean_t iscurpmap; 2121 int a_idx, b_idx, c_idx; 2122 a_tmgr_t *a_tbl; 2123 b_tmgr_t *b_tbl; 2124 c_tmgr_t *c_tbl; 2125 mmu_short_pte_t *pte; 2126 2127 if (pmap == pmap_kernel()) { 2128 pmap_protect_kernel(startva, endva, prot); 2129 return; 2130 } 2131 2132 /* 2133 * In this particular pmap implementation, there are only three 2134 * types of memory protection: 'all' (read/write/execute), 2135 * 'read-only' (read/execute) and 'none' (no mapping.) 2136 * It is not possible for us to treat 'executable' as a separate 2137 * protection type. Therefore, protection requests that seek to 2138 * remove execute permission while retaining read or write, and those 2139 * that make little sense (write-only for example) are ignored. 2140 */ 2141 switch (prot) { 2142 case VM_PROT_NONE: 2143 /* 2144 * A request to apply the protection code of 2145 * 'VM_PROT_NONE' is a synonym for pmap_remove(). 2146 */ 2147 pmap_remove(pmap, startva, endva); 2148 return; 2149 case VM_PROT_EXECUTE: 2150 case VM_PROT_READ: 2151 case VM_PROT_READ|VM_PROT_EXECUTE: 2152 /* continue */ 2153 break; 2154 case VM_PROT_WRITE: 2155 case VM_PROT_WRITE|VM_PROT_READ: 2156 case VM_PROT_WRITE|VM_PROT_EXECUTE: 2157 case VM_PROT_ALL: 2158 /* None of these should happen in a sane system. */ 2159 return; 2160 } 2161 2162 /* 2163 * If the pmap has no A table, it has no mappings and therefore 2164 * there is nothing to protect. 2165 */ 2166 if ((a_tbl = pmap->pm_a_tmgr) == NULL) 2167 return; 2168 2169 a_idx = MMU_TIA(startva); 2170 b_idx = MMU_TIB(startva); 2171 c_idx = MMU_TIC(startva); 2172 b_tbl = (b_tmgr_t *) c_tbl = NULL; 2173 2174 iscurpmap = (pmap == current_pmap()); 2175 while (startva < endva) { 2176 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 2177 if (b_tbl == NULL) { 2178 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw; 2179 b_tbl = mmu_ptov((vaddr_t)b_tbl); 2180 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl); 2181 } 2182 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 2183 if (c_tbl == NULL) { 2184 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]); 2185 c_tbl = mmu_ptov((vaddr_t)c_tbl); 2186 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl); 2187 } 2188 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) { 2189 pte = &c_tbl->ct_dtbl[c_idx]; 2190 /* make the mapping read-only */ 2191 pte->attr.raw |= MMU_SHORT_PTE_WP; 2192 /* 2193 * If we just modified the current address space, 2194 * flush any translations for the modified page from 2195 * the translation cache and any data from it in the 2196 * data cache. 2197 */ 2198 if (iscurpmap) 2199 TBIS(startva); 2200 } 2201 startva += PAGE_SIZE; 2202 2203 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */ 2204 c_tbl = NULL; 2205 c_idx = 0; 2206 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2207 b_tbl = NULL; 2208 b_idx = 0; 2209 } 2210 } 2211 } else { /* C table wasn't valid */ 2212 c_tbl = NULL; 2213 c_idx = 0; 2214 startva += MMU_TIB_RANGE; 2215 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2216 b_tbl = NULL; 2217 b_idx = 0; 2218 } 2219 } /* C table */ 2220 } else { /* B table wasn't valid */ 2221 b_tbl = NULL; 2222 b_idx = 0; 2223 startva += MMU_TIA_RANGE; 2224 a_idx++; 2225 } /* B table */ 2226 } 2227 } 2228 2229 /* pmap_protect_kernel INTERNAL 2230 ** 2231 * Apply the given protection code to a kernel address range. 2232 */ 2233 void 2234 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2235 { 2236 vaddr_t va; 2237 mmu_short_pte_t *pte; 2238 2239 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)]; 2240 for (va = startva; va < endva; va += PAGE_SIZE, pte++) { 2241 if (MMU_VALID_DT(*pte)) { 2242 switch (prot) { 2243 case VM_PROT_ALL: 2244 break; 2245 case VM_PROT_EXECUTE: 2246 case VM_PROT_READ: 2247 case VM_PROT_READ|VM_PROT_EXECUTE: 2248 pte->attr.raw |= MMU_SHORT_PTE_WP; 2249 break; 2250 case VM_PROT_NONE: 2251 /* this is an alias for 'pmap_remove_kernel' */ 2252 pmap_remove_pte(pte); 2253 break; 2254 default: 2255 break; 2256 } 2257 /* 2258 * since this is the kernel, immediately flush any cached 2259 * descriptors for this address. 2260 */ 2261 TBIS(va); 2262 } 2263 } 2264 } 2265 2266 /* pmap_unwire INTERFACE 2267 ** 2268 * Clear the wired attribute of the specified page. 2269 * 2270 * This function is called from vm_fault.c to unwire 2271 * a mapping. 2272 */ 2273 void 2274 pmap_unwire(pmap_t pmap, vaddr_t va) 2275 { 2276 int a_idx, b_idx, c_idx; 2277 a_tmgr_t *a_tbl; 2278 b_tmgr_t *b_tbl; 2279 c_tmgr_t *c_tbl; 2280 mmu_short_pte_t *pte; 2281 2282 /* Kernel mappings always remain wired. */ 2283 if (pmap == pmap_kernel()) 2284 return; 2285 2286 /* 2287 * Walk through the tables. If the walk terminates without 2288 * a valid PTE then the address wasn't wired in the first place. 2289 * Return immediately. 2290 */ 2291 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx, 2292 &b_idx, &c_idx) == FALSE) 2293 return; 2294 2295 2296 /* Is the PTE wired? If not, return. */ 2297 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED)) 2298 return; 2299 2300 /* Remove the wiring bit. */ 2301 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED); 2302 2303 /* 2304 * Decrement the wired entry count in the C table. 2305 * If it reaches zero the following things happen: 2306 * 1. The table no longer has any wired entries and is considered 2307 * unwired. 2308 * 2. It is placed on the available queue. 2309 * 3. The parent table's wired entry count is decremented. 2310 * 4. If it reaches zero, this process repeats at step 1 and 2311 * stops at after reaching the A table. 2312 */ 2313 if (--c_tbl->ct_wcnt == 0) { 2314 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2315 if (--b_tbl->bt_wcnt == 0) { 2316 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2317 if (--a_tbl->at_wcnt == 0) { 2318 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2319 } 2320 } 2321 } 2322 } 2323 2324 /* pmap_copy INTERFACE 2325 ** 2326 * Copy the mappings of a range of addresses in one pmap, into 2327 * the destination address of another. 2328 * 2329 * This routine is advisory. Should we one day decide that MMU tables 2330 * may be shared by more than one pmap, this function should be used to 2331 * link them together. Until that day however, we do nothing. 2332 */ 2333 void 2334 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src) 2335 { 2336 /* not implemented. */ 2337 } 2338 2339 /* pmap_copy_page INTERFACE 2340 ** 2341 * Copy the contents of one physical page into another. 2342 * 2343 * This function makes use of two virtual pages allocated in pmap_bootstrap() 2344 * to map the two specified physical pages into the kernel address space. 2345 * 2346 * Note: We could use the transparent translation registers to make the 2347 * mappings. If we do so, be sure to disable interrupts before using them. 2348 */ 2349 void 2350 pmap_copy_page(paddr_t srcpa, paddr_t dstpa) 2351 { 2352 vaddr_t srcva, dstva; 2353 int s; 2354 2355 srcva = tmp_vpages[0]; 2356 dstva = tmp_vpages[1]; 2357 2358 s = splvm(); 2359 #ifdef DIAGNOSTIC 2360 if (tmp_vpages_inuse++) 2361 panic("pmap_copy_page: temporary vpages are in use."); 2362 #endif 2363 2364 /* Map pages as non-cacheable to avoid cache polution? */ 2365 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ); 2366 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE); 2367 2368 /* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */ 2369 copypage((char *) srcva, (char *) dstva); 2370 2371 pmap_kremove(srcva, PAGE_SIZE); 2372 pmap_kremove(dstva, PAGE_SIZE); 2373 2374 #ifdef DIAGNOSTIC 2375 --tmp_vpages_inuse; 2376 #endif 2377 splx(s); 2378 } 2379 2380 /* pmap_zero_page INTERFACE 2381 ** 2382 * Zero the contents of the specified physical page. 2383 * 2384 * Uses one of the virtual pages allocated in pmap_boostrap() 2385 * to map the specified page into the kernel address space. 2386 */ 2387 void 2388 pmap_zero_page(paddr_t dstpa) 2389 { 2390 vaddr_t dstva; 2391 int s; 2392 2393 dstva = tmp_vpages[1]; 2394 s = splvm(); 2395 #ifdef DIAGNOSTIC 2396 if (tmp_vpages_inuse++) 2397 panic("pmap_zero_page: temporary vpages are in use."); 2398 #endif 2399 2400 /* The comments in pmap_copy_page() above apply here also. */ 2401 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE); 2402 2403 /* Hand-optimized version of bzero(ptr, PAGE_SIZE) */ 2404 zeropage((char *) dstva); 2405 2406 pmap_kremove(dstva, PAGE_SIZE); 2407 #ifdef DIAGNOSTIC 2408 --tmp_vpages_inuse; 2409 #endif 2410 splx(s); 2411 } 2412 2413 /* pmap_collect INTERFACE 2414 ** 2415 * Called from the VM system when we are about to swap out 2416 * the process using this pmap. This should give up any 2417 * resources held here, including all its MMU tables. 2418 */ 2419 void 2420 pmap_collect(pmap_t pmap) 2421 { 2422 /* XXX - todo... */ 2423 } 2424 2425 /* pmap_create INTERFACE 2426 ** 2427 * Create and return a pmap structure. 2428 */ 2429 pmap_t 2430 pmap_create(void) 2431 { 2432 pmap_t pmap; 2433 2434 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK); 2435 pmap_pinit(pmap); 2436 return pmap; 2437 } 2438 2439 /* pmap_pinit INTERNAL 2440 ** 2441 * Initialize a pmap structure. 2442 */ 2443 void 2444 pmap_pinit(pmap_t pmap) 2445 { 2446 memset(pmap, 0, sizeof(struct pmap)); 2447 pmap->pm_a_tmgr = NULL; 2448 pmap->pm_a_phys = kernAphys; 2449 pmap->pm_refcount = 1; 2450 simple_lock_init(&pmap->pm_lock); 2451 } 2452 2453 /* pmap_release INTERFACE 2454 ** 2455 * Release any resources held by the given pmap. 2456 * 2457 * This is the reverse analog to pmap_pinit. It does not 2458 * necessarily mean for the pmap structure to be deallocated, 2459 * as in pmap_destroy. 2460 */ 2461 void 2462 pmap_release(pmap_t pmap) 2463 { 2464 /* 2465 * As long as the pmap contains no mappings, 2466 * which always should be the case whenever 2467 * this function is called, there really should 2468 * be nothing to do. 2469 */ 2470 #ifdef PMAP_DEBUG 2471 if (pmap == pmap_kernel()) 2472 panic("pmap_release: kernel pmap"); 2473 #endif 2474 /* 2475 * XXX - If this pmap has an A table, give it back. 2476 * The pmap SHOULD be empty by now, and pmap_remove 2477 * should have already given back the A table... 2478 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1 2479 * at this point, which means some mapping was not 2480 * removed when it should have been. -gwr 2481 */ 2482 if (pmap->pm_a_tmgr != NULL) { 2483 /* First make sure we are not using it! */ 2484 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2485 kernel_crp.rp_addr = kernAphys; 2486 loadcrp(&kernel_crp); 2487 } 2488 #ifdef PMAP_DEBUG /* XXX - todo! */ 2489 /* XXX - Now complain... */ 2490 printf("pmap_release: still have table\n"); 2491 Debugger(); 2492 #endif 2493 free_a_table(pmap->pm_a_tmgr, TRUE); 2494 pmap->pm_a_tmgr = NULL; 2495 pmap->pm_a_phys = kernAphys; 2496 } 2497 } 2498 2499 /* pmap_reference INTERFACE 2500 ** 2501 * Increment the reference count of a pmap. 2502 */ 2503 void 2504 pmap_reference(pmap_t pmap) 2505 { 2506 pmap_lock(pmap); 2507 pmap_add_ref(pmap); 2508 pmap_unlock(pmap); 2509 } 2510 2511 /* pmap_dereference INTERNAL 2512 ** 2513 * Decrease the reference count on the given pmap 2514 * by one and return the current count. 2515 */ 2516 int 2517 pmap_dereference(pmap_t pmap) 2518 { 2519 int rtn; 2520 2521 pmap_lock(pmap); 2522 rtn = pmap_del_ref(pmap); 2523 pmap_unlock(pmap); 2524 2525 return rtn; 2526 } 2527 2528 /* pmap_destroy INTERFACE 2529 ** 2530 * Decrement a pmap's reference count and delete 2531 * the pmap if it becomes zero. Will be called 2532 * only after all mappings have been removed. 2533 */ 2534 void 2535 pmap_destroy(pmap_t pmap) 2536 { 2537 if (pmap_dereference(pmap) == 0) { 2538 pmap_release(pmap); 2539 pool_put(&pmap_pmap_pool, pmap); 2540 } 2541 } 2542 2543 /* pmap_is_referenced INTERFACE 2544 ** 2545 * Determine if the given physical page has been 2546 * referenced (read from [or written to.]) 2547 */ 2548 boolean_t 2549 pmap_is_referenced(struct vm_page *pg) 2550 { 2551 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2552 pv_t *pv; 2553 int idx; 2554 2555 /* 2556 * Check the flags on the pv head. If they are set, 2557 * return immediately. Otherwise a search must be done. 2558 */ 2559 2560 pv = pa2pv(pa); 2561 if (pv->pv_flags & PV_FLAGS_USED) 2562 return TRUE; 2563 2564 /* 2565 * Search through all pv elements pointing 2566 * to this page and query their reference bits 2567 */ 2568 2569 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2570 if (MMU_PTE_USED(kernCbase[idx])) { 2571 return TRUE; 2572 } 2573 } 2574 return FALSE; 2575 } 2576 2577 /* pmap_is_modified INTERFACE 2578 ** 2579 * Determine if the given physical page has been 2580 * modified (written to.) 2581 */ 2582 boolean_t 2583 pmap_is_modified(struct vm_page *pg) 2584 { 2585 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2586 pv_t *pv; 2587 int idx; 2588 2589 /* see comments in pmap_is_referenced() */ 2590 pv = pa2pv(pa); 2591 if (pv->pv_flags & PV_FLAGS_MDFY) 2592 return TRUE; 2593 2594 for (idx = pv->pv_idx; 2595 idx != PVE_EOL; 2596 idx = pvebase[idx].pve_next) { 2597 2598 if (MMU_PTE_MODIFIED(kernCbase[idx])) { 2599 return TRUE; 2600 } 2601 } 2602 2603 return FALSE; 2604 } 2605 2606 /* pmap_page_protect INTERFACE 2607 ** 2608 * Applies the given protection to all mappings to the given 2609 * physical page. 2610 */ 2611 void 2612 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 2613 { 2614 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2615 pv_t *pv; 2616 int idx; 2617 vaddr_t va; 2618 struct mmu_short_pte_struct *pte; 2619 c_tmgr_t *c_tbl; 2620 pmap_t pmap, curpmap; 2621 2622 curpmap = current_pmap(); 2623 pv = pa2pv(pa); 2624 2625 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2626 pte = &kernCbase[idx]; 2627 switch (prot) { 2628 case VM_PROT_ALL: 2629 /* do nothing */ 2630 break; 2631 case VM_PROT_EXECUTE: 2632 case VM_PROT_READ: 2633 case VM_PROT_READ|VM_PROT_EXECUTE: 2634 /* 2635 * Determine the virtual address mapped by 2636 * the PTE and flush ATC entries if necessary. 2637 */ 2638 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2639 pte->attr.raw |= MMU_SHORT_PTE_WP; 2640 if (pmap == curpmap || pmap == pmap_kernel()) 2641 TBIS(va); 2642 break; 2643 case VM_PROT_NONE: 2644 /* Save the mod/ref bits. */ 2645 pv->pv_flags |= pte->attr.raw; 2646 /* Invalidate the PTE. */ 2647 pte->attr.raw = MMU_DT_INVALID; 2648 2649 /* 2650 * Update table counts. And flush ATC entries 2651 * if necessary. 2652 */ 2653 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2654 2655 /* 2656 * If the PTE belongs to the kernel map, 2657 * be sure to flush the page it maps. 2658 */ 2659 if (pmap == pmap_kernel()) { 2660 TBIS(va); 2661 } else { 2662 /* 2663 * The PTE belongs to a user map. 2664 * update the entry count in the C 2665 * table to which it belongs and flush 2666 * the ATC if the mapping belongs to 2667 * the current pmap. 2668 */ 2669 c_tbl->ct_ecnt--; 2670 if (pmap == curpmap) 2671 TBIS(va); 2672 } 2673 break; 2674 default: 2675 break; 2676 } 2677 } 2678 2679 /* 2680 * If the protection code indicates that all mappings to the page 2681 * be removed, truncate the PV list to zero entries. 2682 */ 2683 if (prot == VM_PROT_NONE) 2684 pv->pv_idx = PVE_EOL; 2685 } 2686 2687 /* pmap_get_pteinfo INTERNAL 2688 ** 2689 * Called internally to find the pmap and virtual address within that 2690 * map to which the pte at the given index maps. Also includes the PTE's C 2691 * table manager. 2692 * 2693 * Returns the pmap in the argument provided, and the virtual address 2694 * by return value. 2695 */ 2696 vaddr_t 2697 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl) 2698 { 2699 vaddr_t va = 0; 2700 2701 /* 2702 * Determine if the PTE is a kernel PTE or a user PTE. 2703 */ 2704 if (idx >= NUM_KERN_PTES) { 2705 /* 2706 * The PTE belongs to a user mapping. 2707 */ 2708 /* XXX: Would like an inline for this to validate idx... */ 2709 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE]; 2710 2711 *pmap = (*tbl)->ct_pmap; 2712 /* 2713 * To find the va to which the PTE maps, we first take 2714 * the table's base virtual address mapping which is stored 2715 * in ct_va. We then increment this address by a page for 2716 * every slot skipped until we reach the PTE. 2717 */ 2718 va = (*tbl)->ct_va; 2719 va += m68k_ptob(idx % MMU_C_TBL_SIZE); 2720 } else { 2721 /* 2722 * The PTE belongs to the kernel map. 2723 */ 2724 *pmap = pmap_kernel(); 2725 2726 va = m68k_ptob(idx); 2727 va += KERNBASE; 2728 } 2729 2730 return va; 2731 } 2732 2733 /* pmap_clear_modify INTERFACE 2734 ** 2735 * Clear the modification bit on the page at the specified 2736 * physical address. 2737 * 2738 */ 2739 boolean_t 2740 pmap_clear_modify(struct vm_page *pg) 2741 { 2742 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2743 boolean_t rv; 2744 2745 rv = pmap_is_modified(pg); 2746 pmap_clear_pv(pa, PV_FLAGS_MDFY); 2747 return rv; 2748 } 2749 2750 /* pmap_clear_reference INTERFACE 2751 ** 2752 * Clear the referenced bit on the page at the specified 2753 * physical address. 2754 */ 2755 boolean_t 2756 pmap_clear_reference(struct vm_page *pg) 2757 { 2758 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2759 boolean_t rv; 2760 2761 rv = pmap_is_referenced(pg); 2762 pmap_clear_pv(pa, PV_FLAGS_USED); 2763 return rv; 2764 } 2765 2766 /* pmap_clear_pv INTERNAL 2767 ** 2768 * Clears the specified flag from the specified physical address. 2769 * (Used by pmap_clear_modify() and pmap_clear_reference().) 2770 * 2771 * Flag is one of: 2772 * PV_FLAGS_MDFY - Page modified bit. 2773 * PV_FLAGS_USED - Page used (referenced) bit. 2774 * 2775 * This routine must not only clear the flag on the pv list 2776 * head. It must also clear the bit on every pte in the pv 2777 * list associated with the address. 2778 */ 2779 void 2780 pmap_clear_pv(paddr_t pa, int flag) 2781 { 2782 pv_t *pv; 2783 int idx; 2784 vaddr_t va; 2785 pmap_t pmap; 2786 mmu_short_pte_t *pte; 2787 c_tmgr_t *c_tbl; 2788 2789 pv = pa2pv(pa); 2790 pv->pv_flags &= ~(flag); 2791 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2792 pte = &kernCbase[idx]; 2793 pte->attr.raw &= ~(flag); 2794 2795 /* 2796 * The MC68030 MMU will not set the modified or 2797 * referenced bits on any MMU tables for which it has 2798 * a cached descriptor with its modify bit set. To insure 2799 * that it will modify these bits on the PTE during the next 2800 * time it is written to or read from, we must flush it from 2801 * the ATC. 2802 * 2803 * Ordinarily it is only necessary to flush the descriptor 2804 * if it is used in the current address space. But since I 2805 * am not sure that there will always be a notion of 2806 * 'the current address space' when this function is called, 2807 * I will skip the test and always flush the address. It 2808 * does no harm. 2809 */ 2810 2811 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2812 TBIS(va); 2813 } 2814 } 2815 2816 /* pmap_extract INTERFACE 2817 ** 2818 * Return the physical address mapped by the virtual address 2819 * in the specified pmap. 2820 * 2821 * Note: this function should also apply an exclusive lock 2822 * on the pmap system during its duration. 2823 */ 2824 boolean_t 2825 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap) 2826 { 2827 int a_idx, b_idx, pte_idx; 2828 a_tmgr_t *a_tbl; 2829 b_tmgr_t *b_tbl; 2830 c_tmgr_t *c_tbl; 2831 mmu_short_pte_t *c_pte; 2832 2833 if (pmap == pmap_kernel()) 2834 return pmap_extract_kernel(va, pap); 2835 2836 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, 2837 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE) 2838 return FALSE; 2839 2840 if (!MMU_VALID_DT(*c_pte)) 2841 return FALSE; 2842 2843 if (pap != NULL) 2844 *pap = MMU_PTE_PA(*c_pte); 2845 return (TRUE); 2846 } 2847 2848 /* pmap_extract_kernel INTERNAL 2849 ** 2850 * Extract a translation from the kernel address space. 2851 */ 2852 boolean_t 2853 pmap_extract_kernel(vaddr_t va, paddr_t *pap) 2854 { 2855 mmu_short_pte_t *pte; 2856 2857 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)]; 2858 if (!MMU_VALID_DT(*pte)) 2859 return (FALSE); 2860 if (pap != NULL) 2861 *pap = MMU_PTE_PA(*pte); 2862 return (TRUE); 2863 } 2864 2865 /* pmap_remove_kernel INTERNAL 2866 ** 2867 * Remove the mapping of a range of virtual addresses from the kernel map. 2868 * The arguments are already page-aligned. 2869 */ 2870 void 2871 pmap_remove_kernel(vaddr_t sva, vaddr_t eva) 2872 { 2873 int idx, eidx; 2874 2875 #ifdef PMAP_DEBUG 2876 if ((sva & PGOFSET) || (eva & PGOFSET)) 2877 panic("pmap_remove_kernel: alignment"); 2878 #endif 2879 2880 idx = m68k_btop(sva - KERNBASE); 2881 eidx = m68k_btop(eva - KERNBASE); 2882 2883 while (idx < eidx) { 2884 pmap_remove_pte(&kernCbase[idx++]); 2885 TBIS(sva); 2886 sva += PAGE_SIZE; 2887 } 2888 } 2889 2890 /* pmap_remove INTERFACE 2891 ** 2892 * Remove the mapping of a range of virtual addresses from the given pmap. 2893 * 2894 * If the range contains any wired entries, this function will probably create 2895 * disaster. 2896 */ 2897 void 2898 pmap_remove(pmap_t pmap, vaddr_t start, vaddr_t end) 2899 { 2900 2901 if (pmap == pmap_kernel()) { 2902 pmap_remove_kernel(start, end); 2903 return; 2904 } 2905 2906 /* 2907 * If the pmap doesn't have an A table of its own, it has no mappings 2908 * that can be removed. 2909 */ 2910 if (pmap->pm_a_tmgr == NULL) 2911 return; 2912 2913 /* 2914 * Remove the specified range from the pmap. If the function 2915 * returns true, the operation removed all the valid mappings 2916 * in the pmap and freed its A table. If this happened to the 2917 * currently loaded pmap, the MMU root pointer must be reloaded 2918 * with the default 'kernel' map. 2919 */ 2920 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) { 2921 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2922 kernel_crp.rp_addr = kernAphys; 2923 loadcrp(&kernel_crp); 2924 /* will do TLB flush below */ 2925 } 2926 pmap->pm_a_tmgr = NULL; 2927 pmap->pm_a_phys = kernAphys; 2928 } 2929 2930 /* 2931 * If we just modified the current address space, 2932 * make sure to flush the MMU cache. 2933 * 2934 * XXX - this could be an unecessarily large flush. 2935 * XXX - Could decide, based on the size of the VA range 2936 * to be removed, whether to flush "by pages" or "all". 2937 */ 2938 if (pmap == current_pmap()) 2939 TBIAU(); 2940 } 2941 2942 /* pmap_remove_a INTERNAL 2943 ** 2944 * This is function number one in a set of three that removes a range 2945 * of memory in the most efficient manner by removing the highest possible 2946 * tables from the memory space. This particular function attempts to remove 2947 * as many B tables as it can, delegating the remaining fragmented ranges to 2948 * pmap_remove_b(). 2949 * 2950 * If the removal operation results in an empty A table, the function returns 2951 * TRUE. 2952 * 2953 * It's ugly but will do for now. 2954 */ 2955 boolean_t 2956 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t start, vaddr_t end) 2957 { 2958 boolean_t empty; 2959 int idx; 2960 vaddr_t nstart, nend; 2961 b_tmgr_t *b_tbl; 2962 mmu_long_dte_t *a_dte; 2963 mmu_short_dte_t *b_dte; 2964 2965 /* 2966 * The following code works with what I call a 'granularity 2967 * reduction algorithim'. A range of addresses will always have 2968 * the following properties, which are classified according to 2969 * how the range relates to the size of the current granularity 2970 * - an A table entry: 2971 * 2972 * 1 2 3 4 2973 * -+---+---+---+---+---+---+---+- 2974 * -+---+---+---+---+---+---+---+- 2975 * 2976 * A range will always start on a granularity boundary, illustrated 2977 * by '+' signs in the table above, or it will start at some point 2978 * inbetween a granularity boundary, as illustrated by point 1. 2979 * The first step in removing a range of addresses is to remove the 2980 * range between 1 and 2, the nearest granularity boundary. This 2981 * job is handled by the section of code governed by the 2982 * 'if (start < nstart)' statement. 2983 * 2984 * A range will always encompass zero or more intergral granules, 2985 * illustrated by points 2 and 3. Integral granules are easy to 2986 * remove. The removal of these granules is the second step, and 2987 * is handled by the code block 'if (nstart < nend)'. 2988 * 2989 * Lastly, a range will always end on a granularity boundary, 2990 * ill. by point 3, or it will fall just beyond one, ill. by point 2991 * 4. The last step involves removing this range and is handled by 2992 * the code block 'if (nend < end)'. 2993 */ 2994 nstart = MMU_ROUND_UP_A(start); 2995 nend = MMU_ROUND_A(end); 2996 2997 if (start < nstart) { 2998 /* 2999 * This block is executed if the range starts between 3000 * a granularity boundary. 3001 * 3002 * First find the DTE which is responsible for mapping 3003 * the start of the range. 3004 */ 3005 idx = MMU_TIA(start); 3006 a_dte = &a_tbl->at_dtbl[idx]; 3007 3008 /* 3009 * If the DTE is valid then delegate the removal of the sub 3010 * range to pmap_remove_b(), which can remove addresses at 3011 * a finer granularity. 3012 */ 3013 if (MMU_VALID_DT(*a_dte)) { 3014 b_dte = mmu_ptov(a_dte->addr.raw); 3015 b_tbl = mmuB2tmgr(b_dte); 3016 3017 /* 3018 * The sub range to be removed starts at the start 3019 * of the full range we were asked to remove, and ends 3020 * at the greater of: 3021 * 1. The end of the full range, -or- 3022 * 2. The end of the full range, rounded down to the 3023 * nearest granularity boundary. 3024 */ 3025 if (end < nstart) 3026 empty = pmap_remove_b(b_tbl, start, end); 3027 else 3028 empty = pmap_remove_b(b_tbl, start, nstart); 3029 3030 /* 3031 * If the removal resulted in an empty B table, 3032 * invalidate the DTE that points to it and decrement 3033 * the valid entry count of the A table. 3034 */ 3035 if (empty) { 3036 a_dte->attr.raw = MMU_DT_INVALID; 3037 a_tbl->at_ecnt--; 3038 } 3039 } 3040 /* 3041 * If the DTE is invalid, the address range is already non- 3042 * existent and can simply be skipped. 3043 */ 3044 } 3045 if (nstart < nend) { 3046 /* 3047 * This block is executed if the range spans a whole number 3048 * multiple of granules (A table entries.) 3049 * 3050 * First find the DTE which is responsible for mapping 3051 * the start of the first granule involved. 3052 */ 3053 idx = MMU_TIA(nstart); 3054 a_dte = &a_tbl->at_dtbl[idx]; 3055 3056 /* 3057 * Remove entire sub-granules (B tables) one at a time, 3058 * until reaching the end of the range. 3059 */ 3060 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE) 3061 if (MMU_VALID_DT(*a_dte)) { 3062 /* 3063 * Find the B table manager for the 3064 * entry and free it. 3065 */ 3066 b_dte = mmu_ptov(a_dte->addr.raw); 3067 b_tbl = mmuB2tmgr(b_dte); 3068 free_b_table(b_tbl, TRUE); 3069 3070 /* 3071 * Invalidate the DTE that points to the 3072 * B table and decrement the valid entry 3073 * count of the A table. 3074 */ 3075 a_dte->attr.raw = MMU_DT_INVALID; 3076 a_tbl->at_ecnt--; 3077 } 3078 } 3079 if (nend < end) { 3080 /* 3081 * This block is executed if the range ends beyond a 3082 * granularity boundary. 3083 * 3084 * First find the DTE which is responsible for mapping 3085 * the start of the nearest (rounded down) granularity 3086 * boundary. 3087 */ 3088 idx = MMU_TIA(nend); 3089 a_dte = &a_tbl->at_dtbl[idx]; 3090 3091 /* 3092 * If the DTE is valid then delegate the removal of the sub 3093 * range to pmap_remove_b(), which can remove addresses at 3094 * a finer granularity. 3095 */ 3096 if (MMU_VALID_DT(*a_dte)) { 3097 /* 3098 * Find the B table manager for the entry 3099 * and hand it to pmap_remove_b() along with 3100 * the sub range. 3101 */ 3102 b_dte = mmu_ptov(a_dte->addr.raw); 3103 b_tbl = mmuB2tmgr(b_dte); 3104 3105 empty = pmap_remove_b(b_tbl, nend, end); 3106 3107 /* 3108 * If the removal resulted in an empty B table, 3109 * invalidate the DTE that points to it and decrement 3110 * the valid entry count of the A table. 3111 */ 3112 if (empty) { 3113 a_dte->attr.raw = MMU_DT_INVALID; 3114 a_tbl->at_ecnt--; 3115 } 3116 } 3117 } 3118 3119 /* 3120 * If there are no more entries in the A table, release it 3121 * back to the available pool and return TRUE. 3122 */ 3123 if (a_tbl->at_ecnt == 0) { 3124 a_tbl->at_parent = NULL; 3125 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 3126 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 3127 empty = TRUE; 3128 } else { 3129 empty = FALSE; 3130 } 3131 3132 return empty; 3133 } 3134 3135 /* pmap_remove_b INTERNAL 3136 ** 3137 * Remove a range of addresses from an address space, trying to remove entire 3138 * C tables if possible. 3139 * 3140 * If the operation results in an empty B table, the function returns TRUE. 3141 */ 3142 boolean_t 3143 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t start, vaddr_t end) 3144 { 3145 boolean_t empty; 3146 int idx; 3147 vaddr_t nstart, nend, rstart; 3148 c_tmgr_t *c_tbl; 3149 mmu_short_dte_t *b_dte; 3150 mmu_short_pte_t *c_dte; 3151 3152 3153 nstart = MMU_ROUND_UP_B(start); 3154 nend = MMU_ROUND_B(end); 3155 3156 if (start < nstart) { 3157 idx = MMU_TIB(start); 3158 b_dte = &b_tbl->bt_dtbl[idx]; 3159 if (MMU_VALID_DT(*b_dte)) { 3160 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3161 c_tbl = mmuC2tmgr(c_dte); 3162 if (end < nstart) 3163 empty = pmap_remove_c(c_tbl, start, end); 3164 else 3165 empty = pmap_remove_c(c_tbl, start, nstart); 3166 if (empty) { 3167 b_dte->attr.raw = MMU_DT_INVALID; 3168 b_tbl->bt_ecnt--; 3169 } 3170 } 3171 } 3172 if (nstart < nend) { 3173 idx = MMU_TIB(nstart); 3174 b_dte = &b_tbl->bt_dtbl[idx]; 3175 rstart = nstart; 3176 while (rstart < nend) { 3177 if (MMU_VALID_DT(*b_dte)) { 3178 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3179 c_tbl = mmuC2tmgr(c_dte); 3180 free_c_table(c_tbl, TRUE); 3181 b_dte->attr.raw = MMU_DT_INVALID; 3182 b_tbl->bt_ecnt--; 3183 } 3184 b_dte++; 3185 rstart += MMU_TIB_RANGE; 3186 } 3187 } 3188 if (nend < end) { 3189 idx = MMU_TIB(nend); 3190 b_dte = &b_tbl->bt_dtbl[idx]; 3191 if (MMU_VALID_DT(*b_dte)) { 3192 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3193 c_tbl = mmuC2tmgr(c_dte); 3194 empty = pmap_remove_c(c_tbl, nend, end); 3195 if (empty) { 3196 b_dte->attr.raw = MMU_DT_INVALID; 3197 b_tbl->bt_ecnt--; 3198 } 3199 } 3200 } 3201 3202 if (b_tbl->bt_ecnt == 0) { 3203 b_tbl->bt_parent = NULL; 3204 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 3205 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 3206 empty = TRUE; 3207 } else { 3208 empty = FALSE; 3209 } 3210 3211 return empty; 3212 } 3213 3214 /* pmap_remove_c INTERNAL 3215 ** 3216 * Remove a range of addresses from the given C table. 3217 */ 3218 boolean_t 3219 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t start, vaddr_t end) 3220 { 3221 boolean_t empty; 3222 int idx; 3223 mmu_short_pte_t *c_pte; 3224 3225 idx = MMU_TIC(start); 3226 c_pte = &c_tbl->ct_dtbl[idx]; 3227 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) { 3228 if (MMU_VALID_DT(*c_pte)) { 3229 pmap_remove_pte(c_pte); 3230 c_tbl->ct_ecnt--; 3231 } 3232 } 3233 3234 if (c_tbl->ct_ecnt == 0) { 3235 c_tbl->ct_parent = NULL; 3236 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 3237 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 3238 empty = TRUE; 3239 } else { 3240 empty = FALSE; 3241 } 3242 3243 return empty; 3244 } 3245 3246 /* is_managed INTERNAL 3247 ** 3248 * Determine if the given physical address is managed by the PV system. 3249 * Note that this logic assumes that no one will ask for the status of 3250 * addresses which lie in-between the memory banks on the 3/80. If they 3251 * do so, it will falsely report that it is managed. 3252 * 3253 * Note: A "managed" address is one that was reported to the VM system as 3254 * a "usable page" during system startup. As such, the VM system expects the 3255 * pmap module to keep an accurate track of the useage of those pages. 3256 * Any page not given to the VM system at startup does not exist (as far as 3257 * the VM system is concerned) and is therefore "unmanaged." Examples are 3258 * those pages which belong to the ROM monitor and the memory allocated before 3259 * the VM system was started. 3260 */ 3261 boolean_t 3262 is_managed(paddr_t pa) 3263 { 3264 if (pa >= avail_start && pa < avail_end) 3265 return TRUE; 3266 else 3267 return FALSE; 3268 } 3269 3270 /* pmap_bootstrap_alloc INTERNAL 3271 ** 3272 * Used internally for memory allocation at startup when malloc is not 3273 * available. This code will fail once it crosses the first memory 3274 * bank boundary on the 3/80. Hopefully by then however, the VM system 3275 * will be in charge of allocation. 3276 */ 3277 void * 3278 pmap_bootstrap_alloc(int size) 3279 { 3280 void *rtn; 3281 3282 #ifdef PMAP_DEBUG 3283 if (bootstrap_alloc_enabled == FALSE) { 3284 mon_printf("pmap_bootstrap_alloc: disabled\n"); 3285 sunmon_abort(); 3286 } 3287 #endif 3288 3289 rtn = (void *) virtual_avail; 3290 virtual_avail += size; 3291 3292 #ifdef PMAP_DEBUG 3293 if (virtual_avail > virtual_contig_end) { 3294 mon_printf("pmap_bootstrap_alloc: out of mem\n"); 3295 sunmon_abort(); 3296 } 3297 #endif 3298 3299 return rtn; 3300 } 3301 3302 /* pmap_bootstap_aalign INTERNAL 3303 ** 3304 * Used to insure that the next call to pmap_bootstrap_alloc() will 3305 * return a chunk of memory aligned to the specified size. 3306 * 3307 * Note: This function will only support alignment sizes that are powers 3308 * of two. 3309 */ 3310 void 3311 pmap_bootstrap_aalign(int size) 3312 { 3313 int off; 3314 3315 off = virtual_avail & (size - 1); 3316 if (off) { 3317 (void) pmap_bootstrap_alloc(size - off); 3318 } 3319 } 3320 3321 /* pmap_pa_exists 3322 ** 3323 * Used by the /dev/mem driver to see if a given PA is memory 3324 * that can be mapped. (The PA is not in a hole.) 3325 */ 3326 int 3327 pmap_pa_exists(paddr_t pa) 3328 { 3329 int i; 3330 3331 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3332 if ((pa >= avail_mem[i].pmem_start) && 3333 (pa < avail_mem[i].pmem_end)) 3334 return (1); 3335 if (avail_mem[i].pmem_next == NULL) 3336 break; 3337 } 3338 return (0); 3339 } 3340 3341 /* Called only from locore.s and pmap.c */ 3342 void _pmap_switch(pmap_t pmap); 3343 3344 /* 3345 * _pmap_switch INTERNAL 3346 * 3347 * This is called by locore.s:cpu_switch() when it is 3348 * switching to a new process. Load new translations. 3349 * Note: done in-line by locore.s unless PMAP_DEBUG 3350 * 3351 * Note that we do NOT allocate a context here, but 3352 * share the "kernel only" context until we really 3353 * need our own context for user-space mappings in 3354 * pmap_enter_user(). [ s/context/mmu A table/ ] 3355 */ 3356 void 3357 _pmap_switch(pmap_t pmap) 3358 { 3359 u_long rootpa; 3360 3361 /* 3362 * Only do reload/flush if we have to. 3363 * Note that if the old and new process 3364 * were BOTH using the "null" context, 3365 * then this will NOT flush the TLB. 3366 */ 3367 rootpa = pmap->pm_a_phys; 3368 if (kernel_crp.rp_addr != rootpa) { 3369 DPRINT(("pmap_activate(%p)\n", pmap)); 3370 kernel_crp.rp_addr = rootpa; 3371 loadcrp(&kernel_crp); 3372 TBIAU(); 3373 } 3374 } 3375 3376 /* 3377 * Exported version of pmap_activate(). This is called from the 3378 * machine-independent VM code when a process is given a new pmap. 3379 * If (p == curlwp) do like cpu_switch would do; otherwise just 3380 * take this as notification that the process has a new pmap. 3381 */ 3382 void 3383 pmap_activate(struct lwp *l) 3384 { 3385 if (l->l_proc == curproc) { 3386 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap); 3387 } 3388 } 3389 3390 /* 3391 * pmap_deactivate INTERFACE 3392 ** 3393 * This is called to deactivate the specified process's address space. 3394 */ 3395 void 3396 pmap_deactivate(struct lwp *l) 3397 { 3398 /* Nothing to do. */ 3399 } 3400 3401 /* 3402 * Fill in the sun3x-specific part of the kernel core header 3403 * for dumpsys(). (See machdep.c for the rest.) 3404 */ 3405 void 3406 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh) 3407 { 3408 u_long spa, len; 3409 int i; 3410 3411 sh->pg_frame = MMU_SHORT_PTE_BASEADDR; 3412 sh->pg_valid = MMU_DT_PAGE; 3413 sh->contig_end = virtual_contig_end; 3414 sh->kernCbase = (u_long)kernCbase; 3415 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3416 spa = avail_mem[i].pmem_start; 3417 spa = m68k_trunc_page(spa); 3418 len = avail_mem[i].pmem_end - spa; 3419 len = m68k_round_page(len); 3420 sh->ram_segs[i].start = spa; 3421 sh->ram_segs[i].size = len; 3422 } 3423 } 3424 3425 3426 /* pmap_virtual_space INTERFACE 3427 ** 3428 * Return the current available range of virtual addresses in the 3429 * arguuments provided. Only really called once. 3430 */ 3431 void 3432 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend) 3433 { 3434 *vstart = virtual_avail; 3435 *vend = virtual_end; 3436 } 3437 3438 /* 3439 * Provide memory to the VM system. 3440 * 3441 * Assume avail_start is always in the 3442 * first segment as pmap_bootstrap does. 3443 */ 3444 static void 3445 pmap_page_upload(void) 3446 { 3447 paddr_t a, b; /* memory range */ 3448 int i; 3449 3450 /* Supply the memory in segments. */ 3451 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3452 a = atop(avail_mem[i].pmem_start); 3453 b = atop(avail_mem[i].pmem_end); 3454 if (i == 0) 3455 a = atop(avail_start); 3456 if (avail_mem[i].pmem_end > avail_end) 3457 b = atop(avail_end); 3458 3459 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT); 3460 3461 if (avail_mem[i].pmem_next == NULL) 3462 break; 3463 } 3464 } 3465 3466 /* pmap_count INTERFACE 3467 ** 3468 * Return the number of resident (valid) pages in the given pmap. 3469 * 3470 * Note: If this function is handed the kernel map, it will report 3471 * that it has no mappings. Hopefully the VM system won't ask for kernel 3472 * map statistics. 3473 */ 3474 segsz_t 3475 pmap_count(pmap_t pmap, int type) 3476 { 3477 u_int count; 3478 int a_idx, b_idx; 3479 a_tmgr_t *a_tbl; 3480 b_tmgr_t *b_tbl; 3481 c_tmgr_t *c_tbl; 3482 3483 /* 3484 * If the pmap does not have its own A table manager, it has no 3485 * valid entires. 3486 */ 3487 if (pmap->pm_a_tmgr == NULL) 3488 return 0; 3489 3490 a_tbl = pmap->pm_a_tmgr; 3491 3492 count = 0; 3493 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) { 3494 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 3495 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw)); 3496 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) { 3497 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 3498 c_tbl = mmuC2tmgr( 3499 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]))); 3500 if (type == 0) 3501 /* 3502 * A resident entry count has been requested. 3503 */ 3504 count += c_tbl->ct_ecnt; 3505 else 3506 /* 3507 * A wired entry count has been requested. 3508 */ 3509 count += c_tbl->ct_wcnt; 3510 } 3511 } 3512 } 3513 } 3514 3515 return count; 3516 } 3517 3518 /************************ SUN3 COMPATIBILITY ROUTINES ******************** 3519 * The following routines are only used by DDB for tricky kernel text * 3520 * text operations in db_memrw.c. They are provided for sun3 * 3521 * compatibility. * 3522 *************************************************************************/ 3523 /* get_pte INTERNAL 3524 ** 3525 * Return the page descriptor the describes the kernel mapping 3526 * of the given virtual address. 3527 */ 3528 extern u_long ptest_addr(u_long); /* XXX: locore.s */ 3529 u_int 3530 get_pte(vaddr_t va) 3531 { 3532 u_long pte_pa; 3533 mmu_short_pte_t *pte; 3534 3535 /* Get the physical address of the PTE */ 3536 pte_pa = ptest_addr(va & ~PGOFSET); 3537 3538 /* Convert to a virtual address... */ 3539 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa); 3540 3541 /* Make sure it is in our level-C tables... */ 3542 if ((pte < kernCbase) || 3543 (pte >= &mmuCbase[NUM_USER_PTES])) 3544 return 0; 3545 3546 /* ... and just return its contents. */ 3547 return (pte->attr.raw); 3548 } 3549 3550 3551 /* set_pte INTERNAL 3552 ** 3553 * Set the page descriptor that describes the kernel mapping 3554 * of the given virtual address. 3555 */ 3556 void 3557 set_pte(vaddr_t va, u_int pte) 3558 { 3559 u_long idx; 3560 3561 if (va < KERNBASE) 3562 return; 3563 3564 idx = (unsigned long) m68k_btop(va - KERNBASE); 3565 kernCbase[idx].attr.raw = pte; 3566 TBIS(va); 3567 } 3568 3569 /* 3570 * Routine: pmap_procwr 3571 * 3572 * Function: 3573 * Synchronize caches corresponding to [addr, addr+len) in p. 3574 */ 3575 void 3576 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 3577 { 3578 (void)cachectl1(0x80000004, va, len, p); 3579 } 3580 3581 3582 #ifdef PMAP_DEBUG 3583 /************************** DEBUGGING ROUTINES ************************** 3584 * The following routines are meant to be an aid to debugging the pmap * 3585 * system. They are callable from the DDB command line and should be * 3586 * prepared to be handed unstable or incomplete states of the system. * 3587 ************************************************************************/ 3588 3589 /* pv_list 3590 ** 3591 * List all pages found on the pv list for the given physical page. 3592 * To avoid endless loops, the listing will stop at the end of the list 3593 * or after 'n' entries - whichever comes first. 3594 */ 3595 void 3596 pv_list(paddr_t pa, int n) 3597 { 3598 int idx; 3599 vaddr_t va; 3600 pv_t *pv; 3601 c_tmgr_t *c_tbl; 3602 pmap_t pmap; 3603 3604 pv = pa2pv(pa); 3605 idx = pv->pv_idx; 3606 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) { 3607 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 3608 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n", 3609 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl); 3610 } 3611 } 3612 #endif /* PMAP_DEBUG */ 3613 3614 #ifdef NOT_YET 3615 /* and maybe not ever */ 3616 /************************** LOW-LEVEL ROUTINES ************************** 3617 * These routines will eventually be re-written into assembly and placed* 3618 * in locore.s. They are here now as stubs so that the pmap module can * 3619 * be linked as a standalone user program for testing. * 3620 ************************************************************************/ 3621 /* flush_atc_crp INTERNAL 3622 ** 3623 * Flush all page descriptors derived from the given CPU Root Pointer 3624 * (CRP), or 'A' table as it is known here, from the 68851's automatic 3625 * cache. 3626 */ 3627 void 3628 flush_atc_crp(int a_tbl) 3629 { 3630 mmu_long_rp_t rp; 3631 3632 /* Create a temporary root table pointer that points to the 3633 * given A table. 3634 */ 3635 rp.attr.raw = ~MMU_LONG_RP_LU; 3636 rp.addr.raw = (unsigned int) a_tbl; 3637 3638 mmu_pflushr(&rp); 3639 /* mmu_pflushr: 3640 * movel sp(4)@,a0 3641 * pflushr a0@ 3642 * rts 3643 */ 3644 } 3645 #endif /* NOT_YET */ 3646