xref: /netbsd-src/sys/arch/sun3/sun3x/pmap.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: pmap.c,v 1.90 2006/05/10 06:24:03 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a process called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.90 2006/05/10 06:24:03 skrll Exp $");
116 
117 #include "opt_ddb.h"
118 #include "opt_pmap_debug.h"
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/proc.h>
123 #include <sys/malloc.h>
124 #include <sys/pool.h>
125 #include <sys/user.h>
126 #include <sys/queue.h>
127 #include <sys/kcore.h>
128 
129 #include <uvm/uvm.h>
130 
131 #include <machine/cpu.h>
132 #include <machine/kcore.h>
133 #include <machine/mon.h>
134 #include <machine/pmap.h>
135 #include <machine/pte.h>
136 #include <machine/vmparam.h>
137 #include <m68k/cacheops.h>
138 
139 #include <sun3/sun3/cache.h>
140 #include <sun3/sun3/machdep.h>
141 
142 #include "pmap_pvt.h"
143 
144 /* XXX - What headers declare these? */
145 extern struct pcb *curpcb;
146 extern int physmem;
147 
148 /* Defined in locore.s */
149 extern char kernel_text[];
150 
151 /* Defined by the linker */
152 extern char etext[], edata[], end[];
153 extern char *esym;	/* DDB */
154 
155 /*************************** DEBUGGING DEFINITIONS ***********************
156  * Macros, preprocessor defines and variables used in debugging can make *
157  * code hard to read.  Anything used exclusively for debugging purposes  *
158  * is defined here to avoid having such mess scattered around the file.  *
159  *************************************************************************/
160 #ifdef	PMAP_DEBUG
161 /*
162  * To aid the debugging process, macros should be expanded into smaller steps
163  * that accomplish the same goal, yet provide convenient places for placing
164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
165  * 'INLINE' keyword is defined to an empty string.  This way, any function
166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
167  * a separate function, which is much easier to debug.
168  */
169 #define	INLINE	/* nothing */
170 
171 /*
172  * It is sometimes convenient to watch the activity of a particular table
173  * in the system.  The following variables are used for that purpose.
174  */
175 a_tmgr_t *pmap_watch_atbl = 0;
176 b_tmgr_t *pmap_watch_btbl = 0;
177 c_tmgr_t *pmap_watch_ctbl = 0;
178 
179 int pmap_debug = 0;
180 #define DPRINT(args) if (pmap_debug) printf args
181 
182 #else	/********** Stuff below is defined if NOT debugging **************/
183 
184 #define	INLINE	inline
185 #define DPRINT(args)  /* nada */
186 
187 #endif	/* PMAP_DEBUG */
188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
189 
190 /*** Management Structure - Memory Layout
191  * For every MMU table in the sun3x pmap system there must be a way to
192  * manage it; we must know which process is using it, what other tables
193  * depend on it, and whether or not it contains any locked pages.  This
194  * is solved by the creation of 'table management'  or 'tmgr'
195  * structures.  One for each MMU table in the system.
196  *
197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
198  *
199  *      towards lower memory
200  * kernAbase -> +-------------------------------------------------------+
201  *              | Kernel     MMU A level table                          |
202  * kernBbase -> +-------------------------------------------------------+
203  *              | Kernel     MMU B level tables                         |
204  * kernCbase -> +-------------------------------------------------------+
205  *              |                                                       |
206  *              | Kernel     MMU C level tables                         |
207  *              |                                                       |
208  * mmuCbase  -> +-------------------------------------------------------+
209  *              | User       MMU C level tables                         |
210  * mmuAbase  -> +-------------------------------------------------------+
211  *              |                                                       |
212  *              | User       MMU A level tables                         |
213  *              |                                                       |
214  * mmuBbase  -> +-------------------------------------------------------+
215  *              | User       MMU B level tables                         |
216  * tmgrAbase -> +-------------------------------------------------------+
217  *              |  TMGR A level table structures                        |
218  * tmgrBbase -> +-------------------------------------------------------+
219  *              |  TMGR B level table structures                        |
220  * tmgrCbase -> +-------------------------------------------------------+
221  *              |  TMGR C level table structures                        |
222  * pvbase    -> +-------------------------------------------------------+
223  *              |  Physical to Virtual mapping table (list heads)       |
224  * pvebase   -> +-------------------------------------------------------+
225  *              |  Physical to Virtual mapping table (list elements)    |
226  *              |                                                       |
227  *              +-------------------------------------------------------+
228  *      towards higher memory
229  *
230  * For every A table in the MMU A area, there will be a corresponding
231  * a_tmgr structure in the TMGR A area.  The same will be true for
232  * the B and C tables.  This arrangement will make it easy to find the
233  * controling tmgr structure for any table in the system by use of
234  * (relatively) simple macros.
235  */
236 
237 /*
238  * Global variables for storing the base addresses for the areas
239  * labeled above.
240  */
241 static vaddr_t  	kernAphys;
242 static mmu_long_dte_t	*kernAbase;
243 static mmu_short_dte_t	*kernBbase;
244 static mmu_short_pte_t	*kernCbase;
245 static mmu_short_pte_t	*mmuCbase;
246 static mmu_short_dte_t	*mmuBbase;
247 static mmu_long_dte_t	*mmuAbase;
248 static a_tmgr_t		*Atmgrbase;
249 static b_tmgr_t		*Btmgrbase;
250 static c_tmgr_t		*Ctmgrbase;
251 static pv_t 		*pvbase;
252 static pv_elem_t	*pvebase;
253 struct pmap 		kernel_pmap;
254 
255 /*
256  * This holds the CRP currently loaded into the MMU.
257  */
258 struct mmu_rootptr kernel_crp;
259 
260 /*
261  * Just all around global variables.
262  */
263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
266 
267 
268 /*
269  * Flags used to mark the safety/availability of certain operations or
270  * resources.
271  */
272 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
273 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
274 
275 /*
276  * XXX:  For now, retain the traditional variables that were
277  * used in the old pmap/vm interface (without NONCONTIG).
278  */
279 /* Kernel virtual address space available: */
280 vaddr_t	virtual_avail, virtual_end;
281 /* Physical address space available: */
282 paddr_t	avail_start, avail_end;
283 
284 /* This keep track of the end of the contiguously mapped range. */
285 vaddr_t virtual_contig_end;
286 
287 /* Physical address used by pmap_next_page() */
288 paddr_t avail_next;
289 
290 /* These are used by pmap_copy_page(), etc. */
291 vaddr_t tmp_vpages[2];
292 
293 /* memory pool for pmap structures */
294 struct pool	pmap_pmap_pool;
295 
296 /*
297  * The 3/80 is the only member of the sun3x family that has non-contiguous
298  * physical memory.  Memory is divided into 4 banks which are physically
299  * locatable on the system board.  Although the size of these banks varies
300  * with the size of memory they contain, their base addresses are
301  * permenently fixed.  The following structure, which describes these
302  * banks, is initialized by pmap_bootstrap() after it reads from a similar
303  * structure provided by the ROM Monitor.
304  *
305  * For the other machines in the sun3x architecture which do have contiguous
306  * RAM, this list will have only one entry, which will describe the entire
307  * range of available memory.
308  */
309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
310 u_int total_phys_mem;
311 
312 /*************************************************************************/
313 
314 /*
315  * XXX - Should "tune" these based on statistics.
316  *
317  * My first guess about the relative numbers of these needed is
318  * based on the fact that a "typical" process will have several
319  * pages mapped at low virtual addresses (text, data, bss), then
320  * some mapped shared libraries, and then some stack pages mapped
321  * near the high end of the VA space.  Each process can use only
322  * one A table, and most will use only two B tables (maybe three)
323  * and probably about four C tables.  Therefore, the first guess
324  * at the relative numbers of these needed is 1:2:4 -gwr
325  *
326  * The number of C tables needed is closely related to the amount
327  * of physical memory available plus a certain amount attributable
328  * to the use of double mappings.  With a few simulation statistics
329  * we can find a reasonably good estimation of this unknown value.
330  * Armed with that and the above ratios, we have a good idea of what
331  * is needed at each level. -j
332  *
333  * Note: It is not physical memory memory size, but the total mapped
334  * virtual space required by the combined working sets of all the
335  * currently _runnable_ processes.  (Sleeping ones don't count.)
336  * The amount of physical memory should be irrelevant. -gwr
337  */
338 #ifdef	FIXED_NTABLES
339 #define NUM_A_TABLES	16
340 #define NUM_B_TABLES	32
341 #define NUM_C_TABLES	64
342 #else
343 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
344 #endif	/* FIXED_NTABLES */
345 
346 /*
347  * This determines our total virtual mapping capacity.
348  * Yes, it is a FIXED value so we can pre-allocate.
349  */
350 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
351 
352 /*
353  * The size of the Kernel Virtual Address Space (KVAS)
354  * for purposes of MMU table allocation is -KERNBASE
355  * (length from KERNBASE to 0xFFFFffff)
356  */
357 #define	KVAS_SIZE		(-KERNBASE)
358 
359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
360 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
361 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
362 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
363 
364 /*************************** MISCELANEOUS MACROS *************************/
365 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
366 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
367 #define pmap_add_ref(pmap) ++pmap->pm_refcount
368 #define pmap_del_ref(pmap) --pmap->pm_refcount
369 #define pmap_refcount(pmap) pmap->pm_refcount
370 
371 void *pmap_bootstrap_alloc(int);
372 
373 static INLINE void *mmu_ptov(paddr_t);
374 static INLINE paddr_t mmu_vtop(void *);
375 
376 #if	0
377 static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *);
378 #endif /* 0 */
379 static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *);
380 static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *);
381 
382 static INLINE pv_t *pa2pv(paddr_t);
383 static INLINE int   pteidx(mmu_short_pte_t *);
384 static INLINE pmap_t current_pmap(void);
385 
386 /*
387  * We can always convert between virtual and physical addresses
388  * for anything in the range [KERNBASE ... avail_start] because
389  * that range is GUARANTEED to be mapped linearly.
390  * We rely heavily upon this feature!
391  */
392 static INLINE void *
393 mmu_ptov(paddr_t pa)
394 {
395 	vaddr_t va;
396 
397 	va = (pa + KERNBASE);
398 #ifdef	PMAP_DEBUG
399 	if ((va < KERNBASE) || (va >= virtual_contig_end))
400 		panic("mmu_ptov");
401 #endif
402 	return ((void*)va);
403 }
404 
405 static INLINE paddr_t
406 mmu_vtop(void *vva)
407 {
408 	vaddr_t va;
409 
410 	va = (vaddr_t)vva;
411 #ifdef	PMAP_DEBUG
412 	if ((va < KERNBASE) || (va >= virtual_contig_end))
413 		panic("mmu_vtop");
414 #endif
415 	return (va - KERNBASE);
416 }
417 
418 /*
419  * These macros map MMU tables to their corresponding manager structures.
420  * They are needed quite often because many of the pointers in the pmap
421  * system reference MMU tables and not the structures that control them.
422  * There needs to be a way to find one when given the other and these
423  * macros do so by taking advantage of the memory layout described above.
424  * Here's a quick step through the first macro, mmuA2tmgr():
425  *
426  * 1) find the offset of the given MMU A table from the base of its table
427  *    pool (table - mmuAbase).
428  * 2) convert this offset into a table index by dividing it by the
429  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
430  * 3) use this index to select the corresponding 'A' table manager
431  *    structure from the 'A' table manager pool (Atmgrbase[index]).
432  */
433 /*  This function is not currently used. */
434 #if	0
435 static INLINE a_tmgr_t *
436 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
437 {
438 	int idx;
439 
440 	/* Which table is this in? */
441 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
442 #ifdef	PMAP_DEBUG
443 	if ((idx < 0) || (idx >= NUM_A_TABLES))
444 		panic("mmuA2tmgr");
445 #endif
446 	return (&Atmgrbase[idx]);
447 }
448 #endif	/* 0 */
449 
450 static INLINE b_tmgr_t *
451 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
452 {
453 	int idx;
454 
455 	/* Which table is this in? */
456 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
457 #ifdef	PMAP_DEBUG
458 	if ((idx < 0) || (idx >= NUM_B_TABLES))
459 		panic("mmuB2tmgr");
460 #endif
461 	return (&Btmgrbase[idx]);
462 }
463 
464 /* mmuC2tmgr			INTERNAL
465  **
466  * Given a pte known to belong to a C table, return the address of
467  * that table's management structure.
468  */
469 static INLINE c_tmgr_t *
470 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
471 {
472 	int idx;
473 
474 	/* Which table is this in? */
475 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
476 #ifdef	PMAP_DEBUG
477 	if ((idx < 0) || (idx >= NUM_C_TABLES))
478 		panic("mmuC2tmgr");
479 #endif
480 	return (&Ctmgrbase[idx]);
481 }
482 
483 /* This is now a function call below.
484  * #define pa2pv(pa) \
485  *	(&pvbase[(unsigned long)\
486  *		m68k_btop(pa)\
487  *	])
488  */
489 
490 /* pa2pv			INTERNAL
491  **
492  * Return the pv_list_head element which manages the given physical
493  * address.
494  */
495 static INLINE pv_t *
496 pa2pv(paddr_t pa)
497 {
498 	struct pmap_physmem_struct *bank;
499 	int idx;
500 
501 	bank = &avail_mem[0];
502 	while (pa >= bank->pmem_end)
503 		bank = bank->pmem_next;
504 
505 	pa -= bank->pmem_start;
506 	idx = bank->pmem_pvbase + m68k_btop(pa);
507 #ifdef	PMAP_DEBUG
508 	if ((idx < 0) || (idx >= physmem))
509 		panic("pa2pv");
510 #endif
511 	return &pvbase[idx];
512 }
513 
514 /* pteidx			INTERNAL
515  **
516  * Return the index of the given PTE within the entire fixed table of
517  * PTEs.
518  */
519 static INLINE int
520 pteidx(mmu_short_pte_t *pte)
521 {
522 	return (pte - kernCbase);
523 }
524 
525 /*
526  * This just offers a place to put some debugging checks,
527  * and reduces the number of places "curlwp" appears...
528  */
529 static INLINE pmap_t
530 current_pmap(void)
531 {
532 	struct vmspace *vm;
533 	struct vm_map *map;
534 	pmap_t	pmap;
535 
536 	if (curlwp == NULL)
537 		pmap = &kernel_pmap;
538 	else {
539 		vm = curproc->p_vmspace;
540 		map = &vm->vm_map;
541 		pmap = vm_map_pmap(map);
542 	}
543 
544 	return (pmap);
545 }
546 
547 
548 /*************************** FUNCTION DEFINITIONS ************************
549  * These appear here merely for the compiler to enforce type checking on *
550  * all function calls.                                                   *
551  *************************************************************************/
552 
553 /** Internal functions
554  ** Most functions used only within this module are defined in
555  **   pmap_pvt.h (why not here if used only here?)
556  **/
557 static void pmap_page_upload(void);
558 
559 /** Interface functions
560  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
561  **   defined.
562  **/
563 void pmap_pinit(pmap_t);
564 void pmap_release(pmap_t);
565 
566 /********************************** CODE ********************************
567  * Functions that are called from other parts of the kernel are labeled *
568  * as 'INTERFACE' functions.  Functions that are only called from       *
569  * within the pmap module are labeled as 'INTERNAL' functions.          *
570  * Functions that are internal, but are not (currently) used at all are *
571  * labeled 'INTERNAL_X'.                                                *
572  ************************************************************************/
573 
574 /* pmap_bootstrap			INTERNAL
575  **
576  * Initializes the pmap system.  Called at boot time from
577  * locore2.c:_vm_init()
578  *
579  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
580  *           system implement pmap_steal_memory() is redundant.
581  *           Don't release this code without removing one or the other!
582  */
583 void
584 pmap_bootstrap(vaddr_t nextva)
585 {
586 	struct physmemory *membank;
587 	struct pmap_physmem_struct *pmap_membank;
588 	vaddr_t va, eva;
589 	paddr_t pa;
590 	int b, c, i, j;	/* running table counts */
591 	int size, resvmem;
592 
593 	/*
594 	 * This function is called by __bootstrap after it has
595 	 * determined the type of machine and made the appropriate
596 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
597 	 * by that.)  It allocates and sets up enough of the pmap system
598 	 * to manage the kernel's address space.
599 	 */
600 
601 	/*
602 	 * Determine the range of kernel virtual and physical
603 	 * space available. Note that we ABSOLUTELY DEPEND on
604 	 * the fact that the first bank of memory (4MB) is
605 	 * mapped linearly to KERNBASE (which we guaranteed in
606 	 * the first instructions of locore.s).
607 	 * That is plenty for our bootstrap work.
608 	 */
609 	virtual_avail = m68k_round_page(nextva);
610 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
611 	virtual_end = VM_MAX_KERNEL_ADDRESS;
612 	/* Don't need avail_start til later. */
613 
614 	/* We may now call pmap_bootstrap_alloc(). */
615 	bootstrap_alloc_enabled = TRUE;
616 
617 	/*
618 	 * This is a somewhat unwrapped loop to deal with
619 	 * copying the PROM's 'phsymem' banks into the pmap's
620 	 * banks.  The following is always assumed:
621 	 * 1. There is always at least one bank of memory.
622 	 * 2. There is always a last bank of memory, and its
623 	 *    pmem_next member must be set to NULL.
624 	 */
625 	membank = romVectorPtr->v_physmemory;
626 	pmap_membank = avail_mem;
627 	total_phys_mem = 0;
628 
629 	for (;;) { /* break on !membank */
630 		pmap_membank->pmem_start = membank->address;
631 		pmap_membank->pmem_end = membank->address + membank->size;
632 		total_phys_mem += membank->size;
633 		membank = membank->next;
634 		if (!membank)
635 			break;
636 		/* This silly syntax arises because pmap_membank
637 		 * is really a pre-allocated array, but it is put into
638 		 * use as a linked list.
639 		 */
640 		pmap_membank->pmem_next = pmap_membank + 1;
641 		pmap_membank = pmap_membank->pmem_next;
642 	}
643 	/* This is the last element. */
644 	pmap_membank->pmem_next = NULL;
645 
646 	/*
647 	 * Note: total_phys_mem, physmem represent
648 	 * actual physical memory, including that
649 	 * reserved for the PROM monitor.
650 	 */
651 	physmem = btoc(total_phys_mem);
652 
653 	/*
654 	 * Avail_end is set to the first byte of physical memory
655 	 * after the end of the last bank.  We use this only to
656 	 * determine if a physical address is "managed" memory.
657 	 * This address range should be reduced to prevent the
658 	 * physical pages needed by the PROM monitor from being used
659 	 * in the VM system.
660 	 */
661 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
662 	resvmem = m68k_round_page(resvmem);
663 	avail_end = pmap_membank->pmem_end - resvmem;
664 
665 	/*
666 	 * First allocate enough kernel MMU tables to map all
667 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
668 	 * Note: All must be aligned on 256 byte boundaries.
669 	 * Start with the level-A table (one of those).
670 	 */
671 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
672 	kernAbase = pmap_bootstrap_alloc(size);
673 	memset(kernAbase, 0, size);
674 
675 	/* Now the level-B kernel tables... */
676 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
677 	kernBbase = pmap_bootstrap_alloc(size);
678 	memset(kernBbase, 0, size);
679 
680 	/* Now the level-C kernel tables... */
681 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
682 	kernCbase = pmap_bootstrap_alloc(size);
683 	memset(kernCbase, 0, size);
684 	/*
685 	 * Note: In order for the PV system to work correctly, the kernel
686 	 * and user-level C tables must be allocated contiguously.
687 	 * Nothing should be allocated between here and the allocation of
688 	 * mmuCbase below.  XXX: Should do this as one allocation, and
689 	 * then compute a pointer for mmuCbase instead of this...
690 	 *
691 	 * Allocate user MMU tables.
692 	 * These must be contiguous with the preceding.
693 	 */
694 
695 #ifndef	FIXED_NTABLES
696 	/*
697 	 * The number of user-level C tables that should be allocated is
698 	 * related to the size of physical memory.  In general, there should
699 	 * be enough tables to map four times the amount of available RAM.
700 	 * The extra amount is needed because some table space is wasted by
701 	 * fragmentation.
702 	 */
703 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
704 	NUM_B_TABLES = NUM_C_TABLES / 2;
705 	NUM_A_TABLES = NUM_B_TABLES / 2;
706 #endif	/* !FIXED_NTABLES */
707 
708 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
709 	mmuCbase = pmap_bootstrap_alloc(size);
710 
711 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
712 	mmuBbase = pmap_bootstrap_alloc(size);
713 
714 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
715 	mmuAbase = pmap_bootstrap_alloc(size);
716 
717 	/*
718 	 * Fill in the never-changing part of the kernel tables.
719 	 * For simplicity, the kernel's mappings will be editable as a
720 	 * flat array of page table entries at kernCbase.  The
721 	 * higher level 'A' and 'B' tables must be initialized to point
722 	 * to this lower one.
723 	 */
724 	b = c = 0;
725 
726 	/*
727 	 * Invalidate all mappings below KERNBASE in the A table.
728 	 * This area has already been zeroed out, but it is good
729 	 * practice to explicitly show that we are interpreting
730 	 * it as a list of A table descriptors.
731 	 */
732 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
733 		kernAbase[i].addr.raw = 0;
734 	}
735 
736 	/*
737 	 * Set up the kernel A and B tables so that they will reference the
738 	 * correct spots in the contiguous table of PTEs allocated for the
739 	 * kernel's virtual memory space.
740 	 */
741 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
742 		kernAbase[i].attr.raw =
743 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
744 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
745 
746 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
747 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
748 				| MMU_DT_SHORT;
749 			c += MMU_C_TBL_SIZE;
750 		}
751 		b += MMU_B_TBL_SIZE;
752 	}
753 
754 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
755 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
756 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
757 
758 	/*
759 	 * We are now done with pmap_bootstrap_alloc().  Round up
760 	 * `virtual_avail' to the nearest page, and set the flag
761 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
762 	 */
763 	pmap_bootstrap_aalign(PAGE_SIZE);
764 	bootstrap_alloc_enabled = FALSE;
765 
766 	/*
767 	 * Now that we are done with pmap_bootstrap_alloc(), we
768 	 * must save the virtual and physical addresses of the
769 	 * end of the linearly mapped range, which are stored in
770 	 * virtual_contig_end and avail_start, respectively.
771 	 * These variables will never change after this point.
772 	 */
773 	virtual_contig_end = virtual_avail;
774 	avail_start = virtual_avail - KERNBASE;
775 
776 	/*
777 	 * `avail_next' is a running pointer used by pmap_next_page() to
778 	 * keep track of the next available physical page to be handed
779 	 * to the VM system during its initialization, in which it
780 	 * asks for physical pages, one at a time.
781 	 */
782 	avail_next = avail_start;
783 
784 	/*
785 	 * Now allocate some virtual addresses, but not the physical pages
786 	 * behind them.  Note that virtual_avail is already page-aligned.
787 	 *
788 	 * tmp_vpages[] is an array of two virtual pages used for temporary
789 	 * kernel mappings in the pmap module to facilitate various physical
790 	 * address-oritented operations.
791 	 */
792 	tmp_vpages[0] = virtual_avail;
793 	virtual_avail += PAGE_SIZE;
794 	tmp_vpages[1] = virtual_avail;
795 	virtual_avail += PAGE_SIZE;
796 
797 	/** Initialize the PV system **/
798 	pmap_init_pv();
799 
800 	/*
801 	 * Fill in the kernel_pmap structure and kernel_crp.
802 	 */
803 	kernAphys = mmu_vtop(kernAbase);
804 	kernel_pmap.pm_a_tmgr = NULL;
805 	kernel_pmap.pm_a_phys = kernAphys;
806 	kernel_pmap.pm_refcount = 1; /* always in use */
807 	simple_lock_init(&kernel_pmap.pm_lock);
808 
809 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
810 	kernel_crp.rp_addr = kernAphys;
811 
812 	/*
813 	 * Now pmap_enter_kernel() may be used safely and will be
814 	 * the main interface used hereafter to modify the kernel's
815 	 * virtual address space.  Note that since we are still running
816 	 * under the PROM's address table, none of these table modifications
817 	 * actually take effect until pmap_takeover_mmu() is called.
818 	 *
819 	 * Note: Our tables do NOT have the PROM linear mappings!
820 	 * Only the mappings created here exist in our tables, so
821 	 * remember to map anything we expect to use.
822 	 */
823 	va = (vaddr_t)KERNBASE;
824 	pa = 0;
825 
826 	/*
827 	 * The first page of the kernel virtual address space is the msgbuf
828 	 * page.  The page attributes (data, non-cached) are set here, while
829 	 * the address is assigned to this global pointer in cpu_startup().
830 	 * It is non-cached, mostly due to paranoia.
831 	 */
832 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
833 	va += PAGE_SIZE; pa += PAGE_SIZE;
834 
835 	/* Next page is used as the temporary stack. */
836 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
837 	va += PAGE_SIZE; pa += PAGE_SIZE;
838 
839 	/*
840 	 * Map all of the kernel's text segment as read-only and cacheable.
841 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
842 	 * of kernel text and the first bytes of kernel data will often be
843 	 * sharing the same page.  Therefore, the last page of kernel text
844 	 * has to be mapped as read/write, to accomodate the data.
845 	 */
846 	eva = m68k_trunc_page((vaddr_t)etext);
847 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
848 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
849 
850 	/*
851 	 * Map all of the kernel's data as read/write and cacheable.
852 	 * This includes: data, BSS, symbols, and everything in the
853 	 * contiguous memory used by pmap_bootstrap_alloc()
854 	 */
855 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
856 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
857 
858 	/*
859 	 * At this point we are almost ready to take over the MMU.  But first
860 	 * we must save the PROM's address space in our map, as we call its
861 	 * routines and make references to its data later in the kernel.
862 	 */
863 	pmap_bootstrap_copyprom();
864 	pmap_takeover_mmu();
865 	pmap_bootstrap_setprom();
866 
867 	/* Notify the VM system of our page size. */
868 	uvmexp.pagesize = PAGE_SIZE;
869 	uvm_setpagesize();
870 
871 	pmap_page_upload();
872 }
873 
874 
875 /* pmap_alloc_usermmu			INTERNAL
876  **
877  * Called from pmap_bootstrap() to allocate MMU tables that will
878  * eventually be used for user mappings.
879  */
880 void
881 pmap_alloc_usermmu(void)
882 {
883 	/* XXX: Moved into caller. */
884 }
885 
886 /* pmap_alloc_pv			INTERNAL
887  **
888  * Called from pmap_bootstrap() to allocate the physical
889  * to virtual mapping list.  Each physical page of memory
890  * in the system has a corresponding element in this list.
891  */
892 void
893 pmap_alloc_pv(void)
894 {
895 	int	i;
896 	unsigned int	total_mem;
897 
898 	/*
899 	 * Allocate a pv_head structure for every page of physical
900 	 * memory that will be managed by the system.  Since memory on
901 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
902 	 * count by subtraction of the lowest available address from the
903 	 * highest, but rather we have to step through each memory
904 	 * bank and add the number of pages in each to the total.
905 	 *
906 	 * At this time we also initialize the offset of each bank's
907 	 * starting pv_head within the pv_head list so that the physical
908 	 * memory state routines (pmap_is_referenced(),
909 	 * pmap_is_modified(), et al.) can quickly find coresponding
910 	 * pv_heads in spite of the non-contiguity.
911 	 */
912 	total_mem = 0;
913 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
914 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
915 		total_mem += avail_mem[i].pmem_end -
916 			avail_mem[i].pmem_start;
917 		if (avail_mem[i].pmem_next == NULL)
918 			break;
919 	}
920 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
921 		m68k_btop(total_phys_mem));
922 }
923 
924 /* pmap_alloc_usertmgr			INTERNAL
925  **
926  * Called from pmap_bootstrap() to allocate the structures which
927  * facilitate management of user MMU tables.  Each user MMU table
928  * in the system has one such structure associated with it.
929  */
930 void
931 pmap_alloc_usertmgr(void)
932 {
933 	/* Allocate user MMU table managers */
934 	/* It would be a lot simpler to just make these BSS, but */
935 	/* we may want to change their size at boot time... -j */
936 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
937 		* NUM_A_TABLES);
938 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
939 		* NUM_B_TABLES);
940 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
941 		* NUM_C_TABLES);
942 
943 	/*
944 	 * Allocate PV list elements for the physical to virtual
945 	 * mapping system.
946 	 */
947 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
948 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
949 }
950 
951 /* pmap_bootstrap_copyprom()			INTERNAL
952  **
953  * Copy the PROM mappings into our own tables.  Note, we
954  * can use physical addresses until __bootstrap returns.
955  */
956 void
957 pmap_bootstrap_copyprom(void)
958 {
959 	struct sunromvec *romp;
960 	int *mon_ctbl;
961 	mmu_short_pte_t *kpte;
962 	int i, len;
963 
964 	romp = romVectorPtr;
965 
966 	/*
967 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
968 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
969 	 */
970 	mon_ctbl = *romp->monptaddr;
971 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
972 	kpte = &kernCbase[i];
973 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
974 
975 	for (i = 0; i < len; i++) {
976 		kpte[i].attr.raw = mon_ctbl[i];
977 	}
978 
979 	/*
980 	 * Copy the mappings at MON_DVMA_BASE (to the end).
981 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
982 	 * Actually, we only want the last page, which the
983 	 * PROM has set up for use by the "ie" driver.
984 	 * (The i82686 needs its SCP there.)
985 	 * If we copy all the mappings, pmap_enter_kernel
986 	 * may complain about finding valid PTEs that are
987 	 * not recorded in our PV lists...
988 	 */
989 	mon_ctbl = *romp->shadowpteaddr;
990 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
991 	kpte = &kernCbase[i];
992 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
993 	for (i = (len-1); i < len; i++) {
994 		kpte[i].attr.raw = mon_ctbl[i];
995 	}
996 }
997 
998 /* pmap_takeover_mmu			INTERNAL
999  **
1000  * Called from pmap_bootstrap() after it has copied enough of the
1001  * PROM mappings into the kernel map so that we can use our own
1002  * MMU table.
1003  */
1004 void
1005 pmap_takeover_mmu(void)
1006 {
1007 
1008 	loadcrp(&kernel_crp);
1009 }
1010 
1011 /* pmap_bootstrap_setprom()			INTERNAL
1012  **
1013  * Set the PROM mappings so it can see kernel space.
1014  * Note that physical addresses are used here, which
1015  * we can get away with because this runs with the
1016  * low 1GB set for transparent translation.
1017  */
1018 void
1019 pmap_bootstrap_setprom(void)
1020 {
1021 	mmu_long_dte_t *mon_dte;
1022 	extern struct mmu_rootptr mon_crp;
1023 	int i;
1024 
1025 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1026 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1027 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1028 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1029 	}
1030 }
1031 
1032 
1033 /* pmap_init			INTERFACE
1034  **
1035  * Called at the end of vm_init() to set up the pmap system to go
1036  * into full time operation.  All initialization of kernel_pmap
1037  * should be already done by now, so this should just do things
1038  * needed for user-level pmaps to work.
1039  */
1040 void
1041 pmap_init(void)
1042 {
1043 	/** Initialize the manager pools **/
1044 	TAILQ_INIT(&a_pool);
1045 	TAILQ_INIT(&b_pool);
1046 	TAILQ_INIT(&c_pool);
1047 
1048 	/**************************************************************
1049 	 * Initialize all tmgr structures and MMU tables they manage. *
1050 	 **************************************************************/
1051 	/** Initialize A tables **/
1052 	pmap_init_a_tables();
1053 	/** Initialize B tables **/
1054 	pmap_init_b_tables();
1055 	/** Initialize C tables **/
1056 	pmap_init_c_tables();
1057 
1058 	/** Initialize the pmap pools **/
1059 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1060 	    &pool_allocator_nointr);
1061 }
1062 
1063 /* pmap_init_a_tables()			INTERNAL
1064  **
1065  * Initializes all A managers, their MMU A tables, and inserts
1066  * them into the A manager pool for use by the system.
1067  */
1068 void
1069 pmap_init_a_tables(void)
1070 {
1071 	int i;
1072 	a_tmgr_t *a_tbl;
1073 
1074 	for (i = 0; i < NUM_A_TABLES; i++) {
1075 		/* Select the next available A manager from the pool */
1076 		a_tbl = &Atmgrbase[i];
1077 
1078 		/*
1079 		 * Clear its parent entry.  Set its wired and valid
1080 		 * entry count to zero.
1081 		 */
1082 		a_tbl->at_parent = NULL;
1083 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1084 
1085 		/* Assign it the next available MMU A table from the pool */
1086 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1087 
1088 		/*
1089 		 * Initialize the MMU A table with the table in the `proc0',
1090 		 * or kernel, mapping.  This ensures that every process has
1091 		 * the kernel mapped in the top part of its address space.
1092 		 */
1093 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1094 			sizeof(mmu_long_dte_t));
1095 
1096 		/*
1097 		 * Finally, insert the manager into the A pool,
1098 		 * making it ready to be used by the system.
1099 		 */
1100 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1101     }
1102 }
1103 
1104 /* pmap_init_b_tables()			INTERNAL
1105  **
1106  * Initializes all B table managers, their MMU B tables, and
1107  * inserts them into the B manager pool for use by the system.
1108  */
1109 void
1110 pmap_init_b_tables(void)
1111 {
1112 	int i, j;
1113 	b_tmgr_t *b_tbl;
1114 
1115 	for (i = 0; i < NUM_B_TABLES; i++) {
1116 		/* Select the next available B manager from the pool */
1117 		b_tbl = &Btmgrbase[i];
1118 
1119 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1120 		b_tbl->bt_pidx = 0;		/* parent index,      */
1121 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1122 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1123 
1124 		/* Assign it the next available MMU B table from the pool */
1125 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1126 
1127 		/* Invalidate every descriptor in the table */
1128 		for (j=0; j < MMU_B_TBL_SIZE; j++)
1129 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1130 
1131 		/* Insert the manager into the B pool */
1132 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1133 	}
1134 }
1135 
1136 /* pmap_init_c_tables()			INTERNAL
1137  **
1138  * Initializes all C table managers, their MMU C tables, and
1139  * inserts them into the C manager pool for use by the system.
1140  */
1141 void
1142 pmap_init_c_tables(void)
1143 {
1144 	int i, j;
1145 	c_tmgr_t *c_tbl;
1146 
1147 	for (i = 0; i < NUM_C_TABLES; i++) {
1148 		/* Select the next available C manager from the pool */
1149 		c_tbl = &Ctmgrbase[i];
1150 
1151 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1152 		c_tbl->ct_pidx = 0;		/* parent index,      */
1153 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1154 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1155 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1156 		c_tbl->ct_va = 0;		/* base of managed range */
1157 
1158 		/* Assign it the next available MMU C table from the pool */
1159 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1160 
1161 		for (j=0; j < MMU_C_TBL_SIZE; j++)
1162 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1163 
1164 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1165 	}
1166 }
1167 
1168 /* pmap_init_pv()			INTERNAL
1169  **
1170  * Initializes the Physical to Virtual mapping system.
1171  */
1172 void
1173 pmap_init_pv(void)
1174 {
1175 	int i;
1176 
1177 	/* Initialize every PV head. */
1178 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1179 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1180 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1181 	}
1182 }
1183 
1184 /* get_a_table			INTERNAL
1185  **
1186  * Retrieve and return a level A table for use in a user map.
1187  */
1188 a_tmgr_t *
1189 get_a_table(void)
1190 {
1191 	a_tmgr_t *tbl;
1192 	pmap_t pmap;
1193 
1194 	/* Get the top A table in the pool */
1195 	tbl = TAILQ_FIRST(&a_pool);
1196 	if (tbl == NULL) {
1197 		/*
1198 		 * XXX - Instead of panicking here and in other get_x_table
1199 		 * functions, we do have the option of sleeping on the head of
1200 		 * the table pool.  Any function which updates the table pool
1201 		 * would then issue a wakeup() on the head, thus waking up any
1202 		 * processes waiting for a table.
1203 		 *
1204 		 * Actually, the place to sleep would be when some process
1205 		 * asks for a "wired" mapping that would run us short of
1206 		 * mapping resources.  This design DEPENDS on always having
1207 		 * some mapping resources in the pool for stealing, so we
1208 		 * must make sure we NEVER let the pool become empty. -gwr
1209 		 */
1210 		panic("get_a_table: out of A tables.");
1211 	}
1212 
1213 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1214 	/*
1215 	 * If the table has a non-null parent pointer then it is in use.
1216 	 * Forcibly abduct it from its parent and clear its entries.
1217 	 * No re-entrancy worries here.  This table would not be in the
1218 	 * table pool unless it was available for use.
1219 	 *
1220 	 * Note that the second argument to free_a_table() is FALSE.  This
1221 	 * indicates that the table should not be relinked into the A table
1222 	 * pool.  That is a job for the function that called us.
1223 	 */
1224 	if (tbl->at_parent) {
1225 		pmap = tbl->at_parent;
1226 		free_a_table(tbl, FALSE);
1227 		pmap->pm_a_tmgr = NULL;
1228 		pmap->pm_a_phys = kernAphys;
1229 	}
1230 	return tbl;
1231 }
1232 
1233 /* get_b_table			INTERNAL
1234  **
1235  * Return a level B table for use.
1236  */
1237 b_tmgr_t *
1238 get_b_table(void)
1239 {
1240 	b_tmgr_t *tbl;
1241 
1242 	/* See 'get_a_table' for comments. */
1243 	tbl = TAILQ_FIRST(&b_pool);
1244 	if (tbl == NULL)
1245 		panic("get_b_table: out of B tables.");
1246 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1247 	if (tbl->bt_parent) {
1248 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1249 		tbl->bt_parent->at_ecnt--;
1250 		free_b_table(tbl, FALSE);
1251 	}
1252 	return tbl;
1253 }
1254 
1255 /* get_c_table			INTERNAL
1256  **
1257  * Return a level C table for use.
1258  */
1259 c_tmgr_t *
1260 get_c_table(void)
1261 {
1262 	c_tmgr_t *tbl;
1263 
1264 	/* See 'get_a_table' for comments */
1265 	tbl = TAILQ_FIRST(&c_pool);
1266 	if (tbl == NULL)
1267 		panic("get_c_table: out of C tables.");
1268 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1269 	if (tbl->ct_parent) {
1270 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1271 		tbl->ct_parent->bt_ecnt--;
1272 		free_c_table(tbl, FALSE);
1273 	}
1274 	return tbl;
1275 }
1276 
1277 /*
1278  * The following 'free_table' and 'steal_table' functions are called to
1279  * detach tables from their current obligations (parents and children) and
1280  * prepare them for reuse in another mapping.
1281  *
1282  * Free_table is used when the calling function will handle the fate
1283  * of the parent table, such as returning it to the free pool when it has
1284  * no valid entries.  Functions that do not want to handle this should
1285  * call steal_table, in which the parent table's descriptors and entry
1286  * count are automatically modified when this table is removed.
1287  */
1288 
1289 /* free_a_table			INTERNAL
1290  **
1291  * Unmaps the given A table and all child tables from their current
1292  * mappings.  Returns the number of pages that were invalidated.
1293  * If 'relink' is true, the function will return the table to the head
1294  * of the available table pool.
1295  *
1296  * Cache note: The MC68851 will automatically flush all
1297  * descriptors derived from a given A table from its
1298  * Automatic Translation Cache (ATC) if we issue a
1299  * 'PFLUSHR' instruction with the base address of the
1300  * table.  This function should do, and does so.
1301  * Note note: We are using an MC68030 - there is no
1302  * PFLUSHR.
1303  */
1304 int
1305 free_a_table(a_tmgr_t *a_tbl, boolean_t relink)
1306 {
1307 	int i, removed_cnt;
1308 	mmu_long_dte_t	*dte;
1309 	mmu_short_dte_t *dtbl;
1310 	b_tmgr_t	*tmgr;
1311 
1312 	/*
1313 	 * Flush the ATC cache of all cached descriptors derived
1314 	 * from this table.
1315 	 * Sun3x does not use 68851's cached table feature
1316 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1317 	 */
1318 
1319 	/*
1320 	 * Remove any pending cache flushes that were designated
1321 	 * for the pmap this A table belongs to.
1322 	 * a_tbl->parent->atc_flushq[0] = 0;
1323 	 * Not implemented in sun3x.
1324 	 */
1325 
1326 	/*
1327 	 * All A tables in the system should retain a map for the
1328 	 * kernel. If the table contains any valid descriptors
1329 	 * (other than those for the kernel area), invalidate them all,
1330 	 * stopping short of the kernel's entries.
1331 	 */
1332 	removed_cnt = 0;
1333 	if (a_tbl->at_ecnt) {
1334 		dte = a_tbl->at_dtbl;
1335 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
1336 			/*
1337 			 * If a table entry points to a valid B table, free
1338 			 * it and its children.
1339 			 */
1340 			if (MMU_VALID_DT(dte[i])) {
1341 				/*
1342 				 * The following block does several things,
1343 				 * from innermost expression to the
1344 				 * outermost:
1345 				 * 1) It extracts the base (cc 1996)
1346 				 *    address of the B table pointed
1347 				 *    to in the A table entry dte[i].
1348 				 * 2) It converts this base address into
1349 				 *    the virtual address it can be
1350 				 *    accessed with. (all MMU tables point
1351 				 *    to physical addresses.)
1352 				 * 3) It finds the corresponding manager
1353 				 *    structure which manages this MMU table.
1354 				 * 4) It frees the manager structure.
1355 				 *    (This frees the MMU table and all
1356 				 *    child tables. See 'free_b_table' for
1357 				 *    details.)
1358 				 */
1359 				dtbl = mmu_ptov(dte[i].addr.raw);
1360 				tmgr = mmuB2tmgr(dtbl);
1361 				removed_cnt += free_b_table(tmgr, TRUE);
1362 				dte[i].attr.raw = MMU_DT_INVALID;
1363 			}
1364 		}
1365 		a_tbl->at_ecnt = 0;
1366 	}
1367 	if (relink) {
1368 		a_tbl->at_parent = NULL;
1369 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1370 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1371 	}
1372 	return removed_cnt;
1373 }
1374 
1375 /* free_b_table			INTERNAL
1376  **
1377  * Unmaps the given B table and all its children from their current
1378  * mappings.  Returns the number of pages that were invalidated.
1379  * (For comments, see 'free_a_table()').
1380  */
1381 int
1382 free_b_table(b_tmgr_t *b_tbl, boolean_t relink)
1383 {
1384 	int i, removed_cnt;
1385 	mmu_short_dte_t *dte;
1386 	mmu_short_pte_t	*dtbl;
1387 	c_tmgr_t	*tmgr;
1388 
1389 	removed_cnt = 0;
1390 	if (b_tbl->bt_ecnt) {
1391 		dte = b_tbl->bt_dtbl;
1392 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
1393 			if (MMU_VALID_DT(dte[i])) {
1394 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1395 				tmgr = mmuC2tmgr(dtbl);
1396 				removed_cnt += free_c_table(tmgr, TRUE);
1397 				dte[i].attr.raw = MMU_DT_INVALID;
1398 			}
1399 		}
1400 		b_tbl->bt_ecnt = 0;
1401 	}
1402 
1403 	if (relink) {
1404 		b_tbl->bt_parent = NULL;
1405 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1406 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1407 	}
1408 	return removed_cnt;
1409 }
1410 
1411 /* free_c_table			INTERNAL
1412  **
1413  * Unmaps the given C table from use and returns it to the pool for
1414  * re-use.  Returns the number of pages that were invalidated.
1415  *
1416  * This function preserves any physical page modification information
1417  * contained in the page descriptors within the C table by calling
1418  * 'pmap_remove_pte().'
1419  */
1420 int
1421 free_c_table(c_tmgr_t *c_tbl, boolean_t relink)
1422 {
1423 	int i, removed_cnt;
1424 
1425 	removed_cnt = 0;
1426 	if (c_tbl->ct_ecnt) {
1427 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
1428 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1429 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1430 				removed_cnt++;
1431 			}
1432 		}
1433 		c_tbl->ct_ecnt = 0;
1434 	}
1435 
1436 	if (relink) {
1437 		c_tbl->ct_parent = NULL;
1438 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1439 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1440 	}
1441 	return removed_cnt;
1442 }
1443 
1444 
1445 /* pmap_remove_pte			INTERNAL
1446  **
1447  * Unmap the given pte and preserve any page modification
1448  * information by transfering it to the pv head of the
1449  * physical page it maps to.  This function does not update
1450  * any reference counts because it is assumed that the calling
1451  * function will do so.
1452  */
1453 void
1454 pmap_remove_pte(mmu_short_pte_t *pte)
1455 {
1456 	u_short     pv_idx, targ_idx;
1457 	paddr_t     pa;
1458 	pv_t       *pv;
1459 
1460 	pa = MMU_PTE_PA(*pte);
1461 	if (is_managed(pa)) {
1462 		pv = pa2pv(pa);
1463 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1464 
1465 		/*
1466 		 * If the PTE being removed is the first (or only) PTE in
1467 		 * the list of PTEs currently mapped to this page, remove the
1468 		 * PTE by changing the index found on the PV head.  Otherwise
1469 		 * a linear search through the list will have to be executed
1470 		 * in order to find the PVE which points to the PTE being
1471 		 * removed, so that it may be modified to point to its new
1472 		 * neighbor.
1473 		 */
1474 
1475 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1476 		if (pv_idx == targ_idx) {
1477 			pv->pv_idx = pvebase[targ_idx].pve_next;
1478 		} else {
1479 
1480 			/*
1481 			 * Find the PV element pointing to the target
1482 			 * element.  Note: may have pv_idx==PVE_EOL
1483 			 */
1484 
1485 			for (;;) {
1486 				if (pv_idx == PVE_EOL) {
1487 					goto pv_not_found;
1488 				}
1489 				if (pvebase[pv_idx].pve_next == targ_idx)
1490 					break;
1491 				pv_idx = pvebase[pv_idx].pve_next;
1492 			}
1493 
1494 			/*
1495 			 * At this point, pv_idx is the index of the PV
1496 			 * element just before the target element in the list.
1497 			 * Unlink the target.
1498 			 */
1499 
1500 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1501 		}
1502 
1503 		/*
1504 		 * Save the mod/ref bits of the pte by simply
1505 		 * ORing the entire pte onto the pv_flags member
1506 		 * of the pv structure.
1507 		 * There is no need to use a separate bit pattern
1508 		 * for usage information on the pv head than that
1509 		 * which is used on the MMU ptes.
1510 		 */
1511 
1512 pv_not_found:
1513 		pv->pv_flags |= (u_short) pte->attr.raw;
1514 	}
1515 	pte->attr.raw = MMU_DT_INVALID;
1516 }
1517 
1518 /* pmap_stroll			INTERNAL
1519  **
1520  * Retrieve the addresses of all table managers involved in the mapping of
1521  * the given virtual address.  If the table walk completed successfully,
1522  * return TRUE.  If it was only partially successful, return FALSE.
1523  * The table walk performed by this function is important to many other
1524  * functions in this module.
1525  *
1526  * Note: This function ought to be easier to read.
1527  */
1528 boolean_t
1529 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1530     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1531     int *pte_idx)
1532 {
1533 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1534 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1535 
1536 	if (pmap == pmap_kernel())
1537 		return FALSE;
1538 
1539 	/* Does the given pmap have its own A table? */
1540 	*a_tbl = pmap->pm_a_tmgr;
1541 	if (*a_tbl == NULL)
1542 		return FALSE; /* No.  Return unknown. */
1543 	/* Does the A table have a valid B table
1544 	 * under the corresponding table entry?
1545 	 */
1546 	*a_idx = MMU_TIA(va);
1547 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1548 	if (!MMU_VALID_DT(*a_dte))
1549 		return FALSE; /* No. Return unknown. */
1550 	/* Yes. Extract B table from the A table. */
1551 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1552 	/* Does the B table have a valid C table
1553 	 * under the corresponding table entry?
1554 	 */
1555 	*b_idx = MMU_TIB(va);
1556 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1557 	if (!MMU_VALID_DT(*b_dte))
1558 		return FALSE; /* No. Return unknown. */
1559 	/* Yes. Extract C table from the B table. */
1560 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1561 	*pte_idx = MMU_TIC(va);
1562 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1563 
1564 	return	TRUE;
1565 }
1566 
1567 /* pmap_enter			INTERFACE
1568  **
1569  * Called by the kernel to map a virtual address
1570  * to a physical address in the given process map.
1571  *
1572  * Note: this function should apply an exclusive lock
1573  * on the pmap system for its duration.  (it certainly
1574  * would save my hair!!)
1575  * This function ought to be easier to read.
1576  */
1577 int
1578 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1579 {
1580 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
1581 	u_short nidx;            /* PV list index                     */
1582 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1583 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1584 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1585 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1586 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1587 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1588 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1589 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1590 	pv_t      *pv;           /* pv list head                      */
1591 	boolean_t wired;         /* is the mapping to be wired?       */
1592 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1593 
1594 	if (pmap == pmap_kernel()) {
1595 		pmap_enter_kernel(va, pa, prot);
1596 		return 0;
1597 	}
1598 
1599 	/*
1600 	 * Determine if the mapping should be wired.
1601 	 */
1602 	wired = ((flags & PMAP_WIRED) != 0);
1603 
1604 	/*
1605 	 * NOTE1:
1606 	 *
1607 	 * On November 13, 1999, someone changed the pmap_enter() API such
1608 	 * that it now accepts a 'flags' argument.  This new argument
1609 	 * contains bit-flags for the architecture-independent (UVM) system to
1610 	 * use in signalling certain mapping requirements to the architecture-
1611 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1612 	 * one of the flags within it.
1613 	 *
1614 	 * In addition to flags signaled by the architecture-independent
1615 	 * system, parts of the architecture-dependent section of the sun3x
1616 	 * kernel pass their own flags in the lower, unused bits of the
1617 	 * physical address supplied to this function.  These flags are
1618 	 * extracted and stored in the temporary variable 'mapflags'.
1619 	 *
1620 	 * Extract sun3x specific flags from the physical address.
1621 	 */
1622 	mapflags  = (pa & ~MMU_PAGE_MASK);
1623 	pa       &= MMU_PAGE_MASK;
1624 
1625 	/*
1626 	 * Determine if the physical address being mapped is on-board RAM.
1627 	 * Any other area of the address space is likely to belong to a
1628 	 * device and hence it would be disasterous to cache its contents.
1629 	 */
1630 	if ((managed = is_managed(pa)) == FALSE)
1631 		mapflags |= PMAP_NC;
1632 
1633 	/*
1634 	 * For user mappings we walk along the MMU tables of the given
1635 	 * pmap, reaching a PTE which describes the virtual page being
1636 	 * mapped or changed.  If any level of the walk ends in an invalid
1637 	 * entry, a table must be allocated and the entry must be updated
1638 	 * to point to it.
1639 	 * There is a bit of confusion as to whether this code must be
1640 	 * re-entrant.  For now we will assume it is.  To support
1641 	 * re-entrancy we must unlink tables from the table pool before
1642 	 * we assume we may use them.  Tables are re-linked into the pool
1643 	 * when we are finished with them at the end of the function.
1644 	 * But I don't feel like doing that until we have proof that this
1645 	 * needs to be re-entrant.
1646 	 * 'llevel' records which tables need to be relinked.
1647 	 */
1648 	llevel = NONE;
1649 
1650 	/*
1651 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1652 	 * A table, allocate a new one from the available pool.
1653 	 */
1654 
1655 	a_tbl = pmap->pm_a_tmgr;
1656 	if (a_tbl == NULL) {
1657 		/*
1658 		 * This pmap does not currently have an A table.  Allocate
1659 		 * a new one.
1660 		 */
1661 		a_tbl = get_a_table();
1662 		a_tbl->at_parent = pmap;
1663 
1664 		/*
1665 		 * Assign this new A table to the pmap, and calculate its
1666 		 * physical address so that loadcrp() can be used to make
1667 		 * the table active.
1668 		 */
1669 		pmap->pm_a_tmgr = a_tbl;
1670 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1671 
1672 		/*
1673 		 * If the process receiving a new A table is the current
1674 		 * process, we are responsible for setting the MMU so that
1675 		 * it becomes the current address space.  This only adds
1676 		 * new mappings, so no need to flush anything.
1677 		 */
1678 		if (pmap == current_pmap()) {
1679 			kernel_crp.rp_addr = pmap->pm_a_phys;
1680 			loadcrp(&kernel_crp);
1681 		}
1682 
1683 		if (!wired)
1684 			llevel = NEWA;
1685 	} else {
1686 		/*
1687 		 * Use the A table already allocated for this pmap.
1688 		 * Unlink it from the A table pool if necessary.
1689 		 */
1690 		if (wired && !a_tbl->at_wcnt)
1691 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1692 	}
1693 
1694 	/*
1695 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1696 	 * allocate one.
1697 	 */
1698 
1699 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1700 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1701 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1702 		/* The descriptor is valid.  Use the B table it points to. */
1703 		/*************************************
1704 		 *               a_idx               *
1705 		 *                 v                 *
1706 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1707 		 *          | | | | | | | | | | | |  *
1708 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1709 		 *                 |                 *
1710 		 *                 \- b_tbl -> +-+-  *
1711 		 *                             | |   *
1712 		 *                             +-+-  *
1713 		 *************************************/
1714 		b_dte = mmu_ptov(a_dte->addr.raw);
1715 		b_tbl = mmuB2tmgr(b_dte);
1716 
1717 		/*
1718 		 * If the requested mapping must be wired, but this table
1719 		 * being used to map it is not, the table must be removed
1720 		 * from the available pool and its wired entry count
1721 		 * incremented.
1722 		 */
1723 		if (wired && !b_tbl->bt_wcnt) {
1724 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1725 			a_tbl->at_wcnt++;
1726 		}
1727 	} else {
1728 		/* The descriptor is invalid.  Allocate a new B table. */
1729 		b_tbl = get_b_table();
1730 
1731 		/* Point the parent A table descriptor to this new B table. */
1732 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1733 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1734 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1735 
1736 		/* Create the necessary back references to the parent table */
1737 		b_tbl->bt_parent = a_tbl;
1738 		b_tbl->bt_pidx = a_idx;
1739 
1740 		/*
1741 		 * If this table is to be wired, make sure the parent A table
1742 		 * wired count is updated to reflect that it has another wired
1743 		 * entry.
1744 		 */
1745 		if (wired)
1746 			a_tbl->at_wcnt++;
1747 		else if (llevel == NONE)
1748 			llevel = NEWB;
1749 	}
1750 
1751 	/*
1752 	 * Step 3 - Walk into the C table, if there is no valid C table,
1753 	 * allocate one.
1754 	 */
1755 
1756 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1757 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1758 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1759 		/* The descriptor is valid.  Use the C table it points to. */
1760 		/**************************************
1761 		 *               c_idx                *
1762 		 * |                v                 *
1763 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1764 		 *             | | | | | | | | | | |  *
1765 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1766 		 *                  |                 *
1767 		 *                  \- c_tbl -> +-+-- *
1768 		 *                              | | | *
1769 		 *                              +-+-- *
1770 		 **************************************/
1771 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1772 		c_tbl = mmuC2tmgr(c_pte);
1773 
1774 		/* If mapping is wired and table is not */
1775 		if (wired && !c_tbl->ct_wcnt) {
1776 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1777 			b_tbl->bt_wcnt++;
1778 		}
1779 	} else {
1780 		/* The descriptor is invalid.  Allocate a new C table. */
1781 		c_tbl = get_c_table();
1782 
1783 		/* Point the parent B table descriptor to this new C table. */
1784 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1785 		b_dte->attr.raw |= MMU_DT_SHORT;
1786 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1787 
1788 		/* Create the necessary back references to the parent table */
1789 		c_tbl->ct_parent = b_tbl;
1790 		c_tbl->ct_pidx = b_idx;
1791 		/*
1792 		 * Store the pmap and base virtual managed address for faster
1793 		 * retrieval in the PV functions.
1794 		 */
1795 		c_tbl->ct_pmap = pmap;
1796 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1797 
1798 		/*
1799 		 * If this table is to be wired, make sure the parent B table
1800 		 * wired count is updated to reflect that it has another wired
1801 		 * entry.
1802 		 */
1803 		if (wired)
1804 			b_tbl->bt_wcnt++;
1805 		else if (llevel == NONE)
1806 			llevel = NEWC;
1807 	}
1808 
1809 	/*
1810 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1811 	 * slot of the C table, describing the PA to which the VA is mapped.
1812 	 */
1813 
1814 	pte_idx = MMU_TIC(va);
1815 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1816 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1817 		/*
1818 		 * The PTE is currently valid.  This particular call
1819 		 * is just a synonym for one (or more) of the following
1820 		 * operations:
1821 		 *     change protection of a page
1822 		 *     change wiring status of a page
1823 		 *     remove the mapping of a page
1824 		 *
1825 		 * XXX - Semi critical: This code should unwire the PTE
1826 		 * and, possibly, associated parent tables if this is a
1827 		 * change wiring operation.  Currently it does not.
1828 		 *
1829 		 * This may be ok if pmap_unwire() is the only
1830 		 * interface used to UNWIRE a page.
1831 		 */
1832 
1833 		/* First check if this is a wiring operation. */
1834 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1835 			/*
1836 			 * The PTE is already wired.  To prevent it from being
1837 			 * counted as a new wiring operation, reset the 'wired'
1838 			 * variable.
1839 			 */
1840 			wired = FALSE;
1841 		}
1842 
1843 		/* Is the new address the same as the old? */
1844 		if (MMU_PTE_PA(*c_pte) == pa) {
1845 			/*
1846 			 * Yes, mark that it does not need to be reinserted
1847 			 * into the PV list.
1848 			 */
1849 			insert = FALSE;
1850 
1851 			/*
1852 			 * Clear all but the modified, referenced and wired
1853 			 * bits on the PTE.
1854 			 */
1855 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1856 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1857 		} else {
1858 			/* No, remove the old entry */
1859 			pmap_remove_pte(c_pte);
1860 			insert = TRUE;
1861 		}
1862 
1863 		/*
1864 		 * TLB flush is only necessary if modifying current map.
1865 		 * However, in pmap_enter(), the pmap almost always IS
1866 		 * the current pmap, so don't even bother to check.
1867 		 */
1868 		TBIS(va);
1869 	} else {
1870 		/*
1871 		 * The PTE is invalid.  Increment the valid entry count in
1872 		 * the C table manager to reflect the addition of a new entry.
1873 		 */
1874 		c_tbl->ct_ecnt++;
1875 
1876 		/* XXX - temporarily make sure the PTE is cleared. */
1877 		c_pte->attr.raw = 0;
1878 
1879 		/* It will also need to be inserted into the PV list. */
1880 		insert = TRUE;
1881 	}
1882 
1883 	/*
1884 	 * If page is changing from unwired to wired status, set an unused bit
1885 	 * within the PTE to indicate that it is wired.  Also increment the
1886 	 * wired entry count in the C table manager.
1887 	 */
1888 	if (wired) {
1889 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1890 		c_tbl->ct_wcnt++;
1891 	}
1892 
1893 	/*
1894 	 * Map the page, being careful to preserve modify/reference/wired
1895 	 * bits.  At this point it is assumed that the PTE either has no bits
1896 	 * set, or if there are set bits, they are only modified, reference or
1897 	 * wired bits.  If not, the following statement will cause erratic
1898 	 * behavior.
1899 	 */
1900 #ifdef	PMAP_DEBUG
1901 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1902 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1903 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1904 		Debugger();
1905 	}
1906 #endif
1907 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1908 
1909 	/*
1910 	 * If the mapping should be read-only, set the write protect
1911 	 * bit in the PTE.
1912 	 */
1913 	if (!(prot & VM_PROT_WRITE))
1914 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1915 
1916 	/*
1917 	 * Mark the PTE as used and/or modified as specified by the flags arg.
1918 	 */
1919 	if (flags & VM_PROT_ALL) {
1920 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
1921 		if (flags & VM_PROT_WRITE) {
1922 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
1923 		}
1924 	}
1925 
1926 	/*
1927 	 * If the mapping should be cache inhibited (indicated by the flag
1928 	 * bits found on the lower order of the physical address.)
1929 	 * mark the PTE as a cache inhibited page.
1930 	 */
1931 	if (mapflags & PMAP_NC)
1932 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1933 
1934 	/*
1935 	 * If the physical address being mapped is managed by the PV
1936 	 * system then link the pte into the list of pages mapped to that
1937 	 * address.
1938 	 */
1939 	if (insert && managed) {
1940 		pv = pa2pv(pa);
1941 		nidx = pteidx(c_pte);
1942 
1943 		pvebase[nidx].pve_next = pv->pv_idx;
1944 		pv->pv_idx = nidx;
1945 	}
1946 
1947 	/* Move any allocated tables back into the active pool. */
1948 
1949 	switch (llevel) {
1950 		case NEWA:
1951 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1952 			/* FALLTHROUGH */
1953 		case NEWB:
1954 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1955 			/* FALLTHROUGH */
1956 		case NEWC:
1957 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1958 			/* FALLTHROUGH */
1959 		default:
1960 			break;
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 /* pmap_enter_kernel			INTERNAL
1967  **
1968  * Map the given virtual address to the given physical address within the
1969  * kernel address space.  This function exists because the kernel map does
1970  * not do dynamic table allocation.  It consists of a contiguous array of ptes
1971  * and can be edited directly without the need to walk through any tables.
1972  *
1973  * XXX: "Danger, Will Robinson!"
1974  * Note that the kernel should never take a fault on any page
1975  * between [ KERNBASE .. virtual_avail ] and this is checked in
1976  * trap.c for kernel-mode MMU faults.  This means that mappings
1977  * created in that range must be implicily wired. -gwr
1978  */
1979 void
1980 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
1981 {
1982 	boolean_t       was_valid, insert;
1983 	u_short         pte_idx;
1984 	int             flags;
1985 	mmu_short_pte_t *pte;
1986 	pv_t            *pv;
1987 	paddr_t     old_pa;
1988 
1989 	flags = (pa & ~MMU_PAGE_MASK);
1990 	pa &= MMU_PAGE_MASK;
1991 
1992 	if (is_managed(pa))
1993 		insert = TRUE;
1994 	else
1995 		insert = FALSE;
1996 
1997 	/*
1998 	 * Calculate the index of the PTE being modified.
1999 	 */
2000 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
2001 
2002 	/* This array is traditionally named "Sysmap" */
2003 	pte = &kernCbase[pte_idx];
2004 
2005 	if (MMU_VALID_DT(*pte)) {
2006 		was_valid = TRUE;
2007 		/*
2008 		 * If the PTE already maps a different
2009 		 * physical address, umap and pv_unlink.
2010 		 */
2011 		old_pa = MMU_PTE_PA(*pte);
2012 		if (pa != old_pa)
2013 			pmap_remove_pte(pte);
2014 		else {
2015 		    /*
2016 		     * Old PA and new PA are the same.  No need to
2017 		     * relink the mapping within the PV list.
2018 		     */
2019 		     insert = FALSE;
2020 
2021 		    /*
2022 		     * Save any mod/ref bits on the PTE.
2023 		     */
2024 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2025 		}
2026 	} else {
2027 		pte->attr.raw = MMU_DT_INVALID;
2028 		was_valid = FALSE;
2029 	}
2030 
2031 	/*
2032 	 * Map the page.  Being careful to preserve modified/referenced bits
2033 	 * on the PTE.
2034 	 */
2035 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2036 
2037 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2038 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2039 	if (flags & PMAP_NC)
2040 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2041 	if (was_valid)
2042 		TBIS(va);
2043 
2044 	/*
2045 	 * Insert the PTE into the PV system, if need be.
2046 	 */
2047 	if (insert) {
2048 		pv = pa2pv(pa);
2049 		pvebase[pte_idx].pve_next = pv->pv_idx;
2050 		pv->pv_idx = pte_idx;
2051 	}
2052 }
2053 
2054 void
2055 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2056 {
2057 	mmu_short_pte_t	*pte;
2058 
2059 	/* This array is traditionally named "Sysmap" */
2060 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2061 
2062 	KASSERT(!MMU_VALID_DT(*pte));
2063 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2064 	if (!(prot & VM_PROT_WRITE))
2065 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2066 }
2067 
2068 void
2069 pmap_kremove(vaddr_t va, vsize_t len)
2070 {
2071 	int idx, eidx;
2072 
2073 #ifdef	PMAP_DEBUG
2074 	if ((sva & PGOFSET) || (eva & PGOFSET))
2075 		panic("pmap_kremove: alignment");
2076 #endif
2077 
2078 	idx  = m68k_btop(va - KERNBASE);
2079 	eidx = m68k_btop(va + len - KERNBASE);
2080 
2081 	while (idx < eidx) {
2082 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2083 		TBIS(va);
2084 		va += PAGE_SIZE;
2085 	}
2086 }
2087 
2088 /* pmap_map			INTERNAL
2089  **
2090  * Map a contiguous range of physical memory into a contiguous range of
2091  * the kernel virtual address space.
2092  *
2093  * Used for device mappings and early mapping of the kernel text/data/bss.
2094  * Returns the first virtual address beyond the end of the range.
2095  */
2096 vaddr_t
2097 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2098 {
2099 	int sz;
2100 
2101 	sz = endpa - pa;
2102 	do {
2103 		pmap_enter_kernel(va, pa, prot);
2104 		va += PAGE_SIZE;
2105 		pa += PAGE_SIZE;
2106 		sz -= PAGE_SIZE;
2107 	} while (sz > 0);
2108 	pmap_update(pmap_kernel());
2109 	return(va);
2110 }
2111 
2112 /* pmap_protect			INTERFACE
2113  **
2114  * Apply the given protection to the given virtual address range within
2115  * the given map.
2116  *
2117  * It is ok for the protection applied to be stronger than what is
2118  * specified.  We use this to our advantage when the given map has no
2119  * mapping for the virtual address.  By skipping a page when this
2120  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2121  * and therefore do not need to map the page just to apply a protection
2122  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2123  *
2124  * XXX - This function could be speeded up by using pmap_stroll() for inital
2125  *       setup, and then manual scrolling in the for() loop.
2126  */
2127 void
2128 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2129 {
2130 	boolean_t iscurpmap;
2131 	int a_idx, b_idx, c_idx;
2132 	a_tmgr_t *a_tbl;
2133 	b_tmgr_t *b_tbl;
2134 	c_tmgr_t *c_tbl;
2135 	mmu_short_pte_t *pte;
2136 
2137 	if (pmap == pmap_kernel()) {
2138 		pmap_protect_kernel(startva, endva, prot);
2139 		return;
2140 	}
2141 
2142 	/*
2143 	 * In this particular pmap implementation, there are only three
2144 	 * types of memory protection: 'all' (read/write/execute),
2145 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2146 	 * It is not possible for us to treat 'executable' as a separate
2147 	 * protection type.  Therefore, protection requests that seek to
2148 	 * remove execute permission while retaining read or write, and those
2149 	 * that make little sense (write-only for example) are ignored.
2150 	 */
2151 	switch (prot) {
2152 		case VM_PROT_NONE:
2153 			/*
2154 			 * A request to apply the protection code of
2155 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2156 			 */
2157 			pmap_remove(pmap, startva, endva);
2158 			return;
2159 		case	VM_PROT_EXECUTE:
2160 		case	VM_PROT_READ:
2161 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2162 			/* continue */
2163 			break;
2164 		case	VM_PROT_WRITE:
2165 		case	VM_PROT_WRITE|VM_PROT_READ:
2166 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2167 		case	VM_PROT_ALL:
2168 			/* None of these should happen in a sane system. */
2169 			return;
2170 	}
2171 
2172 	/*
2173 	 * If the pmap has no A table, it has no mappings and therefore
2174 	 * there is nothing to protect.
2175 	 */
2176 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2177 		return;
2178 
2179 	a_idx = MMU_TIA(startva);
2180 	b_idx = MMU_TIB(startva);
2181 	c_idx = MMU_TIC(startva);
2182 	b_tbl = NULL;
2183 	c_tbl = NULL;
2184 
2185 	iscurpmap = (pmap == current_pmap());
2186 	while (startva < endva) {
2187 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2188 		  if (b_tbl == NULL) {
2189 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2190 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2191 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2192 		  }
2193 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2194 		    if (c_tbl == NULL) {
2195 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2196 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2197 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2198 		    }
2199 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2200 		      pte = &c_tbl->ct_dtbl[c_idx];
2201 		      /* make the mapping read-only */
2202 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2203 		      /*
2204 		       * If we just modified the current address space,
2205 		       * flush any translations for the modified page from
2206 		       * the translation cache and any data from it in the
2207 		       * data cache.
2208 		       */
2209 		      if (iscurpmap)
2210 		          TBIS(startva);
2211 		    }
2212 		    startva += PAGE_SIZE;
2213 
2214 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2215 		      c_tbl = NULL;
2216 		      c_idx = 0;
2217 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2218 		        b_tbl = NULL;
2219 		        b_idx = 0;
2220 		      }
2221 		    }
2222 		  } else { /* C table wasn't valid */
2223 		    c_tbl = NULL;
2224 		    c_idx = 0;
2225 		    startva += MMU_TIB_RANGE;
2226 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2227 		      b_tbl = NULL;
2228 		      b_idx = 0;
2229 		    }
2230 		  } /* C table */
2231 		} else { /* B table wasn't valid */
2232 		  b_tbl = NULL;
2233 		  b_idx = 0;
2234 		  startva += MMU_TIA_RANGE;
2235 		  a_idx++;
2236 		} /* B table */
2237 	}
2238 }
2239 
2240 /* pmap_protect_kernel			INTERNAL
2241  **
2242  * Apply the given protection code to a kernel address range.
2243  */
2244 void
2245 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2246 {
2247 	vaddr_t va;
2248 	mmu_short_pte_t *pte;
2249 
2250 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2251 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2252 		if (MMU_VALID_DT(*pte)) {
2253 		    switch (prot) {
2254 		        case VM_PROT_ALL:
2255 		            break;
2256 		        case VM_PROT_EXECUTE:
2257 		        case VM_PROT_READ:
2258 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2259 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2260 		            break;
2261 		        case VM_PROT_NONE:
2262 		            /* this is an alias for 'pmap_remove_kernel' */
2263 		            pmap_remove_pte(pte);
2264 		            break;
2265 		        default:
2266 		            break;
2267 		    }
2268 		    /*
2269 		     * since this is the kernel, immediately flush any cached
2270 		     * descriptors for this address.
2271 		     */
2272 		    TBIS(va);
2273 		}
2274 	}
2275 }
2276 
2277 /* pmap_unwire				INTERFACE
2278  **
2279  * Clear the wired attribute of the specified page.
2280  *
2281  * This function is called from vm_fault.c to unwire
2282  * a mapping.
2283  */
2284 void
2285 pmap_unwire(pmap_t pmap, vaddr_t va)
2286 {
2287 	int a_idx, b_idx, c_idx;
2288 	a_tmgr_t *a_tbl;
2289 	b_tmgr_t *b_tbl;
2290 	c_tmgr_t *c_tbl;
2291 	mmu_short_pte_t *pte;
2292 
2293 	/* Kernel mappings always remain wired. */
2294 	if (pmap == pmap_kernel())
2295 		return;
2296 
2297 	/*
2298 	 * Walk through the tables.  If the walk terminates without
2299 	 * a valid PTE then the address wasn't wired in the first place.
2300 	 * Return immediately.
2301 	 */
2302 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2303 		&b_idx, &c_idx) == FALSE)
2304 		return;
2305 
2306 
2307 	/* Is the PTE wired?  If not, return. */
2308 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2309 		return;
2310 
2311 	/* Remove the wiring bit. */
2312 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2313 
2314 	/*
2315 	 * Decrement the wired entry count in the C table.
2316 	 * If it reaches zero the following things happen:
2317 	 * 1. The table no longer has any wired entries and is considered
2318 	 *    unwired.
2319 	 * 2. It is placed on the available queue.
2320 	 * 3. The parent table's wired entry count is decremented.
2321 	 * 4. If it reaches zero, this process repeats at step 1 and
2322 	 *    stops at after reaching the A table.
2323 	 */
2324 	if (--c_tbl->ct_wcnt == 0) {
2325 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2326 		if (--b_tbl->bt_wcnt == 0) {
2327 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2328 			if (--a_tbl->at_wcnt == 0) {
2329 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2330 			}
2331 		}
2332 	}
2333 }
2334 
2335 /* pmap_copy				INTERFACE
2336  **
2337  * Copy the mappings of a range of addresses in one pmap, into
2338  * the destination address of another.
2339  *
2340  * This routine is advisory.  Should we one day decide that MMU tables
2341  * may be shared by more than one pmap, this function should be used to
2342  * link them together.  Until that day however, we do nothing.
2343  */
2344 void
2345 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2346 {
2347 	/* not implemented. */
2348 }
2349 
2350 /* pmap_copy_page			INTERFACE
2351  **
2352  * Copy the contents of one physical page into another.
2353  *
2354  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2355  * to map the two specified physical pages into the kernel address space.
2356  *
2357  * Note: We could use the transparent translation registers to make the
2358  * mappings.  If we do so, be sure to disable interrupts before using them.
2359  */
2360 void
2361 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2362 {
2363 	vaddr_t srcva, dstva;
2364 	int s;
2365 
2366 	srcva = tmp_vpages[0];
2367 	dstva = tmp_vpages[1];
2368 
2369 	s = splvm();
2370 #ifdef DIAGNOSTIC
2371 	if (tmp_vpages_inuse++)
2372 		panic("pmap_copy_page: temporary vpages are in use.");
2373 #endif
2374 
2375 	/* Map pages as non-cacheable to avoid cache polution? */
2376 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2377 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2378 
2379 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2380 	copypage((char *) srcva, (char *) dstva);
2381 
2382 	pmap_kremove(srcva, PAGE_SIZE);
2383 	pmap_kremove(dstva, PAGE_SIZE);
2384 
2385 #ifdef DIAGNOSTIC
2386 	--tmp_vpages_inuse;
2387 #endif
2388 	splx(s);
2389 }
2390 
2391 /* pmap_zero_page			INTERFACE
2392  **
2393  * Zero the contents of the specified physical page.
2394  *
2395  * Uses one of the virtual pages allocated in pmap_boostrap()
2396  * to map the specified page into the kernel address space.
2397  */
2398 void
2399 pmap_zero_page(paddr_t dstpa)
2400 {
2401 	vaddr_t dstva;
2402 	int s;
2403 
2404 	dstva = tmp_vpages[1];
2405 	s = splvm();
2406 #ifdef DIAGNOSTIC
2407 	if (tmp_vpages_inuse++)
2408 		panic("pmap_zero_page: temporary vpages are in use.");
2409 #endif
2410 
2411 	/* The comments in pmap_copy_page() above apply here also. */
2412 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2413 
2414 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2415 	zeropage((char *) dstva);
2416 
2417 	pmap_kremove(dstva, PAGE_SIZE);
2418 #ifdef DIAGNOSTIC
2419 	--tmp_vpages_inuse;
2420 #endif
2421 	splx(s);
2422 }
2423 
2424 /* pmap_collect			INTERFACE
2425  **
2426  * Called from the VM system when we are about to swap out
2427  * the process using this pmap.  This should give up any
2428  * resources held here, including all its MMU tables.
2429  */
2430 void
2431 pmap_collect(pmap_t pmap)
2432 {
2433 	/* XXX - todo... */
2434 }
2435 
2436 /* pmap_create			INTERFACE
2437  **
2438  * Create and return a pmap structure.
2439  */
2440 pmap_t
2441 pmap_create(void)
2442 {
2443 	pmap_t	pmap;
2444 
2445 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2446 	pmap_pinit(pmap);
2447 	return pmap;
2448 }
2449 
2450 /* pmap_pinit			INTERNAL
2451  **
2452  * Initialize a pmap structure.
2453  */
2454 void
2455 pmap_pinit(pmap_t pmap)
2456 {
2457 	memset(pmap, 0, sizeof(struct pmap));
2458 	pmap->pm_a_tmgr = NULL;
2459 	pmap->pm_a_phys = kernAphys;
2460 	pmap->pm_refcount = 1;
2461 	simple_lock_init(&pmap->pm_lock);
2462 }
2463 
2464 /* pmap_release				INTERFACE
2465  **
2466  * Release any resources held by the given pmap.
2467  *
2468  * This is the reverse analog to pmap_pinit.  It does not
2469  * necessarily mean for the pmap structure to be deallocated,
2470  * as in pmap_destroy.
2471  */
2472 void
2473 pmap_release(pmap_t pmap)
2474 {
2475 	/*
2476 	 * As long as the pmap contains no mappings,
2477 	 * which always should be the case whenever
2478 	 * this function is called, there really should
2479 	 * be nothing to do.
2480 	 */
2481 #ifdef	PMAP_DEBUG
2482 	if (pmap == pmap_kernel())
2483 		panic("pmap_release: kernel pmap");
2484 #endif
2485 	/*
2486 	 * XXX - If this pmap has an A table, give it back.
2487 	 * The pmap SHOULD be empty by now, and pmap_remove
2488 	 * should have already given back the A table...
2489 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2490 	 * at this point, which means some mapping was not
2491 	 * removed when it should have been. -gwr
2492 	 */
2493 	if (pmap->pm_a_tmgr != NULL) {
2494 		/* First make sure we are not using it! */
2495 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2496 			kernel_crp.rp_addr = kernAphys;
2497 			loadcrp(&kernel_crp);
2498 		}
2499 #ifdef	PMAP_DEBUG /* XXX - todo! */
2500 		/* XXX - Now complain... */
2501 		printf("pmap_release: still have table\n");
2502 		Debugger();
2503 #endif
2504 		free_a_table(pmap->pm_a_tmgr, TRUE);
2505 		pmap->pm_a_tmgr = NULL;
2506 		pmap->pm_a_phys = kernAphys;
2507 	}
2508 }
2509 
2510 /* pmap_reference			INTERFACE
2511  **
2512  * Increment the reference count of a pmap.
2513  */
2514 void
2515 pmap_reference(pmap_t pmap)
2516 {
2517 	pmap_lock(pmap);
2518 	pmap_add_ref(pmap);
2519 	pmap_unlock(pmap);
2520 }
2521 
2522 /* pmap_dereference			INTERNAL
2523  **
2524  * Decrease the reference count on the given pmap
2525  * by one and return the current count.
2526  */
2527 int
2528 pmap_dereference(pmap_t pmap)
2529 {
2530 	int rtn;
2531 
2532 	pmap_lock(pmap);
2533 	rtn = pmap_del_ref(pmap);
2534 	pmap_unlock(pmap);
2535 
2536 	return rtn;
2537 }
2538 
2539 /* pmap_destroy			INTERFACE
2540  **
2541  * Decrement a pmap's reference count and delete
2542  * the pmap if it becomes zero.  Will be called
2543  * only after all mappings have been removed.
2544  */
2545 void
2546 pmap_destroy(pmap_t pmap)
2547 {
2548 	if (pmap_dereference(pmap) == 0) {
2549 		pmap_release(pmap);
2550 		pool_put(&pmap_pmap_pool, pmap);
2551 	}
2552 }
2553 
2554 /* pmap_is_referenced			INTERFACE
2555  **
2556  * Determine if the given physical page has been
2557  * referenced (read from [or written to.])
2558  */
2559 boolean_t
2560 pmap_is_referenced(struct vm_page *pg)
2561 {
2562 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2563 	pv_t      *pv;
2564 	int       idx;
2565 
2566 	/*
2567 	 * Check the flags on the pv head.  If they are set,
2568 	 * return immediately.  Otherwise a search must be done.
2569 	 */
2570 
2571 	pv = pa2pv(pa);
2572 	if (pv->pv_flags & PV_FLAGS_USED)
2573 		return TRUE;
2574 
2575 	/*
2576 	 * Search through all pv elements pointing
2577 	 * to this page and query their reference bits
2578 	 */
2579 
2580 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2581 		if (MMU_PTE_USED(kernCbase[idx])) {
2582 			return TRUE;
2583 		}
2584 	}
2585 	return FALSE;
2586 }
2587 
2588 /* pmap_is_modified			INTERFACE
2589  **
2590  * Determine if the given physical page has been
2591  * modified (written to.)
2592  */
2593 boolean_t
2594 pmap_is_modified(struct vm_page *pg)
2595 {
2596 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2597 	pv_t      *pv;
2598 	int       idx;
2599 
2600 	/* see comments in pmap_is_referenced() */
2601 	pv = pa2pv(pa);
2602 	if (pv->pv_flags & PV_FLAGS_MDFY)
2603 		return TRUE;
2604 
2605 	for (idx = pv->pv_idx;
2606 		 idx != PVE_EOL;
2607 		 idx = pvebase[idx].pve_next) {
2608 
2609 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2610 			return TRUE;
2611 		}
2612 	}
2613 
2614 	return FALSE;
2615 }
2616 
2617 /* pmap_page_protect			INTERFACE
2618  **
2619  * Applies the given protection to all mappings to the given
2620  * physical page.
2621  */
2622 void
2623 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2624 {
2625 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2626 	pv_t      *pv;
2627 	int       idx;
2628 	vaddr_t va;
2629 	struct mmu_short_pte_struct *pte;
2630 	c_tmgr_t  *c_tbl;
2631 	pmap_t    pmap, curpmap;
2632 
2633 	curpmap = current_pmap();
2634 	pv = pa2pv(pa);
2635 
2636 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2637 		pte = &kernCbase[idx];
2638 		switch (prot) {
2639 			case VM_PROT_ALL:
2640 				/* do nothing */
2641 				break;
2642 			case VM_PROT_EXECUTE:
2643 			case VM_PROT_READ:
2644 			case VM_PROT_READ|VM_PROT_EXECUTE:
2645 				/*
2646 				 * Determine the virtual address mapped by
2647 				 * the PTE and flush ATC entries if necessary.
2648 				 */
2649 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2650 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2651 				if (pmap == curpmap || pmap == pmap_kernel())
2652 					TBIS(va);
2653 				break;
2654 			case VM_PROT_NONE:
2655 				/* Save the mod/ref bits. */
2656 				pv->pv_flags |= pte->attr.raw;
2657 				/* Invalidate the PTE. */
2658 				pte->attr.raw = MMU_DT_INVALID;
2659 
2660 				/*
2661 				 * Update table counts.  And flush ATC entries
2662 				 * if necessary.
2663 				 */
2664 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2665 
2666 				/*
2667 				 * If the PTE belongs to the kernel map,
2668 				 * be sure to flush the page it maps.
2669 				 */
2670 				if (pmap == pmap_kernel()) {
2671 					TBIS(va);
2672 				} else {
2673 					/*
2674 					 * The PTE belongs to a user map.
2675 					 * update the entry count in the C
2676 					 * table to which it belongs and flush
2677 					 * the ATC if the mapping belongs to
2678 					 * the current pmap.
2679 					 */
2680 					c_tbl->ct_ecnt--;
2681 					if (pmap == curpmap)
2682 						TBIS(va);
2683 				}
2684 				break;
2685 			default:
2686 				break;
2687 		}
2688 	}
2689 
2690 	/*
2691 	 * If the protection code indicates that all mappings to the page
2692 	 * be removed, truncate the PV list to zero entries.
2693 	 */
2694 	if (prot == VM_PROT_NONE)
2695 		pv->pv_idx = PVE_EOL;
2696 }
2697 
2698 /* pmap_get_pteinfo		INTERNAL
2699  **
2700  * Called internally to find the pmap and virtual address within that
2701  * map to which the pte at the given index maps.  Also includes the PTE's C
2702  * table manager.
2703  *
2704  * Returns the pmap in the argument provided, and the virtual address
2705  * by return value.
2706  */
2707 vaddr_t
2708 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2709 {
2710 	vaddr_t     va = 0;
2711 
2712 	/*
2713 	 * Determine if the PTE is a kernel PTE or a user PTE.
2714 	 */
2715 	if (idx >= NUM_KERN_PTES) {
2716 		/*
2717 		 * The PTE belongs to a user mapping.
2718 		 */
2719 		/* XXX: Would like an inline for this to validate idx... */
2720 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2721 
2722 		*pmap = (*tbl)->ct_pmap;
2723 		/*
2724 		 * To find the va to which the PTE maps, we first take
2725 		 * the table's base virtual address mapping which is stored
2726 		 * in ct_va.  We then increment this address by a page for
2727 		 * every slot skipped until we reach the PTE.
2728 		 */
2729 		va =    (*tbl)->ct_va;
2730 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2731 	} else {
2732 		/*
2733 		 * The PTE belongs to the kernel map.
2734 		 */
2735 		*pmap = pmap_kernel();
2736 
2737 		va = m68k_ptob(idx);
2738 		va += KERNBASE;
2739 	}
2740 
2741 	return va;
2742 }
2743 
2744 /* pmap_clear_modify			INTERFACE
2745  **
2746  * Clear the modification bit on the page at the specified
2747  * physical address.
2748  *
2749  */
2750 boolean_t
2751 pmap_clear_modify(struct vm_page *pg)
2752 {
2753 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2754 	boolean_t rv;
2755 
2756 	rv = pmap_is_modified(pg);
2757 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2758 	return rv;
2759 }
2760 
2761 /* pmap_clear_reference			INTERFACE
2762  **
2763  * Clear the referenced bit on the page at the specified
2764  * physical address.
2765  */
2766 boolean_t
2767 pmap_clear_reference(struct vm_page *pg)
2768 {
2769 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2770 	boolean_t rv;
2771 
2772 	rv = pmap_is_referenced(pg);
2773 	pmap_clear_pv(pa, PV_FLAGS_USED);
2774 	return rv;
2775 }
2776 
2777 /* pmap_clear_pv			INTERNAL
2778  **
2779  * Clears the specified flag from the specified physical address.
2780  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2781  *
2782  * Flag is one of:
2783  *   PV_FLAGS_MDFY - Page modified bit.
2784  *   PV_FLAGS_USED - Page used (referenced) bit.
2785  *
2786  * This routine must not only clear the flag on the pv list
2787  * head.  It must also clear the bit on every pte in the pv
2788  * list associated with the address.
2789  */
2790 void
2791 pmap_clear_pv(paddr_t pa, int flag)
2792 {
2793 	pv_t      *pv;
2794 	int       idx;
2795 	vaddr_t   va;
2796 	pmap_t          pmap;
2797 	mmu_short_pte_t *pte;
2798 	c_tmgr_t        *c_tbl;
2799 
2800 	pv = pa2pv(pa);
2801 	pv->pv_flags &= ~(flag);
2802 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2803 		pte = &kernCbase[idx];
2804 		pte->attr.raw &= ~(flag);
2805 
2806 		/*
2807 		 * The MC68030 MMU will not set the modified or
2808 		 * referenced bits on any MMU tables for which it has
2809 		 * a cached descriptor with its modify bit set.  To insure
2810 		 * that it will modify these bits on the PTE during the next
2811 		 * time it is written to or read from, we must flush it from
2812 		 * the ATC.
2813 		 *
2814 		 * Ordinarily it is only necessary to flush the descriptor
2815 		 * if it is used in the current address space.  But since I
2816 		 * am not sure that there will always be a notion of
2817 		 * 'the current address space' when this function is called,
2818 		 * I will skip the test and always flush the address.  It
2819 		 * does no harm.
2820 		 */
2821 
2822 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2823 		TBIS(va);
2824 	}
2825 }
2826 
2827 /* pmap_extract			INTERFACE
2828  **
2829  * Return the physical address mapped by the virtual address
2830  * in the specified pmap.
2831  *
2832  * Note: this function should also apply an exclusive lock
2833  * on the pmap system during its duration.
2834  */
2835 boolean_t
2836 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2837 {
2838 	int a_idx, b_idx, pte_idx;
2839 	a_tmgr_t	*a_tbl;
2840 	b_tmgr_t	*b_tbl;
2841 	c_tmgr_t	*c_tbl;
2842 	mmu_short_pte_t	*c_pte;
2843 
2844 	if (pmap == pmap_kernel())
2845 		return pmap_extract_kernel(va, pap);
2846 
2847 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2848 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2849 		return FALSE;
2850 
2851 	if (!MMU_VALID_DT(*c_pte))
2852 		return FALSE;
2853 
2854 	if (pap != NULL)
2855 		*pap = MMU_PTE_PA(*c_pte);
2856 	return (TRUE);
2857 }
2858 
2859 /* pmap_extract_kernel		INTERNAL
2860  **
2861  * Extract a translation from the kernel address space.
2862  */
2863 boolean_t
2864 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2865 {
2866 	mmu_short_pte_t *pte;
2867 
2868 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2869 	if (!MMU_VALID_DT(*pte))
2870 		return (FALSE);
2871 	if (pap != NULL)
2872 		*pap = MMU_PTE_PA(*pte);
2873 	return (TRUE);
2874 }
2875 
2876 /* pmap_remove_kernel		INTERNAL
2877  **
2878  * Remove the mapping of a range of virtual addresses from the kernel map.
2879  * The arguments are already page-aligned.
2880  */
2881 void
2882 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2883 {
2884 	int idx, eidx;
2885 
2886 #ifdef	PMAP_DEBUG
2887 	if ((sva & PGOFSET) || (eva & PGOFSET))
2888 		panic("pmap_remove_kernel: alignment");
2889 #endif
2890 
2891 	idx  = m68k_btop(sva - KERNBASE);
2892 	eidx = m68k_btop(eva - KERNBASE);
2893 
2894 	while (idx < eidx) {
2895 		pmap_remove_pte(&kernCbase[idx++]);
2896 		TBIS(sva);
2897 		sva += PAGE_SIZE;
2898 	}
2899 }
2900 
2901 /* pmap_remove			INTERFACE
2902  **
2903  * Remove the mapping of a range of virtual addresses from the given pmap.
2904  *
2905  * If the range contains any wired entries, this function will probably create
2906  * disaster.
2907  */
2908 void
2909 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
2910 {
2911 
2912 	if (pmap == pmap_kernel()) {
2913 		pmap_remove_kernel(sva, eva);
2914 		return;
2915 	}
2916 
2917 	/*
2918 	 * If the pmap doesn't have an A table of its own, it has no mappings
2919 	 * that can be removed.
2920 	 */
2921 	if (pmap->pm_a_tmgr == NULL)
2922 		return;
2923 
2924 	/*
2925 	 * Remove the specified range from the pmap.  If the function
2926 	 * returns true, the operation removed all the valid mappings
2927 	 * in the pmap and freed its A table.  If this happened to the
2928 	 * currently loaded pmap, the MMU root pointer must be reloaded
2929 	 * with the default 'kernel' map.
2930 	 */
2931 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
2932 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2933 			kernel_crp.rp_addr = kernAphys;
2934 			loadcrp(&kernel_crp);
2935 			/* will do TLB flush below */
2936 		}
2937 		pmap->pm_a_tmgr = NULL;
2938 		pmap->pm_a_phys = kernAphys;
2939 	}
2940 
2941 	/*
2942 	 * If we just modified the current address space,
2943 	 * make sure to flush the MMU cache.
2944 	 *
2945 	 * XXX - this could be an unecessarily large flush.
2946 	 * XXX - Could decide, based on the size of the VA range
2947 	 * to be removed, whether to flush "by pages" or "all".
2948 	 */
2949 	if (pmap == current_pmap())
2950 		TBIAU();
2951 }
2952 
2953 /* pmap_remove_a			INTERNAL
2954  **
2955  * This is function number one in a set of three that removes a range
2956  * of memory in the most efficient manner by removing the highest possible
2957  * tables from the memory space.  This particular function attempts to remove
2958  * as many B tables as it can, delegating the remaining fragmented ranges to
2959  * pmap_remove_b().
2960  *
2961  * If the removal operation results in an empty A table, the function returns
2962  * TRUE.
2963  *
2964  * It's ugly but will do for now.
2965  */
2966 boolean_t
2967 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
2968 {
2969 	boolean_t empty;
2970 	int idx;
2971 	vaddr_t nstart, nend;
2972 	b_tmgr_t *b_tbl;
2973 	mmu_long_dte_t  *a_dte;
2974 	mmu_short_dte_t *b_dte;
2975 
2976 	/*
2977 	 * The following code works with what I call a 'granularity
2978 	 * reduction algorithim'.  A range of addresses will always have
2979 	 * the following properties, which are classified according to
2980 	 * how the range relates to the size of the current granularity
2981 	 * - an A table entry:
2982 	 *
2983 	 *            1 2       3 4
2984 	 * -+---+---+---+---+---+---+---+-
2985 	 * -+---+---+---+---+---+---+---+-
2986 	 *
2987 	 * A range will always start on a granularity boundary, illustrated
2988 	 * by '+' signs in the table above, or it will start at some point
2989 	 * inbetween a granularity boundary, as illustrated by point 1.
2990 	 * The first step in removing a range of addresses is to remove the
2991 	 * range between 1 and 2, the nearest granularity boundary.  This
2992 	 * job is handled by the section of code governed by the
2993 	 * 'if (start < nstart)' statement.
2994 	 *
2995 	 * A range will always encompass zero or more intergral granules,
2996 	 * illustrated by points 2 and 3.  Integral granules are easy to
2997 	 * remove.  The removal of these granules is the second step, and
2998 	 * is handled by the code block 'if (nstart < nend)'.
2999 	 *
3000 	 * Lastly, a range will always end on a granularity boundary,
3001 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3002 	 * 4.  The last step involves removing this range and is handled by
3003 	 * the code block 'if (nend < end)'.
3004 	 */
3005 	nstart = MMU_ROUND_UP_A(sva);
3006 	nend = MMU_ROUND_A(eva);
3007 
3008 	if (sva < nstart) {
3009 		/*
3010 		 * This block is executed if the range starts between
3011 		 * a granularity boundary.
3012 		 *
3013 		 * First find the DTE which is responsible for mapping
3014 		 * the start of the range.
3015 		 */
3016 		idx = MMU_TIA(sva);
3017 		a_dte = &a_tbl->at_dtbl[idx];
3018 
3019 		/*
3020 		 * If the DTE is valid then delegate the removal of the sub
3021 		 * range to pmap_remove_b(), which can remove addresses at
3022 		 * a finer granularity.
3023 		 */
3024 		if (MMU_VALID_DT(*a_dte)) {
3025 			b_dte = mmu_ptov(a_dte->addr.raw);
3026 			b_tbl = mmuB2tmgr(b_dte);
3027 
3028 			/*
3029 			 * The sub range to be removed starts at the start
3030 			 * of the full range we were asked to remove, and ends
3031 			 * at the greater of:
3032 			 * 1. The end of the full range, -or-
3033 			 * 2. The end of the full range, rounded down to the
3034 			 *    nearest granularity boundary.
3035 			 */
3036 			if (eva < nstart)
3037 				empty = pmap_remove_b(b_tbl, sva, eva);
3038 			else
3039 				empty = pmap_remove_b(b_tbl, sva, nstart);
3040 
3041 			/*
3042 			 * If the removal resulted in an empty B table,
3043 			 * invalidate the DTE that points to it and decrement
3044 			 * the valid entry count of the A table.
3045 			 */
3046 			if (empty) {
3047 				a_dte->attr.raw = MMU_DT_INVALID;
3048 				a_tbl->at_ecnt--;
3049 			}
3050 		}
3051 		/*
3052 		 * If the DTE is invalid, the address range is already non-
3053 		 * existent and can simply be skipped.
3054 		 */
3055 	}
3056 	if (nstart < nend) {
3057 		/*
3058 		 * This block is executed if the range spans a whole number
3059 		 * multiple of granules (A table entries.)
3060 		 *
3061 		 * First find the DTE which is responsible for mapping
3062 		 * the start of the first granule involved.
3063 		 */
3064 		idx = MMU_TIA(nstart);
3065 		a_dte = &a_tbl->at_dtbl[idx];
3066 
3067 		/*
3068 		 * Remove entire sub-granules (B tables) one at a time,
3069 		 * until reaching the end of the range.
3070 		 */
3071 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3072 			if (MMU_VALID_DT(*a_dte)) {
3073 				/*
3074 				 * Find the B table manager for the
3075 				 * entry and free it.
3076 				 */
3077 				b_dte = mmu_ptov(a_dte->addr.raw);
3078 				b_tbl = mmuB2tmgr(b_dte);
3079 				free_b_table(b_tbl, TRUE);
3080 
3081 				/*
3082 				 * Invalidate the DTE that points to the
3083 				 * B table and decrement the valid entry
3084 				 * count of the A table.
3085 				 */
3086 				a_dte->attr.raw = MMU_DT_INVALID;
3087 				a_tbl->at_ecnt--;
3088 			}
3089 	}
3090 	if (nend < eva) {
3091 		/*
3092 		 * This block is executed if the range ends beyond a
3093 		 * granularity boundary.
3094 		 *
3095 		 * First find the DTE which is responsible for mapping
3096 		 * the start of the nearest (rounded down) granularity
3097 		 * boundary.
3098 		 */
3099 		idx = MMU_TIA(nend);
3100 		a_dte = &a_tbl->at_dtbl[idx];
3101 
3102 		/*
3103 		 * If the DTE is valid then delegate the removal of the sub
3104 		 * range to pmap_remove_b(), which can remove addresses at
3105 		 * a finer granularity.
3106 		 */
3107 		if (MMU_VALID_DT(*a_dte)) {
3108 			/*
3109 			 * Find the B table manager for the entry
3110 			 * and hand it to pmap_remove_b() along with
3111 			 * the sub range.
3112 			 */
3113 			b_dte = mmu_ptov(a_dte->addr.raw);
3114 			b_tbl = mmuB2tmgr(b_dte);
3115 
3116 			empty = pmap_remove_b(b_tbl, nend, eva);
3117 
3118 			/*
3119 			 * If the removal resulted in an empty B table,
3120 			 * invalidate the DTE that points to it and decrement
3121 			 * the valid entry count of the A table.
3122 			 */
3123 			if (empty) {
3124 				a_dte->attr.raw = MMU_DT_INVALID;
3125 				a_tbl->at_ecnt--;
3126 			}
3127 		}
3128 	}
3129 
3130 	/*
3131 	 * If there are no more entries in the A table, release it
3132 	 * back to the available pool and return TRUE.
3133 	 */
3134 	if (a_tbl->at_ecnt == 0) {
3135 		a_tbl->at_parent = NULL;
3136 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3137 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3138 		empty = TRUE;
3139 	} else {
3140 		empty = FALSE;
3141 	}
3142 
3143 	return empty;
3144 }
3145 
3146 /* pmap_remove_b			INTERNAL
3147  **
3148  * Remove a range of addresses from an address space, trying to remove entire
3149  * C tables if possible.
3150  *
3151  * If the operation results in an empty B table, the function returns TRUE.
3152  */
3153 boolean_t
3154 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3155 {
3156 	boolean_t empty;
3157 	int idx;
3158 	vaddr_t nstart, nend, rstart;
3159 	c_tmgr_t *c_tbl;
3160 	mmu_short_dte_t  *b_dte;
3161 	mmu_short_pte_t  *c_dte;
3162 
3163 
3164 	nstart = MMU_ROUND_UP_B(sva);
3165 	nend = MMU_ROUND_B(eva);
3166 
3167 	if (sva < nstart) {
3168 		idx = MMU_TIB(sva);
3169 		b_dte = &b_tbl->bt_dtbl[idx];
3170 		if (MMU_VALID_DT(*b_dte)) {
3171 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3172 			c_tbl = mmuC2tmgr(c_dte);
3173 			if (eva < nstart)
3174 				empty = pmap_remove_c(c_tbl, sva, eva);
3175 			else
3176 				empty = pmap_remove_c(c_tbl, sva, nstart);
3177 			if (empty) {
3178 				b_dte->attr.raw = MMU_DT_INVALID;
3179 				b_tbl->bt_ecnt--;
3180 			}
3181 		}
3182 	}
3183 	if (nstart < nend) {
3184 		idx = MMU_TIB(nstart);
3185 		b_dte = &b_tbl->bt_dtbl[idx];
3186 		rstart = nstart;
3187 		while (rstart < nend) {
3188 			if (MMU_VALID_DT(*b_dte)) {
3189 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3190 				c_tbl = mmuC2tmgr(c_dte);
3191 				free_c_table(c_tbl, TRUE);
3192 				b_dte->attr.raw = MMU_DT_INVALID;
3193 				b_tbl->bt_ecnt--;
3194 			}
3195 			b_dte++;
3196 			rstart += MMU_TIB_RANGE;
3197 		}
3198 	}
3199 	if (nend < eva) {
3200 		idx = MMU_TIB(nend);
3201 		b_dte = &b_tbl->bt_dtbl[idx];
3202 		if (MMU_VALID_DT(*b_dte)) {
3203 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3204 			c_tbl = mmuC2tmgr(c_dte);
3205 			empty = pmap_remove_c(c_tbl, nend, eva);
3206 			if (empty) {
3207 				b_dte->attr.raw = MMU_DT_INVALID;
3208 				b_tbl->bt_ecnt--;
3209 			}
3210 		}
3211 	}
3212 
3213 	if (b_tbl->bt_ecnt == 0) {
3214 		b_tbl->bt_parent = NULL;
3215 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3216 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3217 		empty = TRUE;
3218 	} else {
3219 		empty = FALSE;
3220 	}
3221 
3222 	return empty;
3223 }
3224 
3225 /* pmap_remove_c			INTERNAL
3226  **
3227  * Remove a range of addresses from the given C table.
3228  */
3229 boolean_t
3230 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3231 {
3232 	boolean_t empty;
3233 	int idx;
3234 	mmu_short_pte_t *c_pte;
3235 
3236 	idx = MMU_TIC(sva);
3237 	c_pte = &c_tbl->ct_dtbl[idx];
3238 	for (;sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3239 		if (MMU_VALID_DT(*c_pte)) {
3240 			pmap_remove_pte(c_pte);
3241 			c_tbl->ct_ecnt--;
3242 		}
3243 	}
3244 
3245 	if (c_tbl->ct_ecnt == 0) {
3246 		c_tbl->ct_parent = NULL;
3247 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3248 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3249 		empty = TRUE;
3250 	} else {
3251 		empty = FALSE;
3252 	}
3253 
3254 	return empty;
3255 }
3256 
3257 /* is_managed				INTERNAL
3258  **
3259  * Determine if the given physical address is managed by the PV system.
3260  * Note that this logic assumes that no one will ask for the status of
3261  * addresses which lie in-between the memory banks on the 3/80.  If they
3262  * do so, it will falsely report that it is managed.
3263  *
3264  * Note: A "managed" address is one that was reported to the VM system as
3265  * a "usable page" during system startup.  As such, the VM system expects the
3266  * pmap module to keep an accurate track of the useage of those pages.
3267  * Any page not given to the VM system at startup does not exist (as far as
3268  * the VM system is concerned) and is therefore "unmanaged."  Examples are
3269  * those pages which belong to the ROM monitor and the memory allocated before
3270  * the VM system was started.
3271  */
3272 boolean_t
3273 is_managed(paddr_t pa)
3274 {
3275 	if (pa >= avail_start && pa < avail_end)
3276 		return TRUE;
3277 	else
3278 		return FALSE;
3279 }
3280 
3281 /* pmap_bootstrap_alloc			INTERNAL
3282  **
3283  * Used internally for memory allocation at startup when malloc is not
3284  * available.  This code will fail once it crosses the first memory
3285  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3286  * will be in charge of allocation.
3287  */
3288 void *
3289 pmap_bootstrap_alloc(int size)
3290 {
3291 	void *rtn;
3292 
3293 #ifdef	PMAP_DEBUG
3294 	if (bootstrap_alloc_enabled == FALSE) {
3295 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3296 		sunmon_abort();
3297 	}
3298 #endif
3299 
3300 	rtn = (void *) virtual_avail;
3301 	virtual_avail += size;
3302 
3303 #ifdef	PMAP_DEBUG
3304 	if (virtual_avail > virtual_contig_end) {
3305 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3306 		sunmon_abort();
3307 	}
3308 #endif
3309 
3310 	return rtn;
3311 }
3312 
3313 /* pmap_bootstap_aalign			INTERNAL
3314  **
3315  * Used to insure that the next call to pmap_bootstrap_alloc() will
3316  * return a chunk of memory aligned to the specified size.
3317  *
3318  * Note: This function will only support alignment sizes that are powers
3319  * of two.
3320  */
3321 void
3322 pmap_bootstrap_aalign(int size)
3323 {
3324 	int off;
3325 
3326 	off = virtual_avail & (size - 1);
3327 	if (off) {
3328 		(void) pmap_bootstrap_alloc(size - off);
3329 	}
3330 }
3331 
3332 /* pmap_pa_exists
3333  **
3334  * Used by the /dev/mem driver to see if a given PA is memory
3335  * that can be mapped.  (The PA is not in a hole.)
3336  */
3337 int
3338 pmap_pa_exists(paddr_t pa)
3339 {
3340 	int i;
3341 
3342 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3343 		if ((pa >= avail_mem[i].pmem_start) &&
3344 			(pa <  avail_mem[i].pmem_end))
3345 			return (1);
3346 		if (avail_mem[i].pmem_next == NULL)
3347 			break;
3348 	}
3349 	return (0);
3350 }
3351 
3352 /* Called only from locore.s and pmap.c */
3353 void	_pmap_switch(pmap_t pmap);
3354 
3355 /*
3356  * _pmap_switch			INTERNAL
3357  *
3358  * This is called by locore.s:cpu_switch() when it is
3359  * switching to a new process.  Load new translations.
3360  * Note: done in-line by locore.s unless PMAP_DEBUG
3361  *
3362  * Note that we do NOT allocate a context here, but
3363  * share the "kernel only" context until we really
3364  * need our own context for user-space mappings in
3365  * pmap_enter_user().  [ s/context/mmu A table/ ]
3366  */
3367 void
3368 _pmap_switch(pmap_t pmap)
3369 {
3370 	u_long rootpa;
3371 
3372 	/*
3373 	 * Only do reload/flush if we have to.
3374 	 * Note that if the old and new process
3375 	 * were BOTH using the "null" context,
3376 	 * then this will NOT flush the TLB.
3377 	 */
3378 	rootpa = pmap->pm_a_phys;
3379 	if (kernel_crp.rp_addr != rootpa) {
3380 		DPRINT(("pmap_activate(%p)\n", pmap));
3381 		kernel_crp.rp_addr = rootpa;
3382 		loadcrp(&kernel_crp);
3383 		TBIAU();
3384 	}
3385 }
3386 
3387 /*
3388  * Exported version of pmap_activate().  This is called from the
3389  * machine-independent VM code when a process is given a new pmap.
3390  * If (p == curlwp) do like cpu_switch would do; otherwise just
3391  * take this as notification that the process has a new pmap.
3392  */
3393 void
3394 pmap_activate(struct lwp *l)
3395 {
3396 	if (l->l_proc == curproc) {
3397 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3398 	}
3399 }
3400 
3401 /*
3402  * pmap_deactivate			INTERFACE
3403  **
3404  * This is called to deactivate the specified process's address space.
3405  */
3406 void
3407 pmap_deactivate(struct lwp *l)
3408 {
3409 	/* Nothing to do. */
3410 }
3411 
3412 /*
3413  * Fill in the sun3x-specific part of the kernel core header
3414  * for dumpsys().  (See machdep.c for the rest.)
3415  */
3416 void
3417 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3418 {
3419 	u_long spa, len;
3420 	int i;
3421 
3422 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3423 	sh->pg_valid = MMU_DT_PAGE;
3424 	sh->contig_end = virtual_contig_end;
3425 	sh->kernCbase = (u_long)kernCbase;
3426 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3427 		spa = avail_mem[i].pmem_start;
3428 		spa = m68k_trunc_page(spa);
3429 		len = avail_mem[i].pmem_end - spa;
3430 		len = m68k_round_page(len);
3431 		sh->ram_segs[i].start = spa;
3432 		sh->ram_segs[i].size  = len;
3433 	}
3434 }
3435 
3436 
3437 /* pmap_virtual_space			INTERFACE
3438  **
3439  * Return the current available range of virtual addresses in the
3440  * arguuments provided.  Only really called once.
3441  */
3442 void
3443 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3444 {
3445 	*vstart = virtual_avail;
3446 	*vend = virtual_end;
3447 }
3448 
3449 /*
3450  * Provide memory to the VM system.
3451  *
3452  * Assume avail_start is always in the
3453  * first segment as pmap_bootstrap does.
3454  */
3455 static void
3456 pmap_page_upload(void)
3457 {
3458 	paddr_t	a, b;	/* memory range */
3459 	int i;
3460 
3461 	/* Supply the memory in segments. */
3462 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3463 		a = atop(avail_mem[i].pmem_start);
3464 		b = atop(avail_mem[i].pmem_end);
3465 		if (i == 0)
3466 			a = atop(avail_start);
3467 		if (avail_mem[i].pmem_end > avail_end)
3468 			b = atop(avail_end);
3469 
3470 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3471 
3472 		if (avail_mem[i].pmem_next == NULL)
3473 			break;
3474 	}
3475 }
3476 
3477 /* pmap_count			INTERFACE
3478  **
3479  * Return the number of resident (valid) pages in the given pmap.
3480  *
3481  * Note:  If this function is handed the kernel map, it will report
3482  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3483  * map statistics.
3484  */
3485 segsz_t
3486 pmap_count(pmap_t pmap, int type)
3487 {
3488 	u_int     count;
3489 	int       a_idx, b_idx;
3490 	a_tmgr_t *a_tbl;
3491 	b_tmgr_t *b_tbl;
3492 	c_tmgr_t *c_tbl;
3493 
3494 	/*
3495 	 * If the pmap does not have its own A table manager, it has no
3496 	 * valid entires.
3497 	 */
3498 	if (pmap->pm_a_tmgr == NULL)
3499 		return 0;
3500 
3501 	a_tbl = pmap->pm_a_tmgr;
3502 
3503 	count = 0;
3504 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3505 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3506 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3507 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3508 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3509 	                c_tbl = mmuC2tmgr(
3510 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3511 	                if (type == 0)
3512 	                    /*
3513 	                     * A resident entry count has been requested.
3514 	                     */
3515 	                    count += c_tbl->ct_ecnt;
3516 	                else
3517 	                    /*
3518 	                     * A wired entry count has been requested.
3519 	                     */
3520 	                    count += c_tbl->ct_wcnt;
3521 	            }
3522 	        }
3523 	    }
3524 	}
3525 
3526 	return count;
3527 }
3528 
3529 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3530  * The following routines are only used by DDB for tricky kernel text    *
3531  * text operations in db_memrw.c.  They are provided for sun3            *
3532  * compatibility.                                                        *
3533  *************************************************************************/
3534 /* get_pte			INTERNAL
3535  **
3536  * Return the page descriptor the describes the kernel mapping
3537  * of the given virtual address.
3538  */
3539 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
3540 u_int
3541 get_pte(vaddr_t va)
3542 {
3543 	u_long pte_pa;
3544 	mmu_short_pte_t *pte;
3545 
3546 	/* Get the physical address of the PTE */
3547 	pte_pa = ptest_addr(va & ~PGOFSET);
3548 
3549 	/* Convert to a virtual address... */
3550 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3551 
3552 	/* Make sure it is in our level-C tables... */
3553 	if ((pte < kernCbase) ||
3554 		(pte >= &mmuCbase[NUM_USER_PTES]))
3555 		return 0;
3556 
3557 	/* ... and just return its contents. */
3558 	return (pte->attr.raw);
3559 }
3560 
3561 
3562 /* set_pte			INTERNAL
3563  **
3564  * Set the page descriptor that describes the kernel mapping
3565  * of the given virtual address.
3566  */
3567 void
3568 set_pte(vaddr_t va, u_int pte)
3569 {
3570 	u_long idx;
3571 
3572 	if (va < KERNBASE)
3573 		return;
3574 
3575 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3576 	kernCbase[idx].attr.raw = pte;
3577 	TBIS(va);
3578 }
3579 
3580 /*
3581  *	Routine:        pmap_procwr
3582  *
3583  *	Function:
3584  *		Synchronize caches corresponding to [addr, addr+len) in p.
3585  */
3586 void
3587 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3588 {
3589 	(void)cachectl1(0x80000004, va, len, p);
3590 }
3591 
3592 
3593 #ifdef	PMAP_DEBUG
3594 /************************** DEBUGGING ROUTINES **************************
3595  * The following routines are meant to be an aid to debugging the pmap  *
3596  * system.  They are callable from the DDB command line and should be   *
3597  * prepared to be handed unstable or incomplete states of the system.   *
3598  ************************************************************************/
3599 
3600 /* pv_list
3601  **
3602  * List all pages found on the pv list for the given physical page.
3603  * To avoid endless loops, the listing will stop at the end of the list
3604  * or after 'n' entries - whichever comes first.
3605  */
3606 void
3607 pv_list(paddr_t pa, int n)
3608 {
3609 	int  idx;
3610 	vaddr_t va;
3611 	pv_t *pv;
3612 	c_tmgr_t *c_tbl;
3613 	pmap_t pmap;
3614 
3615 	pv = pa2pv(pa);
3616 	idx = pv->pv_idx;
3617 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3618 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3619 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3620 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3621 	}
3622 }
3623 #endif	/* PMAP_DEBUG */
3624 
3625 #ifdef NOT_YET
3626 /* and maybe not ever */
3627 /************************** LOW-LEVEL ROUTINES **************************
3628  * These routines will eventually be re-written into assembly and placed*
3629  * in locore.s.  They are here now as stubs so that the pmap module can *
3630  * be linked as a standalone user program for testing.                  *
3631  ************************************************************************/
3632 /* flush_atc_crp			INTERNAL
3633  **
3634  * Flush all page descriptors derived from the given CPU Root Pointer
3635  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3636  * cache.
3637  */
3638 void
3639 flush_atc_crp(int a_tbl)
3640 {
3641 	mmu_long_rp_t rp;
3642 
3643 	/* Create a temporary root table pointer that points to the
3644 	 * given A table.
3645 	 */
3646 	rp.attr.raw = ~MMU_LONG_RP_LU;
3647 	rp.addr.raw = (unsigned int) a_tbl;
3648 
3649 	mmu_pflushr(&rp);
3650 	/* mmu_pflushr:
3651 	 * 	movel   sp(4)@,a0
3652 	 * 	pflushr a0@
3653 	 *	rts
3654 	 */
3655 }
3656 #endif /* NOT_YET */
3657