1 /* $NetBSD: pmap.c,v 1.90 2006/05/10 06:24:03 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jeremy Cooper. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * XXX These comments aren't quite accurate. Need to change. 41 * The sun3x uses the MC68851 Memory Management Unit, which is built 42 * into the CPU. The 68851 maps virtual to physical addresses using 43 * a multi-level table lookup, which is stored in the very memory that 44 * it maps. The number of levels of lookup is configurable from one 45 * to four. In this implementation, we use three, named 'A' through 'C'. 46 * 47 * The MMU translates virtual addresses into physical addresses by 48 * traversing these tables in a process called a 'table walk'. The most 49 * significant 7 bits of the Virtual Address ('VA') being translated are 50 * used as an index into the level A table, whose base in physical memory 51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The 52 * address found at that index in the A table is used as the base 53 * address for the next table, the B table. The next six bits of the VA are 54 * used as an index into the B table, which in turn gives the base address 55 * of the third and final C table. 56 * 57 * The next six bits of the VA are used as an index into the C table to 58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory 59 * to which the remaining 13 bits of the VA are added, producing the 60 * mapped physical address. 61 * 62 * To map the entire memory space in this manner would require 2114296 bytes 63 * of page tables per process - quite expensive. Instead we will 64 * allocate a fixed but considerably smaller space for the page tables at 65 * the time the VM system is initialized. When the pmap code is asked by 66 * the kernel to map a VA to a PA, it allocates tables as needed from this 67 * pool. When there are no more tables in the pool, tables are stolen 68 * from the oldest mapped entries in the tree. This is only possible 69 * because all memory mappings are stored in the kernel memory map 70 * structures, independent of the pmap structures. A VA which references 71 * one of these invalidated maps will cause a page fault. The kernel 72 * will determine that the page fault was caused by a task using a valid 73 * VA, but for some reason (which does not concern it), that address was 74 * not mapped. It will ask the pmap code to re-map the entry and then 75 * it will resume executing the faulting task. 76 * 77 * In this manner the most efficient use of the page table space is 78 * achieved. Tasks which do not execute often will have their tables 79 * stolen and reused by tasks which execute more frequently. The best 80 * size for the page table pool will probably be determined by 81 * experimentation. 82 * 83 * You read all of the comments so far. Good for you. 84 * Now go play! 85 */ 86 87 /*** A Note About the 68851 Address Translation Cache 88 * The MC68851 has a 64 entry cache, called the Address Translation Cache 89 * or 'ATC'. This cache stores the most recently used page descriptors 90 * accessed by the MMU when it does translations. Using a marker called a 91 * 'task alias' the MMU can store the descriptors from 8 different table 92 * spaces concurrently. The task alias is associated with the base 93 * address of the level A table of that address space. When an address 94 * space is currently active (the CRP currently points to its A table) 95 * the only cached descriptors that will be obeyed are ones which have a 96 * matching task alias of the current space associated with them. 97 * 98 * Since the cache is always consulted before any table lookups are done, 99 * it is important that it accurately reflect the state of the MMU tables. 100 * Whenever a change has been made to a table that has been loaded into 101 * the MMU, the code must be sure to flush any cached entries that are 102 * affected by the change. These instances are documented in the code at 103 * various points. 104 */ 105 /*** A Note About the Note About the 68851 Address Translation Cache 106 * 4 months into this code I discovered that the sun3x does not have 107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the 108 * the 68030 CPU. 109 * All though it behaves very similarly to the 68851, it only has 1 task 110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph 111 * of the previous note does not apply to the sun3x pmap. 112 */ 113 114 #include <sys/cdefs.h> 115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.90 2006/05/10 06:24:03 skrll Exp $"); 116 117 #include "opt_ddb.h" 118 #include "opt_pmap_debug.h" 119 120 #include <sys/param.h> 121 #include <sys/systm.h> 122 #include <sys/proc.h> 123 #include <sys/malloc.h> 124 #include <sys/pool.h> 125 #include <sys/user.h> 126 #include <sys/queue.h> 127 #include <sys/kcore.h> 128 129 #include <uvm/uvm.h> 130 131 #include <machine/cpu.h> 132 #include <machine/kcore.h> 133 #include <machine/mon.h> 134 #include <machine/pmap.h> 135 #include <machine/pte.h> 136 #include <machine/vmparam.h> 137 #include <m68k/cacheops.h> 138 139 #include <sun3/sun3/cache.h> 140 #include <sun3/sun3/machdep.h> 141 142 #include "pmap_pvt.h" 143 144 /* XXX - What headers declare these? */ 145 extern struct pcb *curpcb; 146 extern int physmem; 147 148 /* Defined in locore.s */ 149 extern char kernel_text[]; 150 151 /* Defined by the linker */ 152 extern char etext[], edata[], end[]; 153 extern char *esym; /* DDB */ 154 155 /*************************** DEBUGGING DEFINITIONS *********************** 156 * Macros, preprocessor defines and variables used in debugging can make * 157 * code hard to read. Anything used exclusively for debugging purposes * 158 * is defined here to avoid having such mess scattered around the file. * 159 *************************************************************************/ 160 #ifdef PMAP_DEBUG 161 /* 162 * To aid the debugging process, macros should be expanded into smaller steps 163 * that accomplish the same goal, yet provide convenient places for placing 164 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the 165 * 'INLINE' keyword is defined to an empty string. This way, any function 166 * defined to be a 'static INLINE' will become 'outlined' and compiled as 167 * a separate function, which is much easier to debug. 168 */ 169 #define INLINE /* nothing */ 170 171 /* 172 * It is sometimes convenient to watch the activity of a particular table 173 * in the system. The following variables are used for that purpose. 174 */ 175 a_tmgr_t *pmap_watch_atbl = 0; 176 b_tmgr_t *pmap_watch_btbl = 0; 177 c_tmgr_t *pmap_watch_ctbl = 0; 178 179 int pmap_debug = 0; 180 #define DPRINT(args) if (pmap_debug) printf args 181 182 #else /********** Stuff below is defined if NOT debugging **************/ 183 184 #define INLINE inline 185 #define DPRINT(args) /* nada */ 186 187 #endif /* PMAP_DEBUG */ 188 /*********************** END OF DEBUGGING DEFINITIONS ********************/ 189 190 /*** Management Structure - Memory Layout 191 * For every MMU table in the sun3x pmap system there must be a way to 192 * manage it; we must know which process is using it, what other tables 193 * depend on it, and whether or not it contains any locked pages. This 194 * is solved by the creation of 'table management' or 'tmgr' 195 * structures. One for each MMU table in the system. 196 * 197 * MAP OF MEMORY USED BY THE PMAP SYSTEM 198 * 199 * towards lower memory 200 * kernAbase -> +-------------------------------------------------------+ 201 * | Kernel MMU A level table | 202 * kernBbase -> +-------------------------------------------------------+ 203 * | Kernel MMU B level tables | 204 * kernCbase -> +-------------------------------------------------------+ 205 * | | 206 * | Kernel MMU C level tables | 207 * | | 208 * mmuCbase -> +-------------------------------------------------------+ 209 * | User MMU C level tables | 210 * mmuAbase -> +-------------------------------------------------------+ 211 * | | 212 * | User MMU A level tables | 213 * | | 214 * mmuBbase -> +-------------------------------------------------------+ 215 * | User MMU B level tables | 216 * tmgrAbase -> +-------------------------------------------------------+ 217 * | TMGR A level table structures | 218 * tmgrBbase -> +-------------------------------------------------------+ 219 * | TMGR B level table structures | 220 * tmgrCbase -> +-------------------------------------------------------+ 221 * | TMGR C level table structures | 222 * pvbase -> +-------------------------------------------------------+ 223 * | Physical to Virtual mapping table (list heads) | 224 * pvebase -> +-------------------------------------------------------+ 225 * | Physical to Virtual mapping table (list elements) | 226 * | | 227 * +-------------------------------------------------------+ 228 * towards higher memory 229 * 230 * For every A table in the MMU A area, there will be a corresponding 231 * a_tmgr structure in the TMGR A area. The same will be true for 232 * the B and C tables. This arrangement will make it easy to find the 233 * controling tmgr structure for any table in the system by use of 234 * (relatively) simple macros. 235 */ 236 237 /* 238 * Global variables for storing the base addresses for the areas 239 * labeled above. 240 */ 241 static vaddr_t kernAphys; 242 static mmu_long_dte_t *kernAbase; 243 static mmu_short_dte_t *kernBbase; 244 static mmu_short_pte_t *kernCbase; 245 static mmu_short_pte_t *mmuCbase; 246 static mmu_short_dte_t *mmuBbase; 247 static mmu_long_dte_t *mmuAbase; 248 static a_tmgr_t *Atmgrbase; 249 static b_tmgr_t *Btmgrbase; 250 static c_tmgr_t *Ctmgrbase; 251 static pv_t *pvbase; 252 static pv_elem_t *pvebase; 253 struct pmap kernel_pmap; 254 255 /* 256 * This holds the CRP currently loaded into the MMU. 257 */ 258 struct mmu_rootptr kernel_crp; 259 260 /* 261 * Just all around global variables. 262 */ 263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool; 264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool; 265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool; 266 267 268 /* 269 * Flags used to mark the safety/availability of certain operations or 270 * resources. 271 */ 272 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/ 273 int tmp_vpages_inuse; /* Temporary virtual pages are in use */ 274 275 /* 276 * XXX: For now, retain the traditional variables that were 277 * used in the old pmap/vm interface (without NONCONTIG). 278 */ 279 /* Kernel virtual address space available: */ 280 vaddr_t virtual_avail, virtual_end; 281 /* Physical address space available: */ 282 paddr_t avail_start, avail_end; 283 284 /* This keep track of the end of the contiguously mapped range. */ 285 vaddr_t virtual_contig_end; 286 287 /* Physical address used by pmap_next_page() */ 288 paddr_t avail_next; 289 290 /* These are used by pmap_copy_page(), etc. */ 291 vaddr_t tmp_vpages[2]; 292 293 /* memory pool for pmap structures */ 294 struct pool pmap_pmap_pool; 295 296 /* 297 * The 3/80 is the only member of the sun3x family that has non-contiguous 298 * physical memory. Memory is divided into 4 banks which are physically 299 * locatable on the system board. Although the size of these banks varies 300 * with the size of memory they contain, their base addresses are 301 * permenently fixed. The following structure, which describes these 302 * banks, is initialized by pmap_bootstrap() after it reads from a similar 303 * structure provided by the ROM Monitor. 304 * 305 * For the other machines in the sun3x architecture which do have contiguous 306 * RAM, this list will have only one entry, which will describe the entire 307 * range of available memory. 308 */ 309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS]; 310 u_int total_phys_mem; 311 312 /*************************************************************************/ 313 314 /* 315 * XXX - Should "tune" these based on statistics. 316 * 317 * My first guess about the relative numbers of these needed is 318 * based on the fact that a "typical" process will have several 319 * pages mapped at low virtual addresses (text, data, bss), then 320 * some mapped shared libraries, and then some stack pages mapped 321 * near the high end of the VA space. Each process can use only 322 * one A table, and most will use only two B tables (maybe three) 323 * and probably about four C tables. Therefore, the first guess 324 * at the relative numbers of these needed is 1:2:4 -gwr 325 * 326 * The number of C tables needed is closely related to the amount 327 * of physical memory available plus a certain amount attributable 328 * to the use of double mappings. With a few simulation statistics 329 * we can find a reasonably good estimation of this unknown value. 330 * Armed with that and the above ratios, we have a good idea of what 331 * is needed at each level. -j 332 * 333 * Note: It is not physical memory memory size, but the total mapped 334 * virtual space required by the combined working sets of all the 335 * currently _runnable_ processes. (Sleeping ones don't count.) 336 * The amount of physical memory should be irrelevant. -gwr 337 */ 338 #ifdef FIXED_NTABLES 339 #define NUM_A_TABLES 16 340 #define NUM_B_TABLES 32 341 #define NUM_C_TABLES 64 342 #else 343 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES; 344 #endif /* FIXED_NTABLES */ 345 346 /* 347 * This determines our total virtual mapping capacity. 348 * Yes, it is a FIXED value so we can pre-allocate. 349 */ 350 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE) 351 352 /* 353 * The size of the Kernel Virtual Address Space (KVAS) 354 * for purposes of MMU table allocation is -KERNBASE 355 * (length from KERNBASE to 0xFFFFffff) 356 */ 357 #define KVAS_SIZE (-KERNBASE) 358 359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */ 360 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT) 361 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT) 362 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT) 363 364 /*************************** MISCELANEOUS MACROS *************************/ 365 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock) 366 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock) 367 #define pmap_add_ref(pmap) ++pmap->pm_refcount 368 #define pmap_del_ref(pmap) --pmap->pm_refcount 369 #define pmap_refcount(pmap) pmap->pm_refcount 370 371 void *pmap_bootstrap_alloc(int); 372 373 static INLINE void *mmu_ptov(paddr_t); 374 static INLINE paddr_t mmu_vtop(void *); 375 376 #if 0 377 static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *); 378 #endif /* 0 */ 379 static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *); 380 static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *); 381 382 static INLINE pv_t *pa2pv(paddr_t); 383 static INLINE int pteidx(mmu_short_pte_t *); 384 static INLINE pmap_t current_pmap(void); 385 386 /* 387 * We can always convert between virtual and physical addresses 388 * for anything in the range [KERNBASE ... avail_start] because 389 * that range is GUARANTEED to be mapped linearly. 390 * We rely heavily upon this feature! 391 */ 392 static INLINE void * 393 mmu_ptov(paddr_t pa) 394 { 395 vaddr_t va; 396 397 va = (pa + KERNBASE); 398 #ifdef PMAP_DEBUG 399 if ((va < KERNBASE) || (va >= virtual_contig_end)) 400 panic("mmu_ptov"); 401 #endif 402 return ((void*)va); 403 } 404 405 static INLINE paddr_t 406 mmu_vtop(void *vva) 407 { 408 vaddr_t va; 409 410 va = (vaddr_t)vva; 411 #ifdef PMAP_DEBUG 412 if ((va < KERNBASE) || (va >= virtual_contig_end)) 413 panic("mmu_vtop"); 414 #endif 415 return (va - KERNBASE); 416 } 417 418 /* 419 * These macros map MMU tables to their corresponding manager structures. 420 * They are needed quite often because many of the pointers in the pmap 421 * system reference MMU tables and not the structures that control them. 422 * There needs to be a way to find one when given the other and these 423 * macros do so by taking advantage of the memory layout described above. 424 * Here's a quick step through the first macro, mmuA2tmgr(): 425 * 426 * 1) find the offset of the given MMU A table from the base of its table 427 * pool (table - mmuAbase). 428 * 2) convert this offset into a table index by dividing it by the 429 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE) 430 * 3) use this index to select the corresponding 'A' table manager 431 * structure from the 'A' table manager pool (Atmgrbase[index]). 432 */ 433 /* This function is not currently used. */ 434 #if 0 435 static INLINE a_tmgr_t * 436 mmuA2tmgr(mmu_long_dte_t *mmuAtbl) 437 { 438 int idx; 439 440 /* Which table is this in? */ 441 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE; 442 #ifdef PMAP_DEBUG 443 if ((idx < 0) || (idx >= NUM_A_TABLES)) 444 panic("mmuA2tmgr"); 445 #endif 446 return (&Atmgrbase[idx]); 447 } 448 #endif /* 0 */ 449 450 static INLINE b_tmgr_t * 451 mmuB2tmgr(mmu_short_dte_t *mmuBtbl) 452 { 453 int idx; 454 455 /* Which table is this in? */ 456 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE; 457 #ifdef PMAP_DEBUG 458 if ((idx < 0) || (idx >= NUM_B_TABLES)) 459 panic("mmuB2tmgr"); 460 #endif 461 return (&Btmgrbase[idx]); 462 } 463 464 /* mmuC2tmgr INTERNAL 465 ** 466 * Given a pte known to belong to a C table, return the address of 467 * that table's management structure. 468 */ 469 static INLINE c_tmgr_t * 470 mmuC2tmgr(mmu_short_pte_t *mmuCtbl) 471 { 472 int idx; 473 474 /* Which table is this in? */ 475 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE; 476 #ifdef PMAP_DEBUG 477 if ((idx < 0) || (idx >= NUM_C_TABLES)) 478 panic("mmuC2tmgr"); 479 #endif 480 return (&Ctmgrbase[idx]); 481 } 482 483 /* This is now a function call below. 484 * #define pa2pv(pa) \ 485 * (&pvbase[(unsigned long)\ 486 * m68k_btop(pa)\ 487 * ]) 488 */ 489 490 /* pa2pv INTERNAL 491 ** 492 * Return the pv_list_head element which manages the given physical 493 * address. 494 */ 495 static INLINE pv_t * 496 pa2pv(paddr_t pa) 497 { 498 struct pmap_physmem_struct *bank; 499 int idx; 500 501 bank = &avail_mem[0]; 502 while (pa >= bank->pmem_end) 503 bank = bank->pmem_next; 504 505 pa -= bank->pmem_start; 506 idx = bank->pmem_pvbase + m68k_btop(pa); 507 #ifdef PMAP_DEBUG 508 if ((idx < 0) || (idx >= physmem)) 509 panic("pa2pv"); 510 #endif 511 return &pvbase[idx]; 512 } 513 514 /* pteidx INTERNAL 515 ** 516 * Return the index of the given PTE within the entire fixed table of 517 * PTEs. 518 */ 519 static INLINE int 520 pteidx(mmu_short_pte_t *pte) 521 { 522 return (pte - kernCbase); 523 } 524 525 /* 526 * This just offers a place to put some debugging checks, 527 * and reduces the number of places "curlwp" appears... 528 */ 529 static INLINE pmap_t 530 current_pmap(void) 531 { 532 struct vmspace *vm; 533 struct vm_map *map; 534 pmap_t pmap; 535 536 if (curlwp == NULL) 537 pmap = &kernel_pmap; 538 else { 539 vm = curproc->p_vmspace; 540 map = &vm->vm_map; 541 pmap = vm_map_pmap(map); 542 } 543 544 return (pmap); 545 } 546 547 548 /*************************** FUNCTION DEFINITIONS ************************ 549 * These appear here merely for the compiler to enforce type checking on * 550 * all function calls. * 551 *************************************************************************/ 552 553 /** Internal functions 554 ** Most functions used only within this module are defined in 555 ** pmap_pvt.h (why not here if used only here?) 556 **/ 557 static void pmap_page_upload(void); 558 559 /** Interface functions 560 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG 561 ** defined. 562 **/ 563 void pmap_pinit(pmap_t); 564 void pmap_release(pmap_t); 565 566 /********************************** CODE ******************************** 567 * Functions that are called from other parts of the kernel are labeled * 568 * as 'INTERFACE' functions. Functions that are only called from * 569 * within the pmap module are labeled as 'INTERNAL' functions. * 570 * Functions that are internal, but are not (currently) used at all are * 571 * labeled 'INTERNAL_X'. * 572 ************************************************************************/ 573 574 /* pmap_bootstrap INTERNAL 575 ** 576 * Initializes the pmap system. Called at boot time from 577 * locore2.c:_vm_init() 578 * 579 * Reminder: having a pmap_bootstrap_alloc() and also having the VM 580 * system implement pmap_steal_memory() is redundant. 581 * Don't release this code without removing one or the other! 582 */ 583 void 584 pmap_bootstrap(vaddr_t nextva) 585 { 586 struct physmemory *membank; 587 struct pmap_physmem_struct *pmap_membank; 588 vaddr_t va, eva; 589 paddr_t pa; 590 int b, c, i, j; /* running table counts */ 591 int size, resvmem; 592 593 /* 594 * This function is called by __bootstrap after it has 595 * determined the type of machine and made the appropriate 596 * patches to the ROM vectors (XXX- I don't quite know what I meant 597 * by that.) It allocates and sets up enough of the pmap system 598 * to manage the kernel's address space. 599 */ 600 601 /* 602 * Determine the range of kernel virtual and physical 603 * space available. Note that we ABSOLUTELY DEPEND on 604 * the fact that the first bank of memory (4MB) is 605 * mapped linearly to KERNBASE (which we guaranteed in 606 * the first instructions of locore.s). 607 * That is plenty for our bootstrap work. 608 */ 609 virtual_avail = m68k_round_page(nextva); 610 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */ 611 virtual_end = VM_MAX_KERNEL_ADDRESS; 612 /* Don't need avail_start til later. */ 613 614 /* We may now call pmap_bootstrap_alloc(). */ 615 bootstrap_alloc_enabled = TRUE; 616 617 /* 618 * This is a somewhat unwrapped loop to deal with 619 * copying the PROM's 'phsymem' banks into the pmap's 620 * banks. The following is always assumed: 621 * 1. There is always at least one bank of memory. 622 * 2. There is always a last bank of memory, and its 623 * pmem_next member must be set to NULL. 624 */ 625 membank = romVectorPtr->v_physmemory; 626 pmap_membank = avail_mem; 627 total_phys_mem = 0; 628 629 for (;;) { /* break on !membank */ 630 pmap_membank->pmem_start = membank->address; 631 pmap_membank->pmem_end = membank->address + membank->size; 632 total_phys_mem += membank->size; 633 membank = membank->next; 634 if (!membank) 635 break; 636 /* This silly syntax arises because pmap_membank 637 * is really a pre-allocated array, but it is put into 638 * use as a linked list. 639 */ 640 pmap_membank->pmem_next = pmap_membank + 1; 641 pmap_membank = pmap_membank->pmem_next; 642 } 643 /* This is the last element. */ 644 pmap_membank->pmem_next = NULL; 645 646 /* 647 * Note: total_phys_mem, physmem represent 648 * actual physical memory, including that 649 * reserved for the PROM monitor. 650 */ 651 physmem = btoc(total_phys_mem); 652 653 /* 654 * Avail_end is set to the first byte of physical memory 655 * after the end of the last bank. We use this only to 656 * determine if a physical address is "managed" memory. 657 * This address range should be reduced to prevent the 658 * physical pages needed by the PROM monitor from being used 659 * in the VM system. 660 */ 661 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail); 662 resvmem = m68k_round_page(resvmem); 663 avail_end = pmap_membank->pmem_end - resvmem; 664 665 /* 666 * First allocate enough kernel MMU tables to map all 667 * of kernel virtual space from KERNBASE to 0xFFFFFFFF. 668 * Note: All must be aligned on 256 byte boundaries. 669 * Start with the level-A table (one of those). 670 */ 671 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE; 672 kernAbase = pmap_bootstrap_alloc(size); 673 memset(kernAbase, 0, size); 674 675 /* Now the level-B kernel tables... */ 676 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES; 677 kernBbase = pmap_bootstrap_alloc(size); 678 memset(kernBbase, 0, size); 679 680 /* Now the level-C kernel tables... */ 681 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES; 682 kernCbase = pmap_bootstrap_alloc(size); 683 memset(kernCbase, 0, size); 684 /* 685 * Note: In order for the PV system to work correctly, the kernel 686 * and user-level C tables must be allocated contiguously. 687 * Nothing should be allocated between here and the allocation of 688 * mmuCbase below. XXX: Should do this as one allocation, and 689 * then compute a pointer for mmuCbase instead of this... 690 * 691 * Allocate user MMU tables. 692 * These must be contiguous with the preceding. 693 */ 694 695 #ifndef FIXED_NTABLES 696 /* 697 * The number of user-level C tables that should be allocated is 698 * related to the size of physical memory. In general, there should 699 * be enough tables to map four times the amount of available RAM. 700 * The extra amount is needed because some table space is wasted by 701 * fragmentation. 702 */ 703 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE); 704 NUM_B_TABLES = NUM_C_TABLES / 2; 705 NUM_A_TABLES = NUM_B_TABLES / 2; 706 #endif /* !FIXED_NTABLES */ 707 708 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES; 709 mmuCbase = pmap_bootstrap_alloc(size); 710 711 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES; 712 mmuBbase = pmap_bootstrap_alloc(size); 713 714 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES; 715 mmuAbase = pmap_bootstrap_alloc(size); 716 717 /* 718 * Fill in the never-changing part of the kernel tables. 719 * For simplicity, the kernel's mappings will be editable as a 720 * flat array of page table entries at kernCbase. The 721 * higher level 'A' and 'B' tables must be initialized to point 722 * to this lower one. 723 */ 724 b = c = 0; 725 726 /* 727 * Invalidate all mappings below KERNBASE in the A table. 728 * This area has already been zeroed out, but it is good 729 * practice to explicitly show that we are interpreting 730 * it as a list of A table descriptors. 731 */ 732 for (i = 0; i < MMU_TIA(KERNBASE); i++) { 733 kernAbase[i].addr.raw = 0; 734 } 735 736 /* 737 * Set up the kernel A and B tables so that they will reference the 738 * correct spots in the contiguous table of PTEs allocated for the 739 * kernel's virtual memory space. 740 */ 741 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) { 742 kernAbase[i].attr.raw = 743 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT; 744 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]); 745 746 for (j=0; j < MMU_B_TBL_SIZE; j++) { 747 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c]) 748 | MMU_DT_SHORT; 749 c += MMU_C_TBL_SIZE; 750 } 751 b += MMU_B_TBL_SIZE; 752 } 753 754 pmap_alloc_usermmu(); /* Allocate user MMU tables. */ 755 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/ 756 pmap_alloc_pv(); /* Allocate physical->virtual map. */ 757 758 /* 759 * We are now done with pmap_bootstrap_alloc(). Round up 760 * `virtual_avail' to the nearest page, and set the flag 761 * to prevent use of pmap_bootstrap_alloc() hereafter. 762 */ 763 pmap_bootstrap_aalign(PAGE_SIZE); 764 bootstrap_alloc_enabled = FALSE; 765 766 /* 767 * Now that we are done with pmap_bootstrap_alloc(), we 768 * must save the virtual and physical addresses of the 769 * end of the linearly mapped range, which are stored in 770 * virtual_contig_end and avail_start, respectively. 771 * These variables will never change after this point. 772 */ 773 virtual_contig_end = virtual_avail; 774 avail_start = virtual_avail - KERNBASE; 775 776 /* 777 * `avail_next' is a running pointer used by pmap_next_page() to 778 * keep track of the next available physical page to be handed 779 * to the VM system during its initialization, in which it 780 * asks for physical pages, one at a time. 781 */ 782 avail_next = avail_start; 783 784 /* 785 * Now allocate some virtual addresses, but not the physical pages 786 * behind them. Note that virtual_avail is already page-aligned. 787 * 788 * tmp_vpages[] is an array of two virtual pages used for temporary 789 * kernel mappings in the pmap module to facilitate various physical 790 * address-oritented operations. 791 */ 792 tmp_vpages[0] = virtual_avail; 793 virtual_avail += PAGE_SIZE; 794 tmp_vpages[1] = virtual_avail; 795 virtual_avail += PAGE_SIZE; 796 797 /** Initialize the PV system **/ 798 pmap_init_pv(); 799 800 /* 801 * Fill in the kernel_pmap structure and kernel_crp. 802 */ 803 kernAphys = mmu_vtop(kernAbase); 804 kernel_pmap.pm_a_tmgr = NULL; 805 kernel_pmap.pm_a_phys = kernAphys; 806 kernel_pmap.pm_refcount = 1; /* always in use */ 807 simple_lock_init(&kernel_pmap.pm_lock); 808 809 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG; 810 kernel_crp.rp_addr = kernAphys; 811 812 /* 813 * Now pmap_enter_kernel() may be used safely and will be 814 * the main interface used hereafter to modify the kernel's 815 * virtual address space. Note that since we are still running 816 * under the PROM's address table, none of these table modifications 817 * actually take effect until pmap_takeover_mmu() is called. 818 * 819 * Note: Our tables do NOT have the PROM linear mappings! 820 * Only the mappings created here exist in our tables, so 821 * remember to map anything we expect to use. 822 */ 823 va = (vaddr_t)KERNBASE; 824 pa = 0; 825 826 /* 827 * The first page of the kernel virtual address space is the msgbuf 828 * page. The page attributes (data, non-cached) are set here, while 829 * the address is assigned to this global pointer in cpu_startup(). 830 * It is non-cached, mostly due to paranoia. 831 */ 832 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL); 833 va += PAGE_SIZE; pa += PAGE_SIZE; 834 835 /* Next page is used as the temporary stack. */ 836 pmap_enter_kernel(va, pa, VM_PROT_ALL); 837 va += PAGE_SIZE; pa += PAGE_SIZE; 838 839 /* 840 * Map all of the kernel's text segment as read-only and cacheable. 841 * (Cacheable is implied by default). Unfortunately, the last bytes 842 * of kernel text and the first bytes of kernel data will often be 843 * sharing the same page. Therefore, the last page of kernel text 844 * has to be mapped as read/write, to accomodate the data. 845 */ 846 eva = m68k_trunc_page((vaddr_t)etext); 847 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE) 848 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE); 849 850 /* 851 * Map all of the kernel's data as read/write and cacheable. 852 * This includes: data, BSS, symbols, and everything in the 853 * contiguous memory used by pmap_bootstrap_alloc() 854 */ 855 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE) 856 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE); 857 858 /* 859 * At this point we are almost ready to take over the MMU. But first 860 * we must save the PROM's address space in our map, as we call its 861 * routines and make references to its data later in the kernel. 862 */ 863 pmap_bootstrap_copyprom(); 864 pmap_takeover_mmu(); 865 pmap_bootstrap_setprom(); 866 867 /* Notify the VM system of our page size. */ 868 uvmexp.pagesize = PAGE_SIZE; 869 uvm_setpagesize(); 870 871 pmap_page_upload(); 872 } 873 874 875 /* pmap_alloc_usermmu INTERNAL 876 ** 877 * Called from pmap_bootstrap() to allocate MMU tables that will 878 * eventually be used for user mappings. 879 */ 880 void 881 pmap_alloc_usermmu(void) 882 { 883 /* XXX: Moved into caller. */ 884 } 885 886 /* pmap_alloc_pv INTERNAL 887 ** 888 * Called from pmap_bootstrap() to allocate the physical 889 * to virtual mapping list. Each physical page of memory 890 * in the system has a corresponding element in this list. 891 */ 892 void 893 pmap_alloc_pv(void) 894 { 895 int i; 896 unsigned int total_mem; 897 898 /* 899 * Allocate a pv_head structure for every page of physical 900 * memory that will be managed by the system. Since memory on 901 * the 3/80 is non-contiguous, we cannot arrive at a total page 902 * count by subtraction of the lowest available address from the 903 * highest, but rather we have to step through each memory 904 * bank and add the number of pages in each to the total. 905 * 906 * At this time we also initialize the offset of each bank's 907 * starting pv_head within the pv_head list so that the physical 908 * memory state routines (pmap_is_referenced(), 909 * pmap_is_modified(), et al.) can quickly find coresponding 910 * pv_heads in spite of the non-contiguity. 911 */ 912 total_mem = 0; 913 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 914 avail_mem[i].pmem_pvbase = m68k_btop(total_mem); 915 total_mem += avail_mem[i].pmem_end - 916 avail_mem[i].pmem_start; 917 if (avail_mem[i].pmem_next == NULL) 918 break; 919 } 920 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) * 921 m68k_btop(total_phys_mem)); 922 } 923 924 /* pmap_alloc_usertmgr INTERNAL 925 ** 926 * Called from pmap_bootstrap() to allocate the structures which 927 * facilitate management of user MMU tables. Each user MMU table 928 * in the system has one such structure associated with it. 929 */ 930 void 931 pmap_alloc_usertmgr(void) 932 { 933 /* Allocate user MMU table managers */ 934 /* It would be a lot simpler to just make these BSS, but */ 935 /* we may want to change their size at boot time... -j */ 936 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t) 937 * NUM_A_TABLES); 938 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t) 939 * NUM_B_TABLES); 940 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t) 941 * NUM_C_TABLES); 942 943 /* 944 * Allocate PV list elements for the physical to virtual 945 * mapping system. 946 */ 947 pvebase = (pv_elem_t *) pmap_bootstrap_alloc( 948 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES)); 949 } 950 951 /* pmap_bootstrap_copyprom() INTERNAL 952 ** 953 * Copy the PROM mappings into our own tables. Note, we 954 * can use physical addresses until __bootstrap returns. 955 */ 956 void 957 pmap_bootstrap_copyprom(void) 958 { 959 struct sunromvec *romp; 960 int *mon_ctbl; 961 mmu_short_pte_t *kpte; 962 int i, len; 963 964 romp = romVectorPtr; 965 966 /* 967 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND 968 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE 969 */ 970 mon_ctbl = *romp->monptaddr; 971 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE); 972 kpte = &kernCbase[i]; 973 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE); 974 975 for (i = 0; i < len; i++) { 976 kpte[i].attr.raw = mon_ctbl[i]; 977 } 978 979 /* 980 * Copy the mappings at MON_DVMA_BASE (to the end). 981 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE. 982 * Actually, we only want the last page, which the 983 * PROM has set up for use by the "ie" driver. 984 * (The i82686 needs its SCP there.) 985 * If we copy all the mappings, pmap_enter_kernel 986 * may complain about finding valid PTEs that are 987 * not recorded in our PV lists... 988 */ 989 mon_ctbl = *romp->shadowpteaddr; 990 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE); 991 kpte = &kernCbase[i]; 992 len = m68k_btop(SUN3X_MON_DVMA_SIZE); 993 for (i = (len-1); i < len; i++) { 994 kpte[i].attr.raw = mon_ctbl[i]; 995 } 996 } 997 998 /* pmap_takeover_mmu INTERNAL 999 ** 1000 * Called from pmap_bootstrap() after it has copied enough of the 1001 * PROM mappings into the kernel map so that we can use our own 1002 * MMU table. 1003 */ 1004 void 1005 pmap_takeover_mmu(void) 1006 { 1007 1008 loadcrp(&kernel_crp); 1009 } 1010 1011 /* pmap_bootstrap_setprom() INTERNAL 1012 ** 1013 * Set the PROM mappings so it can see kernel space. 1014 * Note that physical addresses are used here, which 1015 * we can get away with because this runs with the 1016 * low 1GB set for transparent translation. 1017 */ 1018 void 1019 pmap_bootstrap_setprom(void) 1020 { 1021 mmu_long_dte_t *mon_dte; 1022 extern struct mmu_rootptr mon_crp; 1023 int i; 1024 1025 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr; 1026 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) { 1027 mon_dte[i].attr.raw = kernAbase[i].attr.raw; 1028 mon_dte[i].addr.raw = kernAbase[i].addr.raw; 1029 } 1030 } 1031 1032 1033 /* pmap_init INTERFACE 1034 ** 1035 * Called at the end of vm_init() to set up the pmap system to go 1036 * into full time operation. All initialization of kernel_pmap 1037 * should be already done by now, so this should just do things 1038 * needed for user-level pmaps to work. 1039 */ 1040 void 1041 pmap_init(void) 1042 { 1043 /** Initialize the manager pools **/ 1044 TAILQ_INIT(&a_pool); 1045 TAILQ_INIT(&b_pool); 1046 TAILQ_INIT(&c_pool); 1047 1048 /************************************************************** 1049 * Initialize all tmgr structures and MMU tables they manage. * 1050 **************************************************************/ 1051 /** Initialize A tables **/ 1052 pmap_init_a_tables(); 1053 /** Initialize B tables **/ 1054 pmap_init_b_tables(); 1055 /** Initialize C tables **/ 1056 pmap_init_c_tables(); 1057 1058 /** Initialize the pmap pools **/ 1059 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl", 1060 &pool_allocator_nointr); 1061 } 1062 1063 /* pmap_init_a_tables() INTERNAL 1064 ** 1065 * Initializes all A managers, their MMU A tables, and inserts 1066 * them into the A manager pool for use by the system. 1067 */ 1068 void 1069 pmap_init_a_tables(void) 1070 { 1071 int i; 1072 a_tmgr_t *a_tbl; 1073 1074 for (i = 0; i < NUM_A_TABLES; i++) { 1075 /* Select the next available A manager from the pool */ 1076 a_tbl = &Atmgrbase[i]; 1077 1078 /* 1079 * Clear its parent entry. Set its wired and valid 1080 * entry count to zero. 1081 */ 1082 a_tbl->at_parent = NULL; 1083 a_tbl->at_wcnt = a_tbl->at_ecnt = 0; 1084 1085 /* Assign it the next available MMU A table from the pool */ 1086 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE]; 1087 1088 /* 1089 * Initialize the MMU A table with the table in the `proc0', 1090 * or kernel, mapping. This ensures that every process has 1091 * the kernel mapped in the top part of its address space. 1092 */ 1093 memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE * 1094 sizeof(mmu_long_dte_t)); 1095 1096 /* 1097 * Finally, insert the manager into the A pool, 1098 * making it ready to be used by the system. 1099 */ 1100 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1101 } 1102 } 1103 1104 /* pmap_init_b_tables() INTERNAL 1105 ** 1106 * Initializes all B table managers, their MMU B tables, and 1107 * inserts them into the B manager pool for use by the system. 1108 */ 1109 void 1110 pmap_init_b_tables(void) 1111 { 1112 int i, j; 1113 b_tmgr_t *b_tbl; 1114 1115 for (i = 0; i < NUM_B_TABLES; i++) { 1116 /* Select the next available B manager from the pool */ 1117 b_tbl = &Btmgrbase[i]; 1118 1119 b_tbl->bt_parent = NULL; /* clear its parent, */ 1120 b_tbl->bt_pidx = 0; /* parent index, */ 1121 b_tbl->bt_wcnt = 0; /* wired entry count, */ 1122 b_tbl->bt_ecnt = 0; /* valid entry count. */ 1123 1124 /* Assign it the next available MMU B table from the pool */ 1125 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE]; 1126 1127 /* Invalidate every descriptor in the table */ 1128 for (j=0; j < MMU_B_TBL_SIZE; j++) 1129 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID; 1130 1131 /* Insert the manager into the B pool */ 1132 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1133 } 1134 } 1135 1136 /* pmap_init_c_tables() INTERNAL 1137 ** 1138 * Initializes all C table managers, their MMU C tables, and 1139 * inserts them into the C manager pool for use by the system. 1140 */ 1141 void 1142 pmap_init_c_tables(void) 1143 { 1144 int i, j; 1145 c_tmgr_t *c_tbl; 1146 1147 for (i = 0; i < NUM_C_TABLES; i++) { 1148 /* Select the next available C manager from the pool */ 1149 c_tbl = &Ctmgrbase[i]; 1150 1151 c_tbl->ct_parent = NULL; /* clear its parent, */ 1152 c_tbl->ct_pidx = 0; /* parent index, */ 1153 c_tbl->ct_wcnt = 0; /* wired entry count, */ 1154 c_tbl->ct_ecnt = 0; /* valid entry count, */ 1155 c_tbl->ct_pmap = NULL; /* parent pmap, */ 1156 c_tbl->ct_va = 0; /* base of managed range */ 1157 1158 /* Assign it the next available MMU C table from the pool */ 1159 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE]; 1160 1161 for (j=0; j < MMU_C_TBL_SIZE; j++) 1162 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID; 1163 1164 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1165 } 1166 } 1167 1168 /* pmap_init_pv() INTERNAL 1169 ** 1170 * Initializes the Physical to Virtual mapping system. 1171 */ 1172 void 1173 pmap_init_pv(void) 1174 { 1175 int i; 1176 1177 /* Initialize every PV head. */ 1178 for (i = 0; i < m68k_btop(total_phys_mem); i++) { 1179 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */ 1180 pvbase[i].pv_flags = 0; /* Zero out page flags */ 1181 } 1182 } 1183 1184 /* get_a_table INTERNAL 1185 ** 1186 * Retrieve and return a level A table for use in a user map. 1187 */ 1188 a_tmgr_t * 1189 get_a_table(void) 1190 { 1191 a_tmgr_t *tbl; 1192 pmap_t pmap; 1193 1194 /* Get the top A table in the pool */ 1195 tbl = TAILQ_FIRST(&a_pool); 1196 if (tbl == NULL) { 1197 /* 1198 * XXX - Instead of panicking here and in other get_x_table 1199 * functions, we do have the option of sleeping on the head of 1200 * the table pool. Any function which updates the table pool 1201 * would then issue a wakeup() on the head, thus waking up any 1202 * processes waiting for a table. 1203 * 1204 * Actually, the place to sleep would be when some process 1205 * asks for a "wired" mapping that would run us short of 1206 * mapping resources. This design DEPENDS on always having 1207 * some mapping resources in the pool for stealing, so we 1208 * must make sure we NEVER let the pool become empty. -gwr 1209 */ 1210 panic("get_a_table: out of A tables."); 1211 } 1212 1213 TAILQ_REMOVE(&a_pool, tbl, at_link); 1214 /* 1215 * If the table has a non-null parent pointer then it is in use. 1216 * Forcibly abduct it from its parent and clear its entries. 1217 * No re-entrancy worries here. This table would not be in the 1218 * table pool unless it was available for use. 1219 * 1220 * Note that the second argument to free_a_table() is FALSE. This 1221 * indicates that the table should not be relinked into the A table 1222 * pool. That is a job for the function that called us. 1223 */ 1224 if (tbl->at_parent) { 1225 pmap = tbl->at_parent; 1226 free_a_table(tbl, FALSE); 1227 pmap->pm_a_tmgr = NULL; 1228 pmap->pm_a_phys = kernAphys; 1229 } 1230 return tbl; 1231 } 1232 1233 /* get_b_table INTERNAL 1234 ** 1235 * Return a level B table for use. 1236 */ 1237 b_tmgr_t * 1238 get_b_table(void) 1239 { 1240 b_tmgr_t *tbl; 1241 1242 /* See 'get_a_table' for comments. */ 1243 tbl = TAILQ_FIRST(&b_pool); 1244 if (tbl == NULL) 1245 panic("get_b_table: out of B tables."); 1246 TAILQ_REMOVE(&b_pool, tbl, bt_link); 1247 if (tbl->bt_parent) { 1248 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID; 1249 tbl->bt_parent->at_ecnt--; 1250 free_b_table(tbl, FALSE); 1251 } 1252 return tbl; 1253 } 1254 1255 /* get_c_table INTERNAL 1256 ** 1257 * Return a level C table for use. 1258 */ 1259 c_tmgr_t * 1260 get_c_table(void) 1261 { 1262 c_tmgr_t *tbl; 1263 1264 /* See 'get_a_table' for comments */ 1265 tbl = TAILQ_FIRST(&c_pool); 1266 if (tbl == NULL) 1267 panic("get_c_table: out of C tables."); 1268 TAILQ_REMOVE(&c_pool, tbl, ct_link); 1269 if (tbl->ct_parent) { 1270 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID; 1271 tbl->ct_parent->bt_ecnt--; 1272 free_c_table(tbl, FALSE); 1273 } 1274 return tbl; 1275 } 1276 1277 /* 1278 * The following 'free_table' and 'steal_table' functions are called to 1279 * detach tables from their current obligations (parents and children) and 1280 * prepare them for reuse in another mapping. 1281 * 1282 * Free_table is used when the calling function will handle the fate 1283 * of the parent table, such as returning it to the free pool when it has 1284 * no valid entries. Functions that do not want to handle this should 1285 * call steal_table, in which the parent table's descriptors and entry 1286 * count are automatically modified when this table is removed. 1287 */ 1288 1289 /* free_a_table INTERNAL 1290 ** 1291 * Unmaps the given A table and all child tables from their current 1292 * mappings. Returns the number of pages that were invalidated. 1293 * If 'relink' is true, the function will return the table to the head 1294 * of the available table pool. 1295 * 1296 * Cache note: The MC68851 will automatically flush all 1297 * descriptors derived from a given A table from its 1298 * Automatic Translation Cache (ATC) if we issue a 1299 * 'PFLUSHR' instruction with the base address of the 1300 * table. This function should do, and does so. 1301 * Note note: We are using an MC68030 - there is no 1302 * PFLUSHR. 1303 */ 1304 int 1305 free_a_table(a_tmgr_t *a_tbl, boolean_t relink) 1306 { 1307 int i, removed_cnt; 1308 mmu_long_dte_t *dte; 1309 mmu_short_dte_t *dtbl; 1310 b_tmgr_t *tmgr; 1311 1312 /* 1313 * Flush the ATC cache of all cached descriptors derived 1314 * from this table. 1315 * Sun3x does not use 68851's cached table feature 1316 * flush_atc_crp(mmu_vtop(a_tbl->dte)); 1317 */ 1318 1319 /* 1320 * Remove any pending cache flushes that were designated 1321 * for the pmap this A table belongs to. 1322 * a_tbl->parent->atc_flushq[0] = 0; 1323 * Not implemented in sun3x. 1324 */ 1325 1326 /* 1327 * All A tables in the system should retain a map for the 1328 * kernel. If the table contains any valid descriptors 1329 * (other than those for the kernel area), invalidate them all, 1330 * stopping short of the kernel's entries. 1331 */ 1332 removed_cnt = 0; 1333 if (a_tbl->at_ecnt) { 1334 dte = a_tbl->at_dtbl; 1335 for (i=0; i < MMU_TIA(KERNBASE); i++) { 1336 /* 1337 * If a table entry points to a valid B table, free 1338 * it and its children. 1339 */ 1340 if (MMU_VALID_DT(dte[i])) { 1341 /* 1342 * The following block does several things, 1343 * from innermost expression to the 1344 * outermost: 1345 * 1) It extracts the base (cc 1996) 1346 * address of the B table pointed 1347 * to in the A table entry dte[i]. 1348 * 2) It converts this base address into 1349 * the virtual address it can be 1350 * accessed with. (all MMU tables point 1351 * to physical addresses.) 1352 * 3) It finds the corresponding manager 1353 * structure which manages this MMU table. 1354 * 4) It frees the manager structure. 1355 * (This frees the MMU table and all 1356 * child tables. See 'free_b_table' for 1357 * details.) 1358 */ 1359 dtbl = mmu_ptov(dte[i].addr.raw); 1360 tmgr = mmuB2tmgr(dtbl); 1361 removed_cnt += free_b_table(tmgr, TRUE); 1362 dte[i].attr.raw = MMU_DT_INVALID; 1363 } 1364 } 1365 a_tbl->at_ecnt = 0; 1366 } 1367 if (relink) { 1368 a_tbl->at_parent = NULL; 1369 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1370 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 1371 } 1372 return removed_cnt; 1373 } 1374 1375 /* free_b_table INTERNAL 1376 ** 1377 * Unmaps the given B table and all its children from their current 1378 * mappings. Returns the number of pages that were invalidated. 1379 * (For comments, see 'free_a_table()'). 1380 */ 1381 int 1382 free_b_table(b_tmgr_t *b_tbl, boolean_t relink) 1383 { 1384 int i, removed_cnt; 1385 mmu_short_dte_t *dte; 1386 mmu_short_pte_t *dtbl; 1387 c_tmgr_t *tmgr; 1388 1389 removed_cnt = 0; 1390 if (b_tbl->bt_ecnt) { 1391 dte = b_tbl->bt_dtbl; 1392 for (i=0; i < MMU_B_TBL_SIZE; i++) { 1393 if (MMU_VALID_DT(dte[i])) { 1394 dtbl = mmu_ptov(MMU_DTE_PA(dte[i])); 1395 tmgr = mmuC2tmgr(dtbl); 1396 removed_cnt += free_c_table(tmgr, TRUE); 1397 dte[i].attr.raw = MMU_DT_INVALID; 1398 } 1399 } 1400 b_tbl->bt_ecnt = 0; 1401 } 1402 1403 if (relink) { 1404 b_tbl->bt_parent = NULL; 1405 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1406 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 1407 } 1408 return removed_cnt; 1409 } 1410 1411 /* free_c_table INTERNAL 1412 ** 1413 * Unmaps the given C table from use and returns it to the pool for 1414 * re-use. Returns the number of pages that were invalidated. 1415 * 1416 * This function preserves any physical page modification information 1417 * contained in the page descriptors within the C table by calling 1418 * 'pmap_remove_pte().' 1419 */ 1420 int 1421 free_c_table(c_tmgr_t *c_tbl, boolean_t relink) 1422 { 1423 int i, removed_cnt; 1424 1425 removed_cnt = 0; 1426 if (c_tbl->ct_ecnt) { 1427 for (i=0; i < MMU_C_TBL_SIZE; i++) { 1428 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) { 1429 pmap_remove_pte(&c_tbl->ct_dtbl[i]); 1430 removed_cnt++; 1431 } 1432 } 1433 c_tbl->ct_ecnt = 0; 1434 } 1435 1436 if (relink) { 1437 c_tbl->ct_parent = NULL; 1438 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1439 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 1440 } 1441 return removed_cnt; 1442 } 1443 1444 1445 /* pmap_remove_pte INTERNAL 1446 ** 1447 * Unmap the given pte and preserve any page modification 1448 * information by transfering it to the pv head of the 1449 * physical page it maps to. This function does not update 1450 * any reference counts because it is assumed that the calling 1451 * function will do so. 1452 */ 1453 void 1454 pmap_remove_pte(mmu_short_pte_t *pte) 1455 { 1456 u_short pv_idx, targ_idx; 1457 paddr_t pa; 1458 pv_t *pv; 1459 1460 pa = MMU_PTE_PA(*pte); 1461 if (is_managed(pa)) { 1462 pv = pa2pv(pa); 1463 targ_idx = pteidx(pte); /* Index of PTE being removed */ 1464 1465 /* 1466 * If the PTE being removed is the first (or only) PTE in 1467 * the list of PTEs currently mapped to this page, remove the 1468 * PTE by changing the index found on the PV head. Otherwise 1469 * a linear search through the list will have to be executed 1470 * in order to find the PVE which points to the PTE being 1471 * removed, so that it may be modified to point to its new 1472 * neighbor. 1473 */ 1474 1475 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */ 1476 if (pv_idx == targ_idx) { 1477 pv->pv_idx = pvebase[targ_idx].pve_next; 1478 } else { 1479 1480 /* 1481 * Find the PV element pointing to the target 1482 * element. Note: may have pv_idx==PVE_EOL 1483 */ 1484 1485 for (;;) { 1486 if (pv_idx == PVE_EOL) { 1487 goto pv_not_found; 1488 } 1489 if (pvebase[pv_idx].pve_next == targ_idx) 1490 break; 1491 pv_idx = pvebase[pv_idx].pve_next; 1492 } 1493 1494 /* 1495 * At this point, pv_idx is the index of the PV 1496 * element just before the target element in the list. 1497 * Unlink the target. 1498 */ 1499 1500 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next; 1501 } 1502 1503 /* 1504 * Save the mod/ref bits of the pte by simply 1505 * ORing the entire pte onto the pv_flags member 1506 * of the pv structure. 1507 * There is no need to use a separate bit pattern 1508 * for usage information on the pv head than that 1509 * which is used on the MMU ptes. 1510 */ 1511 1512 pv_not_found: 1513 pv->pv_flags |= (u_short) pte->attr.raw; 1514 } 1515 pte->attr.raw = MMU_DT_INVALID; 1516 } 1517 1518 /* pmap_stroll INTERNAL 1519 ** 1520 * Retrieve the addresses of all table managers involved in the mapping of 1521 * the given virtual address. If the table walk completed successfully, 1522 * return TRUE. If it was only partially successful, return FALSE. 1523 * The table walk performed by this function is important to many other 1524 * functions in this module. 1525 * 1526 * Note: This function ought to be easier to read. 1527 */ 1528 boolean_t 1529 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl, 1530 c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx, 1531 int *pte_idx) 1532 { 1533 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1534 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1535 1536 if (pmap == pmap_kernel()) 1537 return FALSE; 1538 1539 /* Does the given pmap have its own A table? */ 1540 *a_tbl = pmap->pm_a_tmgr; 1541 if (*a_tbl == NULL) 1542 return FALSE; /* No. Return unknown. */ 1543 /* Does the A table have a valid B table 1544 * under the corresponding table entry? 1545 */ 1546 *a_idx = MMU_TIA(va); 1547 a_dte = &((*a_tbl)->at_dtbl[*a_idx]); 1548 if (!MMU_VALID_DT(*a_dte)) 1549 return FALSE; /* No. Return unknown. */ 1550 /* Yes. Extract B table from the A table. */ 1551 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw)); 1552 /* Does the B table have a valid C table 1553 * under the corresponding table entry? 1554 */ 1555 *b_idx = MMU_TIB(va); 1556 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]); 1557 if (!MMU_VALID_DT(*b_dte)) 1558 return FALSE; /* No. Return unknown. */ 1559 /* Yes. Extract C table from the B table. */ 1560 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte))); 1561 *pte_idx = MMU_TIC(va); 1562 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]); 1563 1564 return TRUE; 1565 } 1566 1567 /* pmap_enter INTERFACE 1568 ** 1569 * Called by the kernel to map a virtual address 1570 * to a physical address in the given process map. 1571 * 1572 * Note: this function should apply an exclusive lock 1573 * on the pmap system for its duration. (it certainly 1574 * would save my hair!!) 1575 * This function ought to be easier to read. 1576 */ 1577 int 1578 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) 1579 { 1580 boolean_t insert, managed; /* Marks the need for PV insertion.*/ 1581 u_short nidx; /* PV list index */ 1582 int mapflags; /* Flags for the mapping (see NOTE1) */ 1583 u_int a_idx, b_idx, pte_idx; /* table indices */ 1584 a_tmgr_t *a_tbl; /* A: long descriptor table manager */ 1585 b_tmgr_t *b_tbl; /* B: short descriptor table manager */ 1586 c_tmgr_t *c_tbl; /* C: short page table manager */ 1587 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1588 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1589 mmu_short_pte_t *c_pte; /* C: short page descriptor table */ 1590 pv_t *pv; /* pv list head */ 1591 boolean_t wired; /* is the mapping to be wired? */ 1592 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */ 1593 1594 if (pmap == pmap_kernel()) { 1595 pmap_enter_kernel(va, pa, prot); 1596 return 0; 1597 } 1598 1599 /* 1600 * Determine if the mapping should be wired. 1601 */ 1602 wired = ((flags & PMAP_WIRED) != 0); 1603 1604 /* 1605 * NOTE1: 1606 * 1607 * On November 13, 1999, someone changed the pmap_enter() API such 1608 * that it now accepts a 'flags' argument. This new argument 1609 * contains bit-flags for the architecture-independent (UVM) system to 1610 * use in signalling certain mapping requirements to the architecture- 1611 * dependent (pmap) system. The argument it replaces, 'wired', is now 1612 * one of the flags within it. 1613 * 1614 * In addition to flags signaled by the architecture-independent 1615 * system, parts of the architecture-dependent section of the sun3x 1616 * kernel pass their own flags in the lower, unused bits of the 1617 * physical address supplied to this function. These flags are 1618 * extracted and stored in the temporary variable 'mapflags'. 1619 * 1620 * Extract sun3x specific flags from the physical address. 1621 */ 1622 mapflags = (pa & ~MMU_PAGE_MASK); 1623 pa &= MMU_PAGE_MASK; 1624 1625 /* 1626 * Determine if the physical address being mapped is on-board RAM. 1627 * Any other area of the address space is likely to belong to a 1628 * device and hence it would be disasterous to cache its contents. 1629 */ 1630 if ((managed = is_managed(pa)) == FALSE) 1631 mapflags |= PMAP_NC; 1632 1633 /* 1634 * For user mappings we walk along the MMU tables of the given 1635 * pmap, reaching a PTE which describes the virtual page being 1636 * mapped or changed. If any level of the walk ends in an invalid 1637 * entry, a table must be allocated and the entry must be updated 1638 * to point to it. 1639 * There is a bit of confusion as to whether this code must be 1640 * re-entrant. For now we will assume it is. To support 1641 * re-entrancy we must unlink tables from the table pool before 1642 * we assume we may use them. Tables are re-linked into the pool 1643 * when we are finished with them at the end of the function. 1644 * But I don't feel like doing that until we have proof that this 1645 * needs to be re-entrant. 1646 * 'llevel' records which tables need to be relinked. 1647 */ 1648 llevel = NONE; 1649 1650 /* 1651 * Step 1 - Retrieve the A table from the pmap. If it has no 1652 * A table, allocate a new one from the available pool. 1653 */ 1654 1655 a_tbl = pmap->pm_a_tmgr; 1656 if (a_tbl == NULL) { 1657 /* 1658 * This pmap does not currently have an A table. Allocate 1659 * a new one. 1660 */ 1661 a_tbl = get_a_table(); 1662 a_tbl->at_parent = pmap; 1663 1664 /* 1665 * Assign this new A table to the pmap, and calculate its 1666 * physical address so that loadcrp() can be used to make 1667 * the table active. 1668 */ 1669 pmap->pm_a_tmgr = a_tbl; 1670 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl); 1671 1672 /* 1673 * If the process receiving a new A table is the current 1674 * process, we are responsible for setting the MMU so that 1675 * it becomes the current address space. This only adds 1676 * new mappings, so no need to flush anything. 1677 */ 1678 if (pmap == current_pmap()) { 1679 kernel_crp.rp_addr = pmap->pm_a_phys; 1680 loadcrp(&kernel_crp); 1681 } 1682 1683 if (!wired) 1684 llevel = NEWA; 1685 } else { 1686 /* 1687 * Use the A table already allocated for this pmap. 1688 * Unlink it from the A table pool if necessary. 1689 */ 1690 if (wired && !a_tbl->at_wcnt) 1691 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1692 } 1693 1694 /* 1695 * Step 2 - Walk into the B table. If there is no valid B table, 1696 * allocate one. 1697 */ 1698 1699 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */ 1700 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */ 1701 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */ 1702 /* The descriptor is valid. Use the B table it points to. */ 1703 /************************************* 1704 * a_idx * 1705 * v * 1706 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- * 1707 * | | | | | | | | | | | | * 1708 * +-+-+-+-+-+-+-+-+-+-+-+- * 1709 * | * 1710 * \- b_tbl -> +-+- * 1711 * | | * 1712 * +-+- * 1713 *************************************/ 1714 b_dte = mmu_ptov(a_dte->addr.raw); 1715 b_tbl = mmuB2tmgr(b_dte); 1716 1717 /* 1718 * If the requested mapping must be wired, but this table 1719 * being used to map it is not, the table must be removed 1720 * from the available pool and its wired entry count 1721 * incremented. 1722 */ 1723 if (wired && !b_tbl->bt_wcnt) { 1724 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1725 a_tbl->at_wcnt++; 1726 } 1727 } else { 1728 /* The descriptor is invalid. Allocate a new B table. */ 1729 b_tbl = get_b_table(); 1730 1731 /* Point the parent A table descriptor to this new B table. */ 1732 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl); 1733 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT; 1734 a_tbl->at_ecnt++; /* Update parent's valid entry count */ 1735 1736 /* Create the necessary back references to the parent table */ 1737 b_tbl->bt_parent = a_tbl; 1738 b_tbl->bt_pidx = a_idx; 1739 1740 /* 1741 * If this table is to be wired, make sure the parent A table 1742 * wired count is updated to reflect that it has another wired 1743 * entry. 1744 */ 1745 if (wired) 1746 a_tbl->at_wcnt++; 1747 else if (llevel == NONE) 1748 llevel = NEWB; 1749 } 1750 1751 /* 1752 * Step 3 - Walk into the C table, if there is no valid C table, 1753 * allocate one. 1754 */ 1755 1756 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */ 1757 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */ 1758 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */ 1759 /* The descriptor is valid. Use the C table it points to. */ 1760 /************************************** 1761 * c_idx * 1762 * | v * 1763 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- * 1764 * | | | | | | | | | | | * 1765 * +-+-+-+-+-+-+-+-+-+-+- * 1766 * | * 1767 * \- c_tbl -> +-+-- * 1768 * | | | * 1769 * +-+-- * 1770 **************************************/ 1771 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte)); 1772 c_tbl = mmuC2tmgr(c_pte); 1773 1774 /* If mapping is wired and table is not */ 1775 if (wired && !c_tbl->ct_wcnt) { 1776 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1777 b_tbl->bt_wcnt++; 1778 } 1779 } else { 1780 /* The descriptor is invalid. Allocate a new C table. */ 1781 c_tbl = get_c_table(); 1782 1783 /* Point the parent B table descriptor to this new C table. */ 1784 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl); 1785 b_dte->attr.raw |= MMU_DT_SHORT; 1786 b_tbl->bt_ecnt++; /* Update parent's valid entry count */ 1787 1788 /* Create the necessary back references to the parent table */ 1789 c_tbl->ct_parent = b_tbl; 1790 c_tbl->ct_pidx = b_idx; 1791 /* 1792 * Store the pmap and base virtual managed address for faster 1793 * retrieval in the PV functions. 1794 */ 1795 c_tbl->ct_pmap = pmap; 1796 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK)); 1797 1798 /* 1799 * If this table is to be wired, make sure the parent B table 1800 * wired count is updated to reflect that it has another wired 1801 * entry. 1802 */ 1803 if (wired) 1804 b_tbl->bt_wcnt++; 1805 else if (llevel == NONE) 1806 llevel = NEWC; 1807 } 1808 1809 /* 1810 * Step 4 - Deposit a page descriptor (PTE) into the appropriate 1811 * slot of the C table, describing the PA to which the VA is mapped. 1812 */ 1813 1814 pte_idx = MMU_TIC(va); 1815 c_pte = &c_tbl->ct_dtbl[pte_idx]; 1816 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */ 1817 /* 1818 * The PTE is currently valid. This particular call 1819 * is just a synonym for one (or more) of the following 1820 * operations: 1821 * change protection of a page 1822 * change wiring status of a page 1823 * remove the mapping of a page 1824 * 1825 * XXX - Semi critical: This code should unwire the PTE 1826 * and, possibly, associated parent tables if this is a 1827 * change wiring operation. Currently it does not. 1828 * 1829 * This may be ok if pmap_unwire() is the only 1830 * interface used to UNWIRE a page. 1831 */ 1832 1833 /* First check if this is a wiring operation. */ 1834 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) { 1835 /* 1836 * The PTE is already wired. To prevent it from being 1837 * counted as a new wiring operation, reset the 'wired' 1838 * variable. 1839 */ 1840 wired = FALSE; 1841 } 1842 1843 /* Is the new address the same as the old? */ 1844 if (MMU_PTE_PA(*c_pte) == pa) { 1845 /* 1846 * Yes, mark that it does not need to be reinserted 1847 * into the PV list. 1848 */ 1849 insert = FALSE; 1850 1851 /* 1852 * Clear all but the modified, referenced and wired 1853 * bits on the PTE. 1854 */ 1855 c_pte->attr.raw &= (MMU_SHORT_PTE_M 1856 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED); 1857 } else { 1858 /* No, remove the old entry */ 1859 pmap_remove_pte(c_pte); 1860 insert = TRUE; 1861 } 1862 1863 /* 1864 * TLB flush is only necessary if modifying current map. 1865 * However, in pmap_enter(), the pmap almost always IS 1866 * the current pmap, so don't even bother to check. 1867 */ 1868 TBIS(va); 1869 } else { 1870 /* 1871 * The PTE is invalid. Increment the valid entry count in 1872 * the C table manager to reflect the addition of a new entry. 1873 */ 1874 c_tbl->ct_ecnt++; 1875 1876 /* XXX - temporarily make sure the PTE is cleared. */ 1877 c_pte->attr.raw = 0; 1878 1879 /* It will also need to be inserted into the PV list. */ 1880 insert = TRUE; 1881 } 1882 1883 /* 1884 * If page is changing from unwired to wired status, set an unused bit 1885 * within the PTE to indicate that it is wired. Also increment the 1886 * wired entry count in the C table manager. 1887 */ 1888 if (wired) { 1889 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED; 1890 c_tbl->ct_wcnt++; 1891 } 1892 1893 /* 1894 * Map the page, being careful to preserve modify/reference/wired 1895 * bits. At this point it is assumed that the PTE either has no bits 1896 * set, or if there are set bits, they are only modified, reference or 1897 * wired bits. If not, the following statement will cause erratic 1898 * behavior. 1899 */ 1900 #ifdef PMAP_DEBUG 1901 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M | 1902 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) { 1903 printf("pmap_enter: junk left in PTE at %p\n", c_pte); 1904 Debugger(); 1905 } 1906 #endif 1907 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE); 1908 1909 /* 1910 * If the mapping should be read-only, set the write protect 1911 * bit in the PTE. 1912 */ 1913 if (!(prot & VM_PROT_WRITE)) 1914 c_pte->attr.raw |= MMU_SHORT_PTE_WP; 1915 1916 /* 1917 * Mark the PTE as used and/or modified as specified by the flags arg. 1918 */ 1919 if (flags & VM_PROT_ALL) { 1920 c_pte->attr.raw |= MMU_SHORT_PTE_USED; 1921 if (flags & VM_PROT_WRITE) { 1922 c_pte->attr.raw |= MMU_SHORT_PTE_M; 1923 } 1924 } 1925 1926 /* 1927 * If the mapping should be cache inhibited (indicated by the flag 1928 * bits found on the lower order of the physical address.) 1929 * mark the PTE as a cache inhibited page. 1930 */ 1931 if (mapflags & PMAP_NC) 1932 c_pte->attr.raw |= MMU_SHORT_PTE_CI; 1933 1934 /* 1935 * If the physical address being mapped is managed by the PV 1936 * system then link the pte into the list of pages mapped to that 1937 * address. 1938 */ 1939 if (insert && managed) { 1940 pv = pa2pv(pa); 1941 nidx = pteidx(c_pte); 1942 1943 pvebase[nidx].pve_next = pv->pv_idx; 1944 pv->pv_idx = nidx; 1945 } 1946 1947 /* Move any allocated tables back into the active pool. */ 1948 1949 switch (llevel) { 1950 case NEWA: 1951 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1952 /* FALLTHROUGH */ 1953 case NEWB: 1954 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1955 /* FALLTHROUGH */ 1956 case NEWC: 1957 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1958 /* FALLTHROUGH */ 1959 default: 1960 break; 1961 } 1962 1963 return 0; 1964 } 1965 1966 /* pmap_enter_kernel INTERNAL 1967 ** 1968 * Map the given virtual address to the given physical address within the 1969 * kernel address space. This function exists because the kernel map does 1970 * not do dynamic table allocation. It consists of a contiguous array of ptes 1971 * and can be edited directly without the need to walk through any tables. 1972 * 1973 * XXX: "Danger, Will Robinson!" 1974 * Note that the kernel should never take a fault on any page 1975 * between [ KERNBASE .. virtual_avail ] and this is checked in 1976 * trap.c for kernel-mode MMU faults. This means that mappings 1977 * created in that range must be implicily wired. -gwr 1978 */ 1979 void 1980 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot) 1981 { 1982 boolean_t was_valid, insert; 1983 u_short pte_idx; 1984 int flags; 1985 mmu_short_pte_t *pte; 1986 pv_t *pv; 1987 paddr_t old_pa; 1988 1989 flags = (pa & ~MMU_PAGE_MASK); 1990 pa &= MMU_PAGE_MASK; 1991 1992 if (is_managed(pa)) 1993 insert = TRUE; 1994 else 1995 insert = FALSE; 1996 1997 /* 1998 * Calculate the index of the PTE being modified. 1999 */ 2000 pte_idx = (u_long) m68k_btop(va - KERNBASE); 2001 2002 /* This array is traditionally named "Sysmap" */ 2003 pte = &kernCbase[pte_idx]; 2004 2005 if (MMU_VALID_DT(*pte)) { 2006 was_valid = TRUE; 2007 /* 2008 * If the PTE already maps a different 2009 * physical address, umap and pv_unlink. 2010 */ 2011 old_pa = MMU_PTE_PA(*pte); 2012 if (pa != old_pa) 2013 pmap_remove_pte(pte); 2014 else { 2015 /* 2016 * Old PA and new PA are the same. No need to 2017 * relink the mapping within the PV list. 2018 */ 2019 insert = FALSE; 2020 2021 /* 2022 * Save any mod/ref bits on the PTE. 2023 */ 2024 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M); 2025 } 2026 } else { 2027 pte->attr.raw = MMU_DT_INVALID; 2028 was_valid = FALSE; 2029 } 2030 2031 /* 2032 * Map the page. Being careful to preserve modified/referenced bits 2033 * on the PTE. 2034 */ 2035 pte->attr.raw |= (pa | MMU_DT_PAGE); 2036 2037 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */ 2038 pte->attr.raw |= MMU_SHORT_PTE_WP; 2039 if (flags & PMAP_NC) 2040 pte->attr.raw |= MMU_SHORT_PTE_CI; 2041 if (was_valid) 2042 TBIS(va); 2043 2044 /* 2045 * Insert the PTE into the PV system, if need be. 2046 */ 2047 if (insert) { 2048 pv = pa2pv(pa); 2049 pvebase[pte_idx].pve_next = pv->pv_idx; 2050 pv->pv_idx = pte_idx; 2051 } 2052 } 2053 2054 void 2055 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 2056 { 2057 mmu_short_pte_t *pte; 2058 2059 /* This array is traditionally named "Sysmap" */ 2060 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)]; 2061 2062 KASSERT(!MMU_VALID_DT(*pte)); 2063 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK); 2064 if (!(prot & VM_PROT_WRITE)) 2065 pte->attr.raw |= MMU_SHORT_PTE_WP; 2066 } 2067 2068 void 2069 pmap_kremove(vaddr_t va, vsize_t len) 2070 { 2071 int idx, eidx; 2072 2073 #ifdef PMAP_DEBUG 2074 if ((sva & PGOFSET) || (eva & PGOFSET)) 2075 panic("pmap_kremove: alignment"); 2076 #endif 2077 2078 idx = m68k_btop(va - KERNBASE); 2079 eidx = m68k_btop(va + len - KERNBASE); 2080 2081 while (idx < eidx) { 2082 kernCbase[idx++].attr.raw = MMU_DT_INVALID; 2083 TBIS(va); 2084 va += PAGE_SIZE; 2085 } 2086 } 2087 2088 /* pmap_map INTERNAL 2089 ** 2090 * Map a contiguous range of physical memory into a contiguous range of 2091 * the kernel virtual address space. 2092 * 2093 * Used for device mappings and early mapping of the kernel text/data/bss. 2094 * Returns the first virtual address beyond the end of the range. 2095 */ 2096 vaddr_t 2097 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot) 2098 { 2099 int sz; 2100 2101 sz = endpa - pa; 2102 do { 2103 pmap_enter_kernel(va, pa, prot); 2104 va += PAGE_SIZE; 2105 pa += PAGE_SIZE; 2106 sz -= PAGE_SIZE; 2107 } while (sz > 0); 2108 pmap_update(pmap_kernel()); 2109 return(va); 2110 } 2111 2112 /* pmap_protect INTERFACE 2113 ** 2114 * Apply the given protection to the given virtual address range within 2115 * the given map. 2116 * 2117 * It is ok for the protection applied to be stronger than what is 2118 * specified. We use this to our advantage when the given map has no 2119 * mapping for the virtual address. By skipping a page when this 2120 * is discovered, we are effectively applying a protection of VM_PROT_NONE, 2121 * and therefore do not need to map the page just to apply a protection 2122 * code. Only pmap_enter() needs to create new mappings if they do not exist. 2123 * 2124 * XXX - This function could be speeded up by using pmap_stroll() for inital 2125 * setup, and then manual scrolling in the for() loop. 2126 */ 2127 void 2128 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2129 { 2130 boolean_t iscurpmap; 2131 int a_idx, b_idx, c_idx; 2132 a_tmgr_t *a_tbl; 2133 b_tmgr_t *b_tbl; 2134 c_tmgr_t *c_tbl; 2135 mmu_short_pte_t *pte; 2136 2137 if (pmap == pmap_kernel()) { 2138 pmap_protect_kernel(startva, endva, prot); 2139 return; 2140 } 2141 2142 /* 2143 * In this particular pmap implementation, there are only three 2144 * types of memory protection: 'all' (read/write/execute), 2145 * 'read-only' (read/execute) and 'none' (no mapping.) 2146 * It is not possible for us to treat 'executable' as a separate 2147 * protection type. Therefore, protection requests that seek to 2148 * remove execute permission while retaining read or write, and those 2149 * that make little sense (write-only for example) are ignored. 2150 */ 2151 switch (prot) { 2152 case VM_PROT_NONE: 2153 /* 2154 * A request to apply the protection code of 2155 * 'VM_PROT_NONE' is a synonym for pmap_remove(). 2156 */ 2157 pmap_remove(pmap, startva, endva); 2158 return; 2159 case VM_PROT_EXECUTE: 2160 case VM_PROT_READ: 2161 case VM_PROT_READ|VM_PROT_EXECUTE: 2162 /* continue */ 2163 break; 2164 case VM_PROT_WRITE: 2165 case VM_PROT_WRITE|VM_PROT_READ: 2166 case VM_PROT_WRITE|VM_PROT_EXECUTE: 2167 case VM_PROT_ALL: 2168 /* None of these should happen in a sane system. */ 2169 return; 2170 } 2171 2172 /* 2173 * If the pmap has no A table, it has no mappings and therefore 2174 * there is nothing to protect. 2175 */ 2176 if ((a_tbl = pmap->pm_a_tmgr) == NULL) 2177 return; 2178 2179 a_idx = MMU_TIA(startva); 2180 b_idx = MMU_TIB(startva); 2181 c_idx = MMU_TIC(startva); 2182 b_tbl = NULL; 2183 c_tbl = NULL; 2184 2185 iscurpmap = (pmap == current_pmap()); 2186 while (startva < endva) { 2187 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 2188 if (b_tbl == NULL) { 2189 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw; 2190 b_tbl = mmu_ptov((vaddr_t)b_tbl); 2191 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl); 2192 } 2193 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 2194 if (c_tbl == NULL) { 2195 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]); 2196 c_tbl = mmu_ptov((vaddr_t)c_tbl); 2197 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl); 2198 } 2199 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) { 2200 pte = &c_tbl->ct_dtbl[c_idx]; 2201 /* make the mapping read-only */ 2202 pte->attr.raw |= MMU_SHORT_PTE_WP; 2203 /* 2204 * If we just modified the current address space, 2205 * flush any translations for the modified page from 2206 * the translation cache and any data from it in the 2207 * data cache. 2208 */ 2209 if (iscurpmap) 2210 TBIS(startva); 2211 } 2212 startva += PAGE_SIZE; 2213 2214 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */ 2215 c_tbl = NULL; 2216 c_idx = 0; 2217 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2218 b_tbl = NULL; 2219 b_idx = 0; 2220 } 2221 } 2222 } else { /* C table wasn't valid */ 2223 c_tbl = NULL; 2224 c_idx = 0; 2225 startva += MMU_TIB_RANGE; 2226 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2227 b_tbl = NULL; 2228 b_idx = 0; 2229 } 2230 } /* C table */ 2231 } else { /* B table wasn't valid */ 2232 b_tbl = NULL; 2233 b_idx = 0; 2234 startva += MMU_TIA_RANGE; 2235 a_idx++; 2236 } /* B table */ 2237 } 2238 } 2239 2240 /* pmap_protect_kernel INTERNAL 2241 ** 2242 * Apply the given protection code to a kernel address range. 2243 */ 2244 void 2245 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2246 { 2247 vaddr_t va; 2248 mmu_short_pte_t *pte; 2249 2250 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)]; 2251 for (va = startva; va < endva; va += PAGE_SIZE, pte++) { 2252 if (MMU_VALID_DT(*pte)) { 2253 switch (prot) { 2254 case VM_PROT_ALL: 2255 break; 2256 case VM_PROT_EXECUTE: 2257 case VM_PROT_READ: 2258 case VM_PROT_READ|VM_PROT_EXECUTE: 2259 pte->attr.raw |= MMU_SHORT_PTE_WP; 2260 break; 2261 case VM_PROT_NONE: 2262 /* this is an alias for 'pmap_remove_kernel' */ 2263 pmap_remove_pte(pte); 2264 break; 2265 default: 2266 break; 2267 } 2268 /* 2269 * since this is the kernel, immediately flush any cached 2270 * descriptors for this address. 2271 */ 2272 TBIS(va); 2273 } 2274 } 2275 } 2276 2277 /* pmap_unwire INTERFACE 2278 ** 2279 * Clear the wired attribute of the specified page. 2280 * 2281 * This function is called from vm_fault.c to unwire 2282 * a mapping. 2283 */ 2284 void 2285 pmap_unwire(pmap_t pmap, vaddr_t va) 2286 { 2287 int a_idx, b_idx, c_idx; 2288 a_tmgr_t *a_tbl; 2289 b_tmgr_t *b_tbl; 2290 c_tmgr_t *c_tbl; 2291 mmu_short_pte_t *pte; 2292 2293 /* Kernel mappings always remain wired. */ 2294 if (pmap == pmap_kernel()) 2295 return; 2296 2297 /* 2298 * Walk through the tables. If the walk terminates without 2299 * a valid PTE then the address wasn't wired in the first place. 2300 * Return immediately. 2301 */ 2302 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx, 2303 &b_idx, &c_idx) == FALSE) 2304 return; 2305 2306 2307 /* Is the PTE wired? If not, return. */ 2308 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED)) 2309 return; 2310 2311 /* Remove the wiring bit. */ 2312 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED); 2313 2314 /* 2315 * Decrement the wired entry count in the C table. 2316 * If it reaches zero the following things happen: 2317 * 1. The table no longer has any wired entries and is considered 2318 * unwired. 2319 * 2. It is placed on the available queue. 2320 * 3. The parent table's wired entry count is decremented. 2321 * 4. If it reaches zero, this process repeats at step 1 and 2322 * stops at after reaching the A table. 2323 */ 2324 if (--c_tbl->ct_wcnt == 0) { 2325 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2326 if (--b_tbl->bt_wcnt == 0) { 2327 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2328 if (--a_tbl->at_wcnt == 0) { 2329 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2330 } 2331 } 2332 } 2333 } 2334 2335 /* pmap_copy INTERFACE 2336 ** 2337 * Copy the mappings of a range of addresses in one pmap, into 2338 * the destination address of another. 2339 * 2340 * This routine is advisory. Should we one day decide that MMU tables 2341 * may be shared by more than one pmap, this function should be used to 2342 * link them together. Until that day however, we do nothing. 2343 */ 2344 void 2345 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src) 2346 { 2347 /* not implemented. */ 2348 } 2349 2350 /* pmap_copy_page INTERFACE 2351 ** 2352 * Copy the contents of one physical page into another. 2353 * 2354 * This function makes use of two virtual pages allocated in pmap_bootstrap() 2355 * to map the two specified physical pages into the kernel address space. 2356 * 2357 * Note: We could use the transparent translation registers to make the 2358 * mappings. If we do so, be sure to disable interrupts before using them. 2359 */ 2360 void 2361 pmap_copy_page(paddr_t srcpa, paddr_t dstpa) 2362 { 2363 vaddr_t srcva, dstva; 2364 int s; 2365 2366 srcva = tmp_vpages[0]; 2367 dstva = tmp_vpages[1]; 2368 2369 s = splvm(); 2370 #ifdef DIAGNOSTIC 2371 if (tmp_vpages_inuse++) 2372 panic("pmap_copy_page: temporary vpages are in use."); 2373 #endif 2374 2375 /* Map pages as non-cacheable to avoid cache polution? */ 2376 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ); 2377 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE); 2378 2379 /* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */ 2380 copypage((char *) srcva, (char *) dstva); 2381 2382 pmap_kremove(srcva, PAGE_SIZE); 2383 pmap_kremove(dstva, PAGE_SIZE); 2384 2385 #ifdef DIAGNOSTIC 2386 --tmp_vpages_inuse; 2387 #endif 2388 splx(s); 2389 } 2390 2391 /* pmap_zero_page INTERFACE 2392 ** 2393 * Zero the contents of the specified physical page. 2394 * 2395 * Uses one of the virtual pages allocated in pmap_boostrap() 2396 * to map the specified page into the kernel address space. 2397 */ 2398 void 2399 pmap_zero_page(paddr_t dstpa) 2400 { 2401 vaddr_t dstva; 2402 int s; 2403 2404 dstva = tmp_vpages[1]; 2405 s = splvm(); 2406 #ifdef DIAGNOSTIC 2407 if (tmp_vpages_inuse++) 2408 panic("pmap_zero_page: temporary vpages are in use."); 2409 #endif 2410 2411 /* The comments in pmap_copy_page() above apply here also. */ 2412 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE); 2413 2414 /* Hand-optimized version of bzero(ptr, PAGE_SIZE) */ 2415 zeropage((char *) dstva); 2416 2417 pmap_kremove(dstva, PAGE_SIZE); 2418 #ifdef DIAGNOSTIC 2419 --tmp_vpages_inuse; 2420 #endif 2421 splx(s); 2422 } 2423 2424 /* pmap_collect INTERFACE 2425 ** 2426 * Called from the VM system when we are about to swap out 2427 * the process using this pmap. This should give up any 2428 * resources held here, including all its MMU tables. 2429 */ 2430 void 2431 pmap_collect(pmap_t pmap) 2432 { 2433 /* XXX - todo... */ 2434 } 2435 2436 /* pmap_create INTERFACE 2437 ** 2438 * Create and return a pmap structure. 2439 */ 2440 pmap_t 2441 pmap_create(void) 2442 { 2443 pmap_t pmap; 2444 2445 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK); 2446 pmap_pinit(pmap); 2447 return pmap; 2448 } 2449 2450 /* pmap_pinit INTERNAL 2451 ** 2452 * Initialize a pmap structure. 2453 */ 2454 void 2455 pmap_pinit(pmap_t pmap) 2456 { 2457 memset(pmap, 0, sizeof(struct pmap)); 2458 pmap->pm_a_tmgr = NULL; 2459 pmap->pm_a_phys = kernAphys; 2460 pmap->pm_refcount = 1; 2461 simple_lock_init(&pmap->pm_lock); 2462 } 2463 2464 /* pmap_release INTERFACE 2465 ** 2466 * Release any resources held by the given pmap. 2467 * 2468 * This is the reverse analog to pmap_pinit. It does not 2469 * necessarily mean for the pmap structure to be deallocated, 2470 * as in pmap_destroy. 2471 */ 2472 void 2473 pmap_release(pmap_t pmap) 2474 { 2475 /* 2476 * As long as the pmap contains no mappings, 2477 * which always should be the case whenever 2478 * this function is called, there really should 2479 * be nothing to do. 2480 */ 2481 #ifdef PMAP_DEBUG 2482 if (pmap == pmap_kernel()) 2483 panic("pmap_release: kernel pmap"); 2484 #endif 2485 /* 2486 * XXX - If this pmap has an A table, give it back. 2487 * The pmap SHOULD be empty by now, and pmap_remove 2488 * should have already given back the A table... 2489 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1 2490 * at this point, which means some mapping was not 2491 * removed when it should have been. -gwr 2492 */ 2493 if (pmap->pm_a_tmgr != NULL) { 2494 /* First make sure we are not using it! */ 2495 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2496 kernel_crp.rp_addr = kernAphys; 2497 loadcrp(&kernel_crp); 2498 } 2499 #ifdef PMAP_DEBUG /* XXX - todo! */ 2500 /* XXX - Now complain... */ 2501 printf("pmap_release: still have table\n"); 2502 Debugger(); 2503 #endif 2504 free_a_table(pmap->pm_a_tmgr, TRUE); 2505 pmap->pm_a_tmgr = NULL; 2506 pmap->pm_a_phys = kernAphys; 2507 } 2508 } 2509 2510 /* pmap_reference INTERFACE 2511 ** 2512 * Increment the reference count of a pmap. 2513 */ 2514 void 2515 pmap_reference(pmap_t pmap) 2516 { 2517 pmap_lock(pmap); 2518 pmap_add_ref(pmap); 2519 pmap_unlock(pmap); 2520 } 2521 2522 /* pmap_dereference INTERNAL 2523 ** 2524 * Decrease the reference count on the given pmap 2525 * by one and return the current count. 2526 */ 2527 int 2528 pmap_dereference(pmap_t pmap) 2529 { 2530 int rtn; 2531 2532 pmap_lock(pmap); 2533 rtn = pmap_del_ref(pmap); 2534 pmap_unlock(pmap); 2535 2536 return rtn; 2537 } 2538 2539 /* pmap_destroy INTERFACE 2540 ** 2541 * Decrement a pmap's reference count and delete 2542 * the pmap if it becomes zero. Will be called 2543 * only after all mappings have been removed. 2544 */ 2545 void 2546 pmap_destroy(pmap_t pmap) 2547 { 2548 if (pmap_dereference(pmap) == 0) { 2549 pmap_release(pmap); 2550 pool_put(&pmap_pmap_pool, pmap); 2551 } 2552 } 2553 2554 /* pmap_is_referenced INTERFACE 2555 ** 2556 * Determine if the given physical page has been 2557 * referenced (read from [or written to.]) 2558 */ 2559 boolean_t 2560 pmap_is_referenced(struct vm_page *pg) 2561 { 2562 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2563 pv_t *pv; 2564 int idx; 2565 2566 /* 2567 * Check the flags on the pv head. If they are set, 2568 * return immediately. Otherwise a search must be done. 2569 */ 2570 2571 pv = pa2pv(pa); 2572 if (pv->pv_flags & PV_FLAGS_USED) 2573 return TRUE; 2574 2575 /* 2576 * Search through all pv elements pointing 2577 * to this page and query their reference bits 2578 */ 2579 2580 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2581 if (MMU_PTE_USED(kernCbase[idx])) { 2582 return TRUE; 2583 } 2584 } 2585 return FALSE; 2586 } 2587 2588 /* pmap_is_modified INTERFACE 2589 ** 2590 * Determine if the given physical page has been 2591 * modified (written to.) 2592 */ 2593 boolean_t 2594 pmap_is_modified(struct vm_page *pg) 2595 { 2596 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2597 pv_t *pv; 2598 int idx; 2599 2600 /* see comments in pmap_is_referenced() */ 2601 pv = pa2pv(pa); 2602 if (pv->pv_flags & PV_FLAGS_MDFY) 2603 return TRUE; 2604 2605 for (idx = pv->pv_idx; 2606 idx != PVE_EOL; 2607 idx = pvebase[idx].pve_next) { 2608 2609 if (MMU_PTE_MODIFIED(kernCbase[idx])) { 2610 return TRUE; 2611 } 2612 } 2613 2614 return FALSE; 2615 } 2616 2617 /* pmap_page_protect INTERFACE 2618 ** 2619 * Applies the given protection to all mappings to the given 2620 * physical page. 2621 */ 2622 void 2623 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 2624 { 2625 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2626 pv_t *pv; 2627 int idx; 2628 vaddr_t va; 2629 struct mmu_short_pte_struct *pte; 2630 c_tmgr_t *c_tbl; 2631 pmap_t pmap, curpmap; 2632 2633 curpmap = current_pmap(); 2634 pv = pa2pv(pa); 2635 2636 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2637 pte = &kernCbase[idx]; 2638 switch (prot) { 2639 case VM_PROT_ALL: 2640 /* do nothing */ 2641 break; 2642 case VM_PROT_EXECUTE: 2643 case VM_PROT_READ: 2644 case VM_PROT_READ|VM_PROT_EXECUTE: 2645 /* 2646 * Determine the virtual address mapped by 2647 * the PTE and flush ATC entries if necessary. 2648 */ 2649 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2650 pte->attr.raw |= MMU_SHORT_PTE_WP; 2651 if (pmap == curpmap || pmap == pmap_kernel()) 2652 TBIS(va); 2653 break; 2654 case VM_PROT_NONE: 2655 /* Save the mod/ref bits. */ 2656 pv->pv_flags |= pte->attr.raw; 2657 /* Invalidate the PTE. */ 2658 pte->attr.raw = MMU_DT_INVALID; 2659 2660 /* 2661 * Update table counts. And flush ATC entries 2662 * if necessary. 2663 */ 2664 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2665 2666 /* 2667 * If the PTE belongs to the kernel map, 2668 * be sure to flush the page it maps. 2669 */ 2670 if (pmap == pmap_kernel()) { 2671 TBIS(va); 2672 } else { 2673 /* 2674 * The PTE belongs to a user map. 2675 * update the entry count in the C 2676 * table to which it belongs and flush 2677 * the ATC if the mapping belongs to 2678 * the current pmap. 2679 */ 2680 c_tbl->ct_ecnt--; 2681 if (pmap == curpmap) 2682 TBIS(va); 2683 } 2684 break; 2685 default: 2686 break; 2687 } 2688 } 2689 2690 /* 2691 * If the protection code indicates that all mappings to the page 2692 * be removed, truncate the PV list to zero entries. 2693 */ 2694 if (prot == VM_PROT_NONE) 2695 pv->pv_idx = PVE_EOL; 2696 } 2697 2698 /* pmap_get_pteinfo INTERNAL 2699 ** 2700 * Called internally to find the pmap and virtual address within that 2701 * map to which the pte at the given index maps. Also includes the PTE's C 2702 * table manager. 2703 * 2704 * Returns the pmap in the argument provided, and the virtual address 2705 * by return value. 2706 */ 2707 vaddr_t 2708 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl) 2709 { 2710 vaddr_t va = 0; 2711 2712 /* 2713 * Determine if the PTE is a kernel PTE or a user PTE. 2714 */ 2715 if (idx >= NUM_KERN_PTES) { 2716 /* 2717 * The PTE belongs to a user mapping. 2718 */ 2719 /* XXX: Would like an inline for this to validate idx... */ 2720 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE]; 2721 2722 *pmap = (*tbl)->ct_pmap; 2723 /* 2724 * To find the va to which the PTE maps, we first take 2725 * the table's base virtual address mapping which is stored 2726 * in ct_va. We then increment this address by a page for 2727 * every slot skipped until we reach the PTE. 2728 */ 2729 va = (*tbl)->ct_va; 2730 va += m68k_ptob(idx % MMU_C_TBL_SIZE); 2731 } else { 2732 /* 2733 * The PTE belongs to the kernel map. 2734 */ 2735 *pmap = pmap_kernel(); 2736 2737 va = m68k_ptob(idx); 2738 va += KERNBASE; 2739 } 2740 2741 return va; 2742 } 2743 2744 /* pmap_clear_modify INTERFACE 2745 ** 2746 * Clear the modification bit on the page at the specified 2747 * physical address. 2748 * 2749 */ 2750 boolean_t 2751 pmap_clear_modify(struct vm_page *pg) 2752 { 2753 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2754 boolean_t rv; 2755 2756 rv = pmap_is_modified(pg); 2757 pmap_clear_pv(pa, PV_FLAGS_MDFY); 2758 return rv; 2759 } 2760 2761 /* pmap_clear_reference INTERFACE 2762 ** 2763 * Clear the referenced bit on the page at the specified 2764 * physical address. 2765 */ 2766 boolean_t 2767 pmap_clear_reference(struct vm_page *pg) 2768 { 2769 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2770 boolean_t rv; 2771 2772 rv = pmap_is_referenced(pg); 2773 pmap_clear_pv(pa, PV_FLAGS_USED); 2774 return rv; 2775 } 2776 2777 /* pmap_clear_pv INTERNAL 2778 ** 2779 * Clears the specified flag from the specified physical address. 2780 * (Used by pmap_clear_modify() and pmap_clear_reference().) 2781 * 2782 * Flag is one of: 2783 * PV_FLAGS_MDFY - Page modified bit. 2784 * PV_FLAGS_USED - Page used (referenced) bit. 2785 * 2786 * This routine must not only clear the flag on the pv list 2787 * head. It must also clear the bit on every pte in the pv 2788 * list associated with the address. 2789 */ 2790 void 2791 pmap_clear_pv(paddr_t pa, int flag) 2792 { 2793 pv_t *pv; 2794 int idx; 2795 vaddr_t va; 2796 pmap_t pmap; 2797 mmu_short_pte_t *pte; 2798 c_tmgr_t *c_tbl; 2799 2800 pv = pa2pv(pa); 2801 pv->pv_flags &= ~(flag); 2802 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2803 pte = &kernCbase[idx]; 2804 pte->attr.raw &= ~(flag); 2805 2806 /* 2807 * The MC68030 MMU will not set the modified or 2808 * referenced bits on any MMU tables for which it has 2809 * a cached descriptor with its modify bit set. To insure 2810 * that it will modify these bits on the PTE during the next 2811 * time it is written to or read from, we must flush it from 2812 * the ATC. 2813 * 2814 * Ordinarily it is only necessary to flush the descriptor 2815 * if it is used in the current address space. But since I 2816 * am not sure that there will always be a notion of 2817 * 'the current address space' when this function is called, 2818 * I will skip the test and always flush the address. It 2819 * does no harm. 2820 */ 2821 2822 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2823 TBIS(va); 2824 } 2825 } 2826 2827 /* pmap_extract INTERFACE 2828 ** 2829 * Return the physical address mapped by the virtual address 2830 * in the specified pmap. 2831 * 2832 * Note: this function should also apply an exclusive lock 2833 * on the pmap system during its duration. 2834 */ 2835 boolean_t 2836 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap) 2837 { 2838 int a_idx, b_idx, pte_idx; 2839 a_tmgr_t *a_tbl; 2840 b_tmgr_t *b_tbl; 2841 c_tmgr_t *c_tbl; 2842 mmu_short_pte_t *c_pte; 2843 2844 if (pmap == pmap_kernel()) 2845 return pmap_extract_kernel(va, pap); 2846 2847 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, 2848 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE) 2849 return FALSE; 2850 2851 if (!MMU_VALID_DT(*c_pte)) 2852 return FALSE; 2853 2854 if (pap != NULL) 2855 *pap = MMU_PTE_PA(*c_pte); 2856 return (TRUE); 2857 } 2858 2859 /* pmap_extract_kernel INTERNAL 2860 ** 2861 * Extract a translation from the kernel address space. 2862 */ 2863 boolean_t 2864 pmap_extract_kernel(vaddr_t va, paddr_t *pap) 2865 { 2866 mmu_short_pte_t *pte; 2867 2868 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)]; 2869 if (!MMU_VALID_DT(*pte)) 2870 return (FALSE); 2871 if (pap != NULL) 2872 *pap = MMU_PTE_PA(*pte); 2873 return (TRUE); 2874 } 2875 2876 /* pmap_remove_kernel INTERNAL 2877 ** 2878 * Remove the mapping of a range of virtual addresses from the kernel map. 2879 * The arguments are already page-aligned. 2880 */ 2881 void 2882 pmap_remove_kernel(vaddr_t sva, vaddr_t eva) 2883 { 2884 int idx, eidx; 2885 2886 #ifdef PMAP_DEBUG 2887 if ((sva & PGOFSET) || (eva & PGOFSET)) 2888 panic("pmap_remove_kernel: alignment"); 2889 #endif 2890 2891 idx = m68k_btop(sva - KERNBASE); 2892 eidx = m68k_btop(eva - KERNBASE); 2893 2894 while (idx < eidx) { 2895 pmap_remove_pte(&kernCbase[idx++]); 2896 TBIS(sva); 2897 sva += PAGE_SIZE; 2898 } 2899 } 2900 2901 /* pmap_remove INTERFACE 2902 ** 2903 * Remove the mapping of a range of virtual addresses from the given pmap. 2904 * 2905 * If the range contains any wired entries, this function will probably create 2906 * disaster. 2907 */ 2908 void 2909 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva) 2910 { 2911 2912 if (pmap == pmap_kernel()) { 2913 pmap_remove_kernel(sva, eva); 2914 return; 2915 } 2916 2917 /* 2918 * If the pmap doesn't have an A table of its own, it has no mappings 2919 * that can be removed. 2920 */ 2921 if (pmap->pm_a_tmgr == NULL) 2922 return; 2923 2924 /* 2925 * Remove the specified range from the pmap. If the function 2926 * returns true, the operation removed all the valid mappings 2927 * in the pmap and freed its A table. If this happened to the 2928 * currently loaded pmap, the MMU root pointer must be reloaded 2929 * with the default 'kernel' map. 2930 */ 2931 if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) { 2932 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2933 kernel_crp.rp_addr = kernAphys; 2934 loadcrp(&kernel_crp); 2935 /* will do TLB flush below */ 2936 } 2937 pmap->pm_a_tmgr = NULL; 2938 pmap->pm_a_phys = kernAphys; 2939 } 2940 2941 /* 2942 * If we just modified the current address space, 2943 * make sure to flush the MMU cache. 2944 * 2945 * XXX - this could be an unecessarily large flush. 2946 * XXX - Could decide, based on the size of the VA range 2947 * to be removed, whether to flush "by pages" or "all". 2948 */ 2949 if (pmap == current_pmap()) 2950 TBIAU(); 2951 } 2952 2953 /* pmap_remove_a INTERNAL 2954 ** 2955 * This is function number one in a set of three that removes a range 2956 * of memory in the most efficient manner by removing the highest possible 2957 * tables from the memory space. This particular function attempts to remove 2958 * as many B tables as it can, delegating the remaining fragmented ranges to 2959 * pmap_remove_b(). 2960 * 2961 * If the removal operation results in an empty A table, the function returns 2962 * TRUE. 2963 * 2964 * It's ugly but will do for now. 2965 */ 2966 boolean_t 2967 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva) 2968 { 2969 boolean_t empty; 2970 int idx; 2971 vaddr_t nstart, nend; 2972 b_tmgr_t *b_tbl; 2973 mmu_long_dte_t *a_dte; 2974 mmu_short_dte_t *b_dte; 2975 2976 /* 2977 * The following code works with what I call a 'granularity 2978 * reduction algorithim'. A range of addresses will always have 2979 * the following properties, which are classified according to 2980 * how the range relates to the size of the current granularity 2981 * - an A table entry: 2982 * 2983 * 1 2 3 4 2984 * -+---+---+---+---+---+---+---+- 2985 * -+---+---+---+---+---+---+---+- 2986 * 2987 * A range will always start on a granularity boundary, illustrated 2988 * by '+' signs in the table above, or it will start at some point 2989 * inbetween a granularity boundary, as illustrated by point 1. 2990 * The first step in removing a range of addresses is to remove the 2991 * range between 1 and 2, the nearest granularity boundary. This 2992 * job is handled by the section of code governed by the 2993 * 'if (start < nstart)' statement. 2994 * 2995 * A range will always encompass zero or more intergral granules, 2996 * illustrated by points 2 and 3. Integral granules are easy to 2997 * remove. The removal of these granules is the second step, and 2998 * is handled by the code block 'if (nstart < nend)'. 2999 * 3000 * Lastly, a range will always end on a granularity boundary, 3001 * ill. by point 3, or it will fall just beyond one, ill. by point 3002 * 4. The last step involves removing this range and is handled by 3003 * the code block 'if (nend < end)'. 3004 */ 3005 nstart = MMU_ROUND_UP_A(sva); 3006 nend = MMU_ROUND_A(eva); 3007 3008 if (sva < nstart) { 3009 /* 3010 * This block is executed if the range starts between 3011 * a granularity boundary. 3012 * 3013 * First find the DTE which is responsible for mapping 3014 * the start of the range. 3015 */ 3016 idx = MMU_TIA(sva); 3017 a_dte = &a_tbl->at_dtbl[idx]; 3018 3019 /* 3020 * If the DTE is valid then delegate the removal of the sub 3021 * range to pmap_remove_b(), which can remove addresses at 3022 * a finer granularity. 3023 */ 3024 if (MMU_VALID_DT(*a_dte)) { 3025 b_dte = mmu_ptov(a_dte->addr.raw); 3026 b_tbl = mmuB2tmgr(b_dte); 3027 3028 /* 3029 * The sub range to be removed starts at the start 3030 * of the full range we were asked to remove, and ends 3031 * at the greater of: 3032 * 1. The end of the full range, -or- 3033 * 2. The end of the full range, rounded down to the 3034 * nearest granularity boundary. 3035 */ 3036 if (eva < nstart) 3037 empty = pmap_remove_b(b_tbl, sva, eva); 3038 else 3039 empty = pmap_remove_b(b_tbl, sva, nstart); 3040 3041 /* 3042 * If the removal resulted in an empty B table, 3043 * invalidate the DTE that points to it and decrement 3044 * the valid entry count of the A table. 3045 */ 3046 if (empty) { 3047 a_dte->attr.raw = MMU_DT_INVALID; 3048 a_tbl->at_ecnt--; 3049 } 3050 } 3051 /* 3052 * If the DTE is invalid, the address range is already non- 3053 * existent and can simply be skipped. 3054 */ 3055 } 3056 if (nstart < nend) { 3057 /* 3058 * This block is executed if the range spans a whole number 3059 * multiple of granules (A table entries.) 3060 * 3061 * First find the DTE which is responsible for mapping 3062 * the start of the first granule involved. 3063 */ 3064 idx = MMU_TIA(nstart); 3065 a_dte = &a_tbl->at_dtbl[idx]; 3066 3067 /* 3068 * Remove entire sub-granules (B tables) one at a time, 3069 * until reaching the end of the range. 3070 */ 3071 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE) 3072 if (MMU_VALID_DT(*a_dte)) { 3073 /* 3074 * Find the B table manager for the 3075 * entry and free it. 3076 */ 3077 b_dte = mmu_ptov(a_dte->addr.raw); 3078 b_tbl = mmuB2tmgr(b_dte); 3079 free_b_table(b_tbl, TRUE); 3080 3081 /* 3082 * Invalidate the DTE that points to the 3083 * B table and decrement the valid entry 3084 * count of the A table. 3085 */ 3086 a_dte->attr.raw = MMU_DT_INVALID; 3087 a_tbl->at_ecnt--; 3088 } 3089 } 3090 if (nend < eva) { 3091 /* 3092 * This block is executed if the range ends beyond a 3093 * granularity boundary. 3094 * 3095 * First find the DTE which is responsible for mapping 3096 * the start of the nearest (rounded down) granularity 3097 * boundary. 3098 */ 3099 idx = MMU_TIA(nend); 3100 a_dte = &a_tbl->at_dtbl[idx]; 3101 3102 /* 3103 * If the DTE is valid then delegate the removal of the sub 3104 * range to pmap_remove_b(), which can remove addresses at 3105 * a finer granularity. 3106 */ 3107 if (MMU_VALID_DT(*a_dte)) { 3108 /* 3109 * Find the B table manager for the entry 3110 * and hand it to pmap_remove_b() along with 3111 * the sub range. 3112 */ 3113 b_dte = mmu_ptov(a_dte->addr.raw); 3114 b_tbl = mmuB2tmgr(b_dte); 3115 3116 empty = pmap_remove_b(b_tbl, nend, eva); 3117 3118 /* 3119 * If the removal resulted in an empty B table, 3120 * invalidate the DTE that points to it and decrement 3121 * the valid entry count of the A table. 3122 */ 3123 if (empty) { 3124 a_dte->attr.raw = MMU_DT_INVALID; 3125 a_tbl->at_ecnt--; 3126 } 3127 } 3128 } 3129 3130 /* 3131 * If there are no more entries in the A table, release it 3132 * back to the available pool and return TRUE. 3133 */ 3134 if (a_tbl->at_ecnt == 0) { 3135 a_tbl->at_parent = NULL; 3136 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 3137 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 3138 empty = TRUE; 3139 } else { 3140 empty = FALSE; 3141 } 3142 3143 return empty; 3144 } 3145 3146 /* pmap_remove_b INTERNAL 3147 ** 3148 * Remove a range of addresses from an address space, trying to remove entire 3149 * C tables if possible. 3150 * 3151 * If the operation results in an empty B table, the function returns TRUE. 3152 */ 3153 boolean_t 3154 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva) 3155 { 3156 boolean_t empty; 3157 int idx; 3158 vaddr_t nstart, nend, rstart; 3159 c_tmgr_t *c_tbl; 3160 mmu_short_dte_t *b_dte; 3161 mmu_short_pte_t *c_dte; 3162 3163 3164 nstart = MMU_ROUND_UP_B(sva); 3165 nend = MMU_ROUND_B(eva); 3166 3167 if (sva < nstart) { 3168 idx = MMU_TIB(sva); 3169 b_dte = &b_tbl->bt_dtbl[idx]; 3170 if (MMU_VALID_DT(*b_dte)) { 3171 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3172 c_tbl = mmuC2tmgr(c_dte); 3173 if (eva < nstart) 3174 empty = pmap_remove_c(c_tbl, sva, eva); 3175 else 3176 empty = pmap_remove_c(c_tbl, sva, nstart); 3177 if (empty) { 3178 b_dte->attr.raw = MMU_DT_INVALID; 3179 b_tbl->bt_ecnt--; 3180 } 3181 } 3182 } 3183 if (nstart < nend) { 3184 idx = MMU_TIB(nstart); 3185 b_dte = &b_tbl->bt_dtbl[idx]; 3186 rstart = nstart; 3187 while (rstart < nend) { 3188 if (MMU_VALID_DT(*b_dte)) { 3189 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3190 c_tbl = mmuC2tmgr(c_dte); 3191 free_c_table(c_tbl, TRUE); 3192 b_dte->attr.raw = MMU_DT_INVALID; 3193 b_tbl->bt_ecnt--; 3194 } 3195 b_dte++; 3196 rstart += MMU_TIB_RANGE; 3197 } 3198 } 3199 if (nend < eva) { 3200 idx = MMU_TIB(nend); 3201 b_dte = &b_tbl->bt_dtbl[idx]; 3202 if (MMU_VALID_DT(*b_dte)) { 3203 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3204 c_tbl = mmuC2tmgr(c_dte); 3205 empty = pmap_remove_c(c_tbl, nend, eva); 3206 if (empty) { 3207 b_dte->attr.raw = MMU_DT_INVALID; 3208 b_tbl->bt_ecnt--; 3209 } 3210 } 3211 } 3212 3213 if (b_tbl->bt_ecnt == 0) { 3214 b_tbl->bt_parent = NULL; 3215 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 3216 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 3217 empty = TRUE; 3218 } else { 3219 empty = FALSE; 3220 } 3221 3222 return empty; 3223 } 3224 3225 /* pmap_remove_c INTERNAL 3226 ** 3227 * Remove a range of addresses from the given C table. 3228 */ 3229 boolean_t 3230 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva) 3231 { 3232 boolean_t empty; 3233 int idx; 3234 mmu_short_pte_t *c_pte; 3235 3236 idx = MMU_TIC(sva); 3237 c_pte = &c_tbl->ct_dtbl[idx]; 3238 for (;sva < eva; sva += MMU_PAGE_SIZE, c_pte++) { 3239 if (MMU_VALID_DT(*c_pte)) { 3240 pmap_remove_pte(c_pte); 3241 c_tbl->ct_ecnt--; 3242 } 3243 } 3244 3245 if (c_tbl->ct_ecnt == 0) { 3246 c_tbl->ct_parent = NULL; 3247 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 3248 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 3249 empty = TRUE; 3250 } else { 3251 empty = FALSE; 3252 } 3253 3254 return empty; 3255 } 3256 3257 /* is_managed INTERNAL 3258 ** 3259 * Determine if the given physical address is managed by the PV system. 3260 * Note that this logic assumes that no one will ask for the status of 3261 * addresses which lie in-between the memory banks on the 3/80. If they 3262 * do so, it will falsely report that it is managed. 3263 * 3264 * Note: A "managed" address is one that was reported to the VM system as 3265 * a "usable page" during system startup. As such, the VM system expects the 3266 * pmap module to keep an accurate track of the useage of those pages. 3267 * Any page not given to the VM system at startup does not exist (as far as 3268 * the VM system is concerned) and is therefore "unmanaged." Examples are 3269 * those pages which belong to the ROM monitor and the memory allocated before 3270 * the VM system was started. 3271 */ 3272 boolean_t 3273 is_managed(paddr_t pa) 3274 { 3275 if (pa >= avail_start && pa < avail_end) 3276 return TRUE; 3277 else 3278 return FALSE; 3279 } 3280 3281 /* pmap_bootstrap_alloc INTERNAL 3282 ** 3283 * Used internally for memory allocation at startup when malloc is not 3284 * available. This code will fail once it crosses the first memory 3285 * bank boundary on the 3/80. Hopefully by then however, the VM system 3286 * will be in charge of allocation. 3287 */ 3288 void * 3289 pmap_bootstrap_alloc(int size) 3290 { 3291 void *rtn; 3292 3293 #ifdef PMAP_DEBUG 3294 if (bootstrap_alloc_enabled == FALSE) { 3295 mon_printf("pmap_bootstrap_alloc: disabled\n"); 3296 sunmon_abort(); 3297 } 3298 #endif 3299 3300 rtn = (void *) virtual_avail; 3301 virtual_avail += size; 3302 3303 #ifdef PMAP_DEBUG 3304 if (virtual_avail > virtual_contig_end) { 3305 mon_printf("pmap_bootstrap_alloc: out of mem\n"); 3306 sunmon_abort(); 3307 } 3308 #endif 3309 3310 return rtn; 3311 } 3312 3313 /* pmap_bootstap_aalign INTERNAL 3314 ** 3315 * Used to insure that the next call to pmap_bootstrap_alloc() will 3316 * return a chunk of memory aligned to the specified size. 3317 * 3318 * Note: This function will only support alignment sizes that are powers 3319 * of two. 3320 */ 3321 void 3322 pmap_bootstrap_aalign(int size) 3323 { 3324 int off; 3325 3326 off = virtual_avail & (size - 1); 3327 if (off) { 3328 (void) pmap_bootstrap_alloc(size - off); 3329 } 3330 } 3331 3332 /* pmap_pa_exists 3333 ** 3334 * Used by the /dev/mem driver to see if a given PA is memory 3335 * that can be mapped. (The PA is not in a hole.) 3336 */ 3337 int 3338 pmap_pa_exists(paddr_t pa) 3339 { 3340 int i; 3341 3342 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3343 if ((pa >= avail_mem[i].pmem_start) && 3344 (pa < avail_mem[i].pmem_end)) 3345 return (1); 3346 if (avail_mem[i].pmem_next == NULL) 3347 break; 3348 } 3349 return (0); 3350 } 3351 3352 /* Called only from locore.s and pmap.c */ 3353 void _pmap_switch(pmap_t pmap); 3354 3355 /* 3356 * _pmap_switch INTERNAL 3357 * 3358 * This is called by locore.s:cpu_switch() when it is 3359 * switching to a new process. Load new translations. 3360 * Note: done in-line by locore.s unless PMAP_DEBUG 3361 * 3362 * Note that we do NOT allocate a context here, but 3363 * share the "kernel only" context until we really 3364 * need our own context for user-space mappings in 3365 * pmap_enter_user(). [ s/context/mmu A table/ ] 3366 */ 3367 void 3368 _pmap_switch(pmap_t pmap) 3369 { 3370 u_long rootpa; 3371 3372 /* 3373 * Only do reload/flush if we have to. 3374 * Note that if the old and new process 3375 * were BOTH using the "null" context, 3376 * then this will NOT flush the TLB. 3377 */ 3378 rootpa = pmap->pm_a_phys; 3379 if (kernel_crp.rp_addr != rootpa) { 3380 DPRINT(("pmap_activate(%p)\n", pmap)); 3381 kernel_crp.rp_addr = rootpa; 3382 loadcrp(&kernel_crp); 3383 TBIAU(); 3384 } 3385 } 3386 3387 /* 3388 * Exported version of pmap_activate(). This is called from the 3389 * machine-independent VM code when a process is given a new pmap. 3390 * If (p == curlwp) do like cpu_switch would do; otherwise just 3391 * take this as notification that the process has a new pmap. 3392 */ 3393 void 3394 pmap_activate(struct lwp *l) 3395 { 3396 if (l->l_proc == curproc) { 3397 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap); 3398 } 3399 } 3400 3401 /* 3402 * pmap_deactivate INTERFACE 3403 ** 3404 * This is called to deactivate the specified process's address space. 3405 */ 3406 void 3407 pmap_deactivate(struct lwp *l) 3408 { 3409 /* Nothing to do. */ 3410 } 3411 3412 /* 3413 * Fill in the sun3x-specific part of the kernel core header 3414 * for dumpsys(). (See machdep.c for the rest.) 3415 */ 3416 void 3417 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh) 3418 { 3419 u_long spa, len; 3420 int i; 3421 3422 sh->pg_frame = MMU_SHORT_PTE_BASEADDR; 3423 sh->pg_valid = MMU_DT_PAGE; 3424 sh->contig_end = virtual_contig_end; 3425 sh->kernCbase = (u_long)kernCbase; 3426 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3427 spa = avail_mem[i].pmem_start; 3428 spa = m68k_trunc_page(spa); 3429 len = avail_mem[i].pmem_end - spa; 3430 len = m68k_round_page(len); 3431 sh->ram_segs[i].start = spa; 3432 sh->ram_segs[i].size = len; 3433 } 3434 } 3435 3436 3437 /* pmap_virtual_space INTERFACE 3438 ** 3439 * Return the current available range of virtual addresses in the 3440 * arguuments provided. Only really called once. 3441 */ 3442 void 3443 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend) 3444 { 3445 *vstart = virtual_avail; 3446 *vend = virtual_end; 3447 } 3448 3449 /* 3450 * Provide memory to the VM system. 3451 * 3452 * Assume avail_start is always in the 3453 * first segment as pmap_bootstrap does. 3454 */ 3455 static void 3456 pmap_page_upload(void) 3457 { 3458 paddr_t a, b; /* memory range */ 3459 int i; 3460 3461 /* Supply the memory in segments. */ 3462 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3463 a = atop(avail_mem[i].pmem_start); 3464 b = atop(avail_mem[i].pmem_end); 3465 if (i == 0) 3466 a = atop(avail_start); 3467 if (avail_mem[i].pmem_end > avail_end) 3468 b = atop(avail_end); 3469 3470 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT); 3471 3472 if (avail_mem[i].pmem_next == NULL) 3473 break; 3474 } 3475 } 3476 3477 /* pmap_count INTERFACE 3478 ** 3479 * Return the number of resident (valid) pages in the given pmap. 3480 * 3481 * Note: If this function is handed the kernel map, it will report 3482 * that it has no mappings. Hopefully the VM system won't ask for kernel 3483 * map statistics. 3484 */ 3485 segsz_t 3486 pmap_count(pmap_t pmap, int type) 3487 { 3488 u_int count; 3489 int a_idx, b_idx; 3490 a_tmgr_t *a_tbl; 3491 b_tmgr_t *b_tbl; 3492 c_tmgr_t *c_tbl; 3493 3494 /* 3495 * If the pmap does not have its own A table manager, it has no 3496 * valid entires. 3497 */ 3498 if (pmap->pm_a_tmgr == NULL) 3499 return 0; 3500 3501 a_tbl = pmap->pm_a_tmgr; 3502 3503 count = 0; 3504 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) { 3505 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 3506 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw)); 3507 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) { 3508 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 3509 c_tbl = mmuC2tmgr( 3510 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]))); 3511 if (type == 0) 3512 /* 3513 * A resident entry count has been requested. 3514 */ 3515 count += c_tbl->ct_ecnt; 3516 else 3517 /* 3518 * A wired entry count has been requested. 3519 */ 3520 count += c_tbl->ct_wcnt; 3521 } 3522 } 3523 } 3524 } 3525 3526 return count; 3527 } 3528 3529 /************************ SUN3 COMPATIBILITY ROUTINES ******************** 3530 * The following routines are only used by DDB for tricky kernel text * 3531 * text operations in db_memrw.c. They are provided for sun3 * 3532 * compatibility. * 3533 *************************************************************************/ 3534 /* get_pte INTERNAL 3535 ** 3536 * Return the page descriptor the describes the kernel mapping 3537 * of the given virtual address. 3538 */ 3539 extern u_long ptest_addr(u_long); /* XXX: locore.s */ 3540 u_int 3541 get_pte(vaddr_t va) 3542 { 3543 u_long pte_pa; 3544 mmu_short_pte_t *pte; 3545 3546 /* Get the physical address of the PTE */ 3547 pte_pa = ptest_addr(va & ~PGOFSET); 3548 3549 /* Convert to a virtual address... */ 3550 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa); 3551 3552 /* Make sure it is in our level-C tables... */ 3553 if ((pte < kernCbase) || 3554 (pte >= &mmuCbase[NUM_USER_PTES])) 3555 return 0; 3556 3557 /* ... and just return its contents. */ 3558 return (pte->attr.raw); 3559 } 3560 3561 3562 /* set_pte INTERNAL 3563 ** 3564 * Set the page descriptor that describes the kernel mapping 3565 * of the given virtual address. 3566 */ 3567 void 3568 set_pte(vaddr_t va, u_int pte) 3569 { 3570 u_long idx; 3571 3572 if (va < KERNBASE) 3573 return; 3574 3575 idx = (unsigned long) m68k_btop(va - KERNBASE); 3576 kernCbase[idx].attr.raw = pte; 3577 TBIS(va); 3578 } 3579 3580 /* 3581 * Routine: pmap_procwr 3582 * 3583 * Function: 3584 * Synchronize caches corresponding to [addr, addr+len) in p. 3585 */ 3586 void 3587 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 3588 { 3589 (void)cachectl1(0x80000004, va, len, p); 3590 } 3591 3592 3593 #ifdef PMAP_DEBUG 3594 /************************** DEBUGGING ROUTINES ************************** 3595 * The following routines are meant to be an aid to debugging the pmap * 3596 * system. They are callable from the DDB command line and should be * 3597 * prepared to be handed unstable or incomplete states of the system. * 3598 ************************************************************************/ 3599 3600 /* pv_list 3601 ** 3602 * List all pages found on the pv list for the given physical page. 3603 * To avoid endless loops, the listing will stop at the end of the list 3604 * or after 'n' entries - whichever comes first. 3605 */ 3606 void 3607 pv_list(paddr_t pa, int n) 3608 { 3609 int idx; 3610 vaddr_t va; 3611 pv_t *pv; 3612 c_tmgr_t *c_tbl; 3613 pmap_t pmap; 3614 3615 pv = pa2pv(pa); 3616 idx = pv->pv_idx; 3617 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) { 3618 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 3619 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n", 3620 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl); 3621 } 3622 } 3623 #endif /* PMAP_DEBUG */ 3624 3625 #ifdef NOT_YET 3626 /* and maybe not ever */ 3627 /************************** LOW-LEVEL ROUTINES ************************** 3628 * These routines will eventually be re-written into assembly and placed* 3629 * in locore.s. They are here now as stubs so that the pmap module can * 3630 * be linked as a standalone user program for testing. * 3631 ************************************************************************/ 3632 /* flush_atc_crp INTERNAL 3633 ** 3634 * Flush all page descriptors derived from the given CPU Root Pointer 3635 * (CRP), or 'A' table as it is known here, from the 68851's automatic 3636 * cache. 3637 */ 3638 void 3639 flush_atc_crp(int a_tbl) 3640 { 3641 mmu_long_rp_t rp; 3642 3643 /* Create a temporary root table pointer that points to the 3644 * given A table. 3645 */ 3646 rp.attr.raw = ~MMU_LONG_RP_LU; 3647 rp.addr.raw = (unsigned int) a_tbl; 3648 3649 mmu_pflushr(&rp); 3650 /* mmu_pflushr: 3651 * movel sp(4)@,a0 3652 * pflushr a0@ 3653 * rts 3654 */ 3655 } 3656 #endif /* NOT_YET */ 3657