xref: /netbsd-src/sys/arch/sun3/sun3x/pmap.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: pmap.c,v 1.85 2004/05/16 15:44:10 wiz Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a process called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.85 2004/05/16 15:44:10 wiz Exp $");
116 
117 #include "opt_ddb.h"
118 #include "opt_pmap_debug.h"
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/proc.h>
123 #include <sys/malloc.h>
124 #include <sys/pool.h>
125 #include <sys/user.h>
126 #include <sys/queue.h>
127 #include <sys/kcore.h>
128 
129 #include <uvm/uvm.h>
130 
131 #include <machine/cpu.h>
132 #include <machine/kcore.h>
133 #include <machine/mon.h>
134 #include <machine/pmap.h>
135 #include <machine/pte.h>
136 #include <machine/vmparam.h>
137 #include <m68k/cacheops.h>
138 
139 #include <sun3/sun3/cache.h>
140 #include <sun3/sun3/machdep.h>
141 
142 #include "pmap_pvt.h"
143 
144 /* XXX - What headers declare these? */
145 extern struct pcb *curpcb;
146 extern int physmem;
147 
148 /* Defined in locore.s */
149 extern char kernel_text[];
150 
151 /* Defined by the linker */
152 extern char etext[], edata[], end[];
153 extern char *esym;	/* DDB */
154 
155 /*************************** DEBUGGING DEFINITIONS ***********************
156  * Macros, preprocessor defines and variables used in debugging can make *
157  * code hard to read.  Anything used exclusively for debugging purposes  *
158  * is defined here to avoid having such mess scattered around the file.  *
159  *************************************************************************/
160 #ifdef	PMAP_DEBUG
161 /*
162  * To aid the debugging process, macros should be expanded into smaller steps
163  * that accomplish the same goal, yet provide convenient places for placing
164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
165  * 'INLINE' keyword is defined to an empty string.  This way, any function
166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
167  * a separate function, which is much easier to debug.
168  */
169 #define	INLINE	/* nothing */
170 
171 /*
172  * It is sometimes convenient to watch the activity of a particular table
173  * in the system.  The following variables are used for that purpose.
174  */
175 a_tmgr_t *pmap_watch_atbl = 0;
176 b_tmgr_t *pmap_watch_btbl = 0;
177 c_tmgr_t *pmap_watch_ctbl = 0;
178 
179 int pmap_debug = 0;
180 #define DPRINT(args) if (pmap_debug) printf args
181 
182 #else	/********** Stuff below is defined if NOT debugging **************/
183 
184 #define	INLINE	inline
185 #define DPRINT(args)  /* nada */
186 
187 #endif	/* PMAP_DEBUG */
188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
189 
190 /*** Management Structure - Memory Layout
191  * For every MMU table in the sun3x pmap system there must be a way to
192  * manage it; we must know which process is using it, what other tables
193  * depend on it, and whether or not it contains any locked pages.  This
194  * is solved by the creation of 'table management'  or 'tmgr'
195  * structures.  One for each MMU table in the system.
196  *
197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
198  *
199  *      towards lower memory
200  * kernAbase -> +-------------------------------------------------------+
201  *              | Kernel     MMU A level table                          |
202  * kernBbase -> +-------------------------------------------------------+
203  *              | Kernel     MMU B level tables                         |
204  * kernCbase -> +-------------------------------------------------------+
205  *              |                                                       |
206  *              | Kernel     MMU C level tables                         |
207  *              |                                                       |
208  * mmuCbase  -> +-------------------------------------------------------+
209  *              | User       MMU C level tables                         |
210  * mmuAbase  -> +-------------------------------------------------------+
211  *              |                                                       |
212  *              | User       MMU A level tables                         |
213  *              |                                                       |
214  * mmuBbase  -> +-------------------------------------------------------+
215  *              | User       MMU B level tables                         |
216  * tmgrAbase -> +-------------------------------------------------------+
217  *              |  TMGR A level table structures                        |
218  * tmgrBbase -> +-------------------------------------------------------+
219  *              |  TMGR B level table structures                        |
220  * tmgrCbase -> +-------------------------------------------------------+
221  *              |  TMGR C level table structures                        |
222  * pvbase    -> +-------------------------------------------------------+
223  *              |  Physical to Virtual mapping table (list heads)       |
224  * pvebase   -> +-------------------------------------------------------+
225  *              |  Physical to Virtual mapping table (list elements)    |
226  *              |                                                       |
227  *              +-------------------------------------------------------+
228  *      towards higher memory
229  *
230  * For every A table in the MMU A area, there will be a corresponding
231  * a_tmgr structure in the TMGR A area.  The same will be true for
232  * the B and C tables.  This arrangement will make it easy to find the
233  * controling tmgr structure for any table in the system by use of
234  * (relatively) simple macros.
235  */
236 
237 /*
238  * Global variables for storing the base addresses for the areas
239  * labeled above.
240  */
241 static vaddr_t  	kernAphys;
242 static mmu_long_dte_t	*kernAbase;
243 static mmu_short_dte_t	*kernBbase;
244 static mmu_short_pte_t	*kernCbase;
245 static mmu_short_pte_t	*mmuCbase;
246 static mmu_short_dte_t	*mmuBbase;
247 static mmu_long_dte_t	*mmuAbase;
248 static a_tmgr_t		*Atmgrbase;
249 static b_tmgr_t		*Btmgrbase;
250 static c_tmgr_t		*Ctmgrbase;
251 static pv_t 		*pvbase;
252 static pv_elem_t	*pvebase;
253 struct pmap 		kernel_pmap;
254 
255 /*
256  * This holds the CRP currently loaded into the MMU.
257  */
258 struct mmu_rootptr kernel_crp;
259 
260 /*
261  * Just all around global variables.
262  */
263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
266 
267 
268 /*
269  * Flags used to mark the safety/availability of certain operations or
270  * resources.
271  */
272 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
273 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
274 
275 /*
276  * XXX:  For now, retain the traditional variables that were
277  * used in the old pmap/vm interface (without NONCONTIG).
278  */
279 /* Kernel virtual address space available: */
280 vaddr_t	virtual_avail, virtual_end;
281 /* Physical address space available: */
282 paddr_t	avail_start, avail_end;
283 
284 /* This keep track of the end of the contiguously mapped range. */
285 vaddr_t virtual_contig_end;
286 
287 /* Physical address used by pmap_next_page() */
288 paddr_t avail_next;
289 
290 /* These are used by pmap_copy_page(), etc. */
291 vaddr_t tmp_vpages[2];
292 
293 /* memory pool for pmap structures */
294 struct pool	pmap_pmap_pool;
295 
296 /*
297  * The 3/80 is the only member of the sun3x family that has non-contiguous
298  * physical memory.  Memory is divided into 4 banks which are physically
299  * locatable on the system board.  Although the size of these banks varies
300  * with the size of memory they contain, their base addresses are
301  * permenently fixed.  The following structure, which describes these
302  * banks, is initialized by pmap_bootstrap() after it reads from a similar
303  * structure provided by the ROM Monitor.
304  *
305  * For the other machines in the sun3x architecture which do have contiguous
306  * RAM, this list will have only one entry, which will describe the entire
307  * range of available memory.
308  */
309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
310 u_int total_phys_mem;
311 
312 /*************************************************************************/
313 
314 /*
315  * XXX - Should "tune" these based on statistics.
316  *
317  * My first guess about the relative numbers of these needed is
318  * based on the fact that a "typical" process will have several
319  * pages mapped at low virtual addresses (text, data, bss), then
320  * some mapped shared libraries, and then some stack pages mapped
321  * near the high end of the VA space.  Each process can use only
322  * one A table, and most will use only two B tables (maybe three)
323  * and probably about four C tables.  Therefore, the first guess
324  * at the relative numbers of these needed is 1:2:4 -gwr
325  *
326  * The number of C tables needed is closely related to the amount
327  * of physical memory available plus a certain amount attributable
328  * to the use of double mappings.  With a few simulation statistics
329  * we can find a reasonably good estimation of this unknown value.
330  * Armed with that and the above ratios, we have a good idea of what
331  * is needed at each level. -j
332  *
333  * Note: It is not physical memory memory size, but the total mapped
334  * virtual space required by the combined working sets of all the
335  * currently _runnable_ processes.  (Sleeping ones don't count.)
336  * The amount of physical memory should be irrelevant. -gwr
337  */
338 #ifdef	FIXED_NTABLES
339 #define NUM_A_TABLES	16
340 #define NUM_B_TABLES	32
341 #define NUM_C_TABLES	64
342 #else
343 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
344 #endif	/* FIXED_NTABLES */
345 
346 /*
347  * This determines our total virtual mapping capacity.
348  * Yes, it is a FIXED value so we can pre-allocate.
349  */
350 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
351 
352 /*
353  * The size of the Kernel Virtual Address Space (KVAS)
354  * for purposes of MMU table allocation is -KERNBASE
355  * (length from KERNBASE to 0xFFFFffff)
356  */
357 #define	KVAS_SIZE		(-KERNBASE)
358 
359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
360 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
361 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
362 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
363 
364 /*************************** MISCELANEOUS MACROS *************************/
365 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
366 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
367 #define pmap_add_ref(pmap) ++pmap->pm_refcount
368 #define pmap_del_ref(pmap) --pmap->pm_refcount
369 #define pmap_refcount(pmap) pmap->pm_refcount
370 
371 void *pmap_bootstrap_alloc(int);
372 
373 static INLINE void *mmu_ptov __P((paddr_t));
374 static INLINE paddr_t mmu_vtop __P((void *));
375 
376 #if	0
377 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
378 #endif /* 0 */
379 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
380 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
381 
382 static INLINE pv_t *pa2pv __P((paddr_t));
383 static INLINE int   pteidx __P((mmu_short_pte_t *));
384 static INLINE pmap_t current_pmap __P((void));
385 
386 /*
387  * We can always convert between virtual and physical addresses
388  * for anything in the range [KERNBASE ... avail_start] because
389  * that range is GUARANTEED to be mapped linearly.
390  * We rely heavily upon this feature!
391  */
392 static INLINE void *
393 mmu_ptov(pa)
394 	paddr_t pa;
395 {
396 	vaddr_t va;
397 
398 	va = (pa + KERNBASE);
399 #ifdef	PMAP_DEBUG
400 	if ((va < KERNBASE) || (va >= virtual_contig_end))
401 		panic("mmu_ptov");
402 #endif
403 	return ((void*)va);
404 }
405 
406 static INLINE paddr_t
407 mmu_vtop(vva)
408 	void *vva;
409 {
410 	vaddr_t va;
411 
412 	va = (vaddr_t)vva;
413 #ifdef	PMAP_DEBUG
414 	if ((va < KERNBASE) || (va >= virtual_contig_end))
415 		panic("mmu_vtop");
416 #endif
417 	return (va - KERNBASE);
418 }
419 
420 /*
421  * These macros map MMU tables to their corresponding manager structures.
422  * They are needed quite often because many of the pointers in the pmap
423  * system reference MMU tables and not the structures that control them.
424  * There needs to be a way to find one when given the other and these
425  * macros do so by taking advantage of the memory layout described above.
426  * Here's a quick step through the first macro, mmuA2tmgr():
427  *
428  * 1) find the offset of the given MMU A table from the base of its table
429  *    pool (table - mmuAbase).
430  * 2) convert this offset into a table index by dividing it by the
431  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
432  * 3) use this index to select the corresponding 'A' table manager
433  *    structure from the 'A' table manager pool (Atmgrbase[index]).
434  */
435 /*  This function is not currently used. */
436 #if	0
437 static INLINE a_tmgr_t *
438 mmuA2tmgr(mmuAtbl)
439 	mmu_long_dte_t *mmuAtbl;
440 {
441 	int idx;
442 
443 	/* Which table is this in? */
444 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
445 #ifdef	PMAP_DEBUG
446 	if ((idx < 0) || (idx >= NUM_A_TABLES))
447 		panic("mmuA2tmgr");
448 #endif
449 	return (&Atmgrbase[idx]);
450 }
451 #endif	/* 0 */
452 
453 static INLINE b_tmgr_t *
454 mmuB2tmgr(mmuBtbl)
455 	mmu_short_dte_t *mmuBtbl;
456 {
457 	int idx;
458 
459 	/* Which table is this in? */
460 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
461 #ifdef	PMAP_DEBUG
462 	if ((idx < 0) || (idx >= NUM_B_TABLES))
463 		panic("mmuB2tmgr");
464 #endif
465 	return (&Btmgrbase[idx]);
466 }
467 
468 /* mmuC2tmgr			INTERNAL
469  **
470  * Given a pte known to belong to a C table, return the address of
471  * that table's management structure.
472  */
473 static INLINE c_tmgr_t *
474 mmuC2tmgr(mmuCtbl)
475 	mmu_short_pte_t *mmuCtbl;
476 {
477 	int idx;
478 
479 	/* Which table is this in? */
480 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
481 #ifdef	PMAP_DEBUG
482 	if ((idx < 0) || (idx >= NUM_C_TABLES))
483 		panic("mmuC2tmgr");
484 #endif
485 	return (&Ctmgrbase[idx]);
486 }
487 
488 /* This is now a function call below.
489  * #define pa2pv(pa) \
490  *	(&pvbase[(unsigned long)\
491  *		m68k_btop(pa)\
492  *	])
493  */
494 
495 /* pa2pv			INTERNAL
496  **
497  * Return the pv_list_head element which manages the given physical
498  * address.
499  */
500 static INLINE pv_t *
501 pa2pv(pa)
502 	paddr_t pa;
503 {
504 	struct pmap_physmem_struct *bank;
505 	int idx;
506 
507 	bank = &avail_mem[0];
508 	while (pa >= bank->pmem_end)
509 		bank = bank->pmem_next;
510 
511 	pa -= bank->pmem_start;
512 	idx = bank->pmem_pvbase + m68k_btop(pa);
513 #ifdef	PMAP_DEBUG
514 	if ((idx < 0) || (idx >= physmem))
515 		panic("pa2pv");
516 #endif
517 	return &pvbase[idx];
518 }
519 
520 /* pteidx			INTERNAL
521  **
522  * Return the index of the given PTE within the entire fixed table of
523  * PTEs.
524  */
525 static INLINE int
526 pteidx(pte)
527 	mmu_short_pte_t *pte;
528 {
529 	return (pte - kernCbase);
530 }
531 
532 /*
533  * This just offers a place to put some debugging checks,
534  * and reduces the number of places "curlwp" appears...
535  */
536 static INLINE pmap_t
537 current_pmap()
538 {
539 	struct vmspace *vm;
540 	struct vm_map *map;
541 	pmap_t	pmap;
542 
543 	if (curlwp == NULL)
544 		pmap = &kernel_pmap;
545 	else {
546 		vm = curproc->p_vmspace;
547 		map = &vm->vm_map;
548 		pmap = vm_map_pmap(map);
549 	}
550 
551 	return (pmap);
552 }
553 
554 
555 /*************************** FUNCTION DEFINITIONS ************************
556  * These appear here merely for the compiler to enforce type checking on *
557  * all function calls.                                                   *
558  *************************************************************************/
559 
560 /** Internal functions
561  ** Most functions used only within this module are defined in
562  **   pmap_pvt.h (why not here if used only here?)
563  **/
564 static void pmap_page_upload __P((void));
565 
566 /** Interface functions
567  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
568  **   defined.
569  **/
570 void pmap_pinit __P((pmap_t));
571 void pmap_release __P((pmap_t));
572 
573 /********************************** CODE ********************************
574  * Functions that are called from other parts of the kernel are labeled *
575  * as 'INTERFACE' functions.  Functions that are only called from       *
576  * within the pmap module are labeled as 'INTERNAL' functions.          *
577  * Functions that are internal, but are not (currently) used at all are *
578  * labeled 'INTERNAL_X'.                                                *
579  ************************************************************************/
580 
581 /* pmap_bootstrap			INTERNAL
582  **
583  * Initializes the pmap system.  Called at boot time from
584  * locore2.c:_vm_init()
585  *
586  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
587  *           system implement pmap_steal_memory() is redundant.
588  *           Don't release this code without removing one or the other!
589  */
590 void
591 pmap_bootstrap(nextva)
592 	vaddr_t nextva;
593 {
594 	struct physmemory *membank;
595 	struct pmap_physmem_struct *pmap_membank;
596 	vaddr_t va, eva;
597 	paddr_t pa;
598 	int b, c, i, j;	/* running table counts */
599 	int size, resvmem;
600 
601 	/*
602 	 * This function is called by __bootstrap after it has
603 	 * determined the type of machine and made the appropriate
604 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
605 	 * by that.)  It allocates and sets up enough of the pmap system
606 	 * to manage the kernel's address space.
607 	 */
608 
609 	/*
610 	 * Determine the range of kernel virtual and physical
611 	 * space available. Note that we ABSOLUTELY DEPEND on
612 	 * the fact that the first bank of memory (4MB) is
613 	 * mapped linearly to KERNBASE (which we guaranteed in
614 	 * the first instructions of locore.s).
615 	 * That is plenty for our bootstrap work.
616 	 */
617 	virtual_avail = m68k_round_page(nextva);
618 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
619 	virtual_end = VM_MAX_KERNEL_ADDRESS;
620 	/* Don't need avail_start til later. */
621 
622 	/* We may now call pmap_bootstrap_alloc(). */
623 	bootstrap_alloc_enabled = TRUE;
624 
625 	/*
626 	 * This is a somewhat unwrapped loop to deal with
627 	 * copying the PROM's 'phsymem' banks into the pmap's
628 	 * banks.  The following is always assumed:
629 	 * 1. There is always at least one bank of memory.
630 	 * 2. There is always a last bank of memory, and its
631 	 *    pmem_next member must be set to NULL.
632 	 */
633 	membank = romVectorPtr->v_physmemory;
634 	pmap_membank = avail_mem;
635 	total_phys_mem = 0;
636 
637 	for (;;) { /* break on !membank */
638 		pmap_membank->pmem_start = membank->address;
639 		pmap_membank->pmem_end = membank->address + membank->size;
640 		total_phys_mem += membank->size;
641 		membank = membank->next;
642 		if (!membank)
643 			break;
644 		/* This silly syntax arises because pmap_membank
645 		 * is really a pre-allocated array, but it is put into
646 		 * use as a linked list.
647 		 */
648 		pmap_membank->pmem_next = pmap_membank + 1;
649 		pmap_membank = pmap_membank->pmem_next;
650 	}
651 	/* This is the last element. */
652 	pmap_membank->pmem_next = NULL;
653 
654 	/*
655 	 * Note: total_phys_mem, physmem represent
656 	 * actual physical memory, including that
657 	 * reserved for the PROM monitor.
658 	 */
659 	physmem = btoc(total_phys_mem);
660 
661 	/*
662 	 * Avail_end is set to the first byte of physical memory
663 	 * after the end of the last bank.  We use this only to
664 	 * determine if a physical address is "managed" memory.
665 	 * This address range should be reduced to prevent the
666 	 * physical pages needed by the PROM monitor from being used
667 	 * in the VM system.
668 	 */
669 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
670 	resvmem = m68k_round_page(resvmem);
671 	avail_end = pmap_membank->pmem_end - resvmem;
672 
673 	/*
674 	 * First allocate enough kernel MMU tables to map all
675 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
676 	 * Note: All must be aligned on 256 byte boundaries.
677 	 * Start with the level-A table (one of those).
678 	 */
679 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
680 	kernAbase = pmap_bootstrap_alloc(size);
681 	memset(kernAbase, 0, size);
682 
683 	/* Now the level-B kernel tables... */
684 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
685 	kernBbase = pmap_bootstrap_alloc(size);
686 	memset(kernBbase, 0, size);
687 
688 	/* Now the level-C kernel tables... */
689 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
690 	kernCbase = pmap_bootstrap_alloc(size);
691 	memset(kernCbase, 0, size);
692 	/*
693 	 * Note: In order for the PV system to work correctly, the kernel
694 	 * and user-level C tables must be allocated contiguously.
695 	 * Nothing should be allocated between here and the allocation of
696 	 * mmuCbase below.  XXX: Should do this as one allocation, and
697 	 * then compute a pointer for mmuCbase instead of this...
698 	 *
699 	 * Allocate user MMU tables.
700 	 * These must be contiguous with the preceding.
701 	 */
702 
703 #ifndef	FIXED_NTABLES
704 	/*
705 	 * The number of user-level C tables that should be allocated is
706 	 * related to the size of physical memory.  In general, there should
707 	 * be enough tables to map four times the amount of available RAM.
708 	 * The extra amount is needed because some table space is wasted by
709 	 * fragmentation.
710 	 */
711 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
712 	NUM_B_TABLES = NUM_C_TABLES / 2;
713 	NUM_A_TABLES = NUM_B_TABLES / 2;
714 #endif	/* !FIXED_NTABLES */
715 
716 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
717 	mmuCbase = pmap_bootstrap_alloc(size);
718 
719 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
720 	mmuBbase = pmap_bootstrap_alloc(size);
721 
722 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
723 	mmuAbase = pmap_bootstrap_alloc(size);
724 
725 	/*
726 	 * Fill in the never-changing part of the kernel tables.
727 	 * For simplicity, the kernel's mappings will be editable as a
728 	 * flat array of page table entries at kernCbase.  The
729 	 * higher level 'A' and 'B' tables must be initialized to point
730 	 * to this lower one.
731 	 */
732 	b = c = 0;
733 
734 	/*
735 	 * Invalidate all mappings below KERNBASE in the A table.
736 	 * This area has already been zeroed out, but it is good
737 	 * practice to explicitly show that we are interpreting
738 	 * it as a list of A table descriptors.
739 	 */
740 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
741 		kernAbase[i].addr.raw = 0;
742 	}
743 
744 	/*
745 	 * Set up the kernel A and B tables so that they will reference the
746 	 * correct spots in the contiguous table of PTEs allocated for the
747 	 * kernel's virtual memory space.
748 	 */
749 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
750 		kernAbase[i].attr.raw =
751 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
752 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
753 
754 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
755 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
756 				| MMU_DT_SHORT;
757 			c += MMU_C_TBL_SIZE;
758 		}
759 		b += MMU_B_TBL_SIZE;
760 	}
761 
762 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
763 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
764 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
765 
766 	/*
767 	 * We are now done with pmap_bootstrap_alloc().  Round up
768 	 * `virtual_avail' to the nearest page, and set the flag
769 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
770 	 */
771 	pmap_bootstrap_aalign(PAGE_SIZE);
772 	bootstrap_alloc_enabled = FALSE;
773 
774 	/*
775 	 * Now that we are done with pmap_bootstrap_alloc(), we
776 	 * must save the virtual and physical addresses of the
777 	 * end of the linearly mapped range, which are stored in
778 	 * virtual_contig_end and avail_start, respectively.
779 	 * These variables will never change after this point.
780 	 */
781 	virtual_contig_end = virtual_avail;
782 	avail_start = virtual_avail - KERNBASE;
783 
784 	/*
785 	 * `avail_next' is a running pointer used by pmap_next_page() to
786 	 * keep track of the next available physical page to be handed
787 	 * to the VM system during its initialization, in which it
788 	 * asks for physical pages, one at a time.
789 	 */
790 	avail_next = avail_start;
791 
792 	/*
793 	 * Now allocate some virtual addresses, but not the physical pages
794 	 * behind them.  Note that virtual_avail is already page-aligned.
795 	 *
796 	 * tmp_vpages[] is an array of two virtual pages used for temporary
797 	 * kernel mappings in the pmap module to facilitate various physical
798 	 * address-oritented operations.
799 	 */
800 	tmp_vpages[0] = virtual_avail;
801 	virtual_avail += PAGE_SIZE;
802 	tmp_vpages[1] = virtual_avail;
803 	virtual_avail += PAGE_SIZE;
804 
805 	/** Initialize the PV system **/
806 	pmap_init_pv();
807 
808 	/*
809 	 * Fill in the kernel_pmap structure and kernel_crp.
810 	 */
811 	kernAphys = mmu_vtop(kernAbase);
812 	kernel_pmap.pm_a_tmgr = NULL;
813 	kernel_pmap.pm_a_phys = kernAphys;
814 	kernel_pmap.pm_refcount = 1; /* always in use */
815 	simple_lock_init(&kernel_pmap.pm_lock);
816 
817 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
818 	kernel_crp.rp_addr = kernAphys;
819 
820 	/*
821 	 * Now pmap_enter_kernel() may be used safely and will be
822 	 * the main interface used hereafter to modify the kernel's
823 	 * virtual address space.  Note that since we are still running
824 	 * under the PROM's address table, none of these table modifications
825 	 * actually take effect until pmap_takeover_mmu() is called.
826 	 *
827 	 * Note: Our tables do NOT have the PROM linear mappings!
828 	 * Only the mappings created here exist in our tables, so
829 	 * remember to map anything we expect to use.
830 	 */
831 	va = (vaddr_t)KERNBASE;
832 	pa = 0;
833 
834 	/*
835 	 * The first page of the kernel virtual address space is the msgbuf
836 	 * page.  The page attributes (data, non-cached) are set here, while
837 	 * the address is assigned to this global pointer in cpu_startup().
838 	 * It is non-cached, mostly due to paranoia.
839 	 */
840 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
841 	va += PAGE_SIZE; pa += PAGE_SIZE;
842 
843 	/* Next page is used as the temporary stack. */
844 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
845 	va += PAGE_SIZE; pa += PAGE_SIZE;
846 
847 	/*
848 	 * Map all of the kernel's text segment as read-only and cacheable.
849 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
850 	 * of kernel text and the first bytes of kernel data will often be
851 	 * sharing the same page.  Therefore, the last page of kernel text
852 	 * has to be mapped as read/write, to accomodate the data.
853 	 */
854 	eva = m68k_trunc_page((vaddr_t)etext);
855 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
856 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
857 
858 	/*
859 	 * Map all of the kernel's data as read/write and cacheable.
860 	 * This includes: data, BSS, symbols, and everything in the
861 	 * contiguous memory used by pmap_bootstrap_alloc()
862 	 */
863 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
864 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
865 
866 	/*
867 	 * At this point we are almost ready to take over the MMU.  But first
868 	 * we must save the PROM's address space in our map, as we call its
869 	 * routines and make references to its data later in the kernel.
870 	 */
871 	pmap_bootstrap_copyprom();
872 	pmap_takeover_mmu();
873 	pmap_bootstrap_setprom();
874 
875 	/* Notify the VM system of our page size. */
876 	uvmexp.pagesize = PAGE_SIZE;
877 	uvm_setpagesize();
878 
879 	pmap_page_upload();
880 }
881 
882 
883 /* pmap_alloc_usermmu			INTERNAL
884  **
885  * Called from pmap_bootstrap() to allocate MMU tables that will
886  * eventually be used for user mappings.
887  */
888 void
889 pmap_alloc_usermmu()
890 {
891 	/* XXX: Moved into caller. */
892 }
893 
894 /* pmap_alloc_pv			INTERNAL
895  **
896  * Called from pmap_bootstrap() to allocate the physical
897  * to virtual mapping list.  Each physical page of memory
898  * in the system has a corresponding element in this list.
899  */
900 void
901 pmap_alloc_pv()
902 {
903 	int	i;
904 	unsigned int	total_mem;
905 
906 	/*
907 	 * Allocate a pv_head structure for every page of physical
908 	 * memory that will be managed by the system.  Since memory on
909 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
910 	 * count by subtraction of the lowest available address from the
911 	 * highest, but rather we have to step through each memory
912 	 * bank and add the number of pages in each to the total.
913 	 *
914 	 * At this time we also initialize the offset of each bank's
915 	 * starting pv_head within the pv_head list so that the physical
916 	 * memory state routines (pmap_is_referenced(),
917 	 * pmap_is_modified(), et al.) can quickly find coresponding
918 	 * pv_heads in spite of the non-contiguity.
919 	 */
920 	total_mem = 0;
921 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
922 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
923 		total_mem += avail_mem[i].pmem_end -
924 			avail_mem[i].pmem_start;
925 		if (avail_mem[i].pmem_next == NULL)
926 			break;
927 	}
928 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
929 		m68k_btop(total_phys_mem));
930 }
931 
932 /* pmap_alloc_usertmgr			INTERNAL
933  **
934  * Called from pmap_bootstrap() to allocate the structures which
935  * facilitate management of user MMU tables.  Each user MMU table
936  * in the system has one such structure associated with it.
937  */
938 void
939 pmap_alloc_usertmgr()
940 {
941 	/* Allocate user MMU table managers */
942 	/* It would be a lot simpler to just make these BSS, but */
943 	/* we may want to change their size at boot time... -j */
944 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
945 		* NUM_A_TABLES);
946 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
947 		* NUM_B_TABLES);
948 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
949 		* NUM_C_TABLES);
950 
951 	/*
952 	 * Allocate PV list elements for the physical to virtual
953 	 * mapping system.
954 	 */
955 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
956 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
957 }
958 
959 /* pmap_bootstrap_copyprom()			INTERNAL
960  **
961  * Copy the PROM mappings into our own tables.  Note, we
962  * can use physical addresses until __bootstrap returns.
963  */
964 void
965 pmap_bootstrap_copyprom()
966 {
967 	struct sunromvec *romp;
968 	int *mon_ctbl;
969 	mmu_short_pte_t *kpte;
970 	int i, len;
971 
972 	romp = romVectorPtr;
973 
974 	/*
975 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
976 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
977 	 */
978 	mon_ctbl = *romp->monptaddr;
979 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
980 	kpte = &kernCbase[i];
981 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
982 
983 	for (i = 0; i < len; i++) {
984 		kpte[i].attr.raw = mon_ctbl[i];
985 	}
986 
987 	/*
988 	 * Copy the mappings at MON_DVMA_BASE (to the end).
989 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
990 	 * Actually, we only want the last page, which the
991 	 * PROM has set up for use by the "ie" driver.
992 	 * (The i82686 needs its SCP there.)
993 	 * If we copy all the mappings, pmap_enter_kernel
994 	 * may complain about finding valid PTEs that are
995 	 * not recorded in our PV lists...
996 	 */
997 	mon_ctbl = *romp->shadowpteaddr;
998 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
999 	kpte = &kernCbase[i];
1000 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1001 	for (i = (len-1); i < len; i++) {
1002 		kpte[i].attr.raw = mon_ctbl[i];
1003 	}
1004 }
1005 
1006 /* pmap_takeover_mmu			INTERNAL
1007  **
1008  * Called from pmap_bootstrap() after it has copied enough of the
1009  * PROM mappings into the kernel map so that we can use our own
1010  * MMU table.
1011  */
1012 void
1013 pmap_takeover_mmu()
1014 {
1015 
1016 	loadcrp(&kernel_crp);
1017 }
1018 
1019 /* pmap_bootstrap_setprom()			INTERNAL
1020  **
1021  * Set the PROM mappings so it can see kernel space.
1022  * Note that physical addresses are used here, which
1023  * we can get away with because this runs with the
1024  * low 1GB set for transparent translation.
1025  */
1026 void
1027 pmap_bootstrap_setprom()
1028 {
1029 	mmu_long_dte_t *mon_dte;
1030 	extern struct mmu_rootptr mon_crp;
1031 	int i;
1032 
1033 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1034 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1035 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1036 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1037 	}
1038 }
1039 
1040 
1041 /* pmap_init			INTERFACE
1042  **
1043  * Called at the end of vm_init() to set up the pmap system to go
1044  * into full time operation.  All initialization of kernel_pmap
1045  * should be already done by now, so this should just do things
1046  * needed for user-level pmaps to work.
1047  */
1048 void
1049 pmap_init()
1050 {
1051 	/** Initialize the manager pools **/
1052 	TAILQ_INIT(&a_pool);
1053 	TAILQ_INIT(&b_pool);
1054 	TAILQ_INIT(&c_pool);
1055 
1056 	/**************************************************************
1057 	 * Initialize all tmgr structures and MMU tables they manage. *
1058 	 **************************************************************/
1059 	/** Initialize A tables **/
1060 	pmap_init_a_tables();
1061 	/** Initialize B tables **/
1062 	pmap_init_b_tables();
1063 	/** Initialize C tables **/
1064 	pmap_init_c_tables();
1065 
1066 	/** Initialize the pmap pools **/
1067 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1068 	    &pool_allocator_nointr);
1069 }
1070 
1071 /* pmap_init_a_tables()			INTERNAL
1072  **
1073  * Initializes all A managers, their MMU A tables, and inserts
1074  * them into the A manager pool for use by the system.
1075  */
1076 void
1077 pmap_init_a_tables()
1078 {
1079 	int i;
1080 	a_tmgr_t *a_tbl;
1081 
1082 	for (i=0; i < NUM_A_TABLES; i++) {
1083 		/* Select the next available A manager from the pool */
1084 		a_tbl = &Atmgrbase[i];
1085 
1086 		/*
1087 		 * Clear its parent entry.  Set its wired and valid
1088 		 * entry count to zero.
1089 		 */
1090 		a_tbl->at_parent = NULL;
1091 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1092 
1093 		/* Assign it the next available MMU A table from the pool */
1094 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1095 
1096 		/*
1097 		 * Initialize the MMU A table with the table in the `proc0',
1098 		 * or kernel, mapping.  This ensures that every process has
1099 		 * the kernel mapped in the top part of its address space.
1100 		 */
1101 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1102 			sizeof(mmu_long_dte_t));
1103 
1104 		/*
1105 		 * Finally, insert the manager into the A pool,
1106 		 * making it ready to be used by the system.
1107 		 */
1108 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1109     }
1110 }
1111 
1112 /* pmap_init_b_tables()			INTERNAL
1113  **
1114  * Initializes all B table managers, their MMU B tables, and
1115  * inserts them into the B manager pool for use by the system.
1116  */
1117 void
1118 pmap_init_b_tables()
1119 {
1120 	int i,j;
1121 	b_tmgr_t *b_tbl;
1122 
1123 	for (i=0; i < NUM_B_TABLES; i++) {
1124 		/* Select the next available B manager from the pool */
1125 		b_tbl = &Btmgrbase[i];
1126 
1127 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1128 		b_tbl->bt_pidx = 0;		/* parent index,      */
1129 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1130 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1131 
1132 		/* Assign it the next available MMU B table from the pool */
1133 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1134 
1135 		/* Invalidate every descriptor in the table */
1136 		for (j=0; j < MMU_B_TBL_SIZE; j++)
1137 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1138 
1139 		/* Insert the manager into the B pool */
1140 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1141 	}
1142 }
1143 
1144 /* pmap_init_c_tables()			INTERNAL
1145  **
1146  * Initializes all C table managers, their MMU C tables, and
1147  * inserts them into the C manager pool for use by the system.
1148  */
1149 void
1150 pmap_init_c_tables()
1151 {
1152 	int i,j;
1153 	c_tmgr_t *c_tbl;
1154 
1155 	for (i=0; i < NUM_C_TABLES; i++) {
1156 		/* Select the next available C manager from the pool */
1157 		c_tbl = &Ctmgrbase[i];
1158 
1159 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1160 		c_tbl->ct_pidx = 0;		/* parent index,      */
1161 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1162 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1163 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1164 		c_tbl->ct_va = 0;		/* base of managed range */
1165 
1166 		/* Assign it the next available MMU C table from the pool */
1167 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1168 
1169 		for (j=0; j < MMU_C_TBL_SIZE; j++)
1170 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1171 
1172 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1173 	}
1174 }
1175 
1176 /* pmap_init_pv()			INTERNAL
1177  **
1178  * Initializes the Physical to Virtual mapping system.
1179  */
1180 void
1181 pmap_init_pv()
1182 {
1183 	int	i;
1184 
1185 	/* Initialize every PV head. */
1186 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1187 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1188 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1189 	}
1190 }
1191 
1192 /* get_a_table			INTERNAL
1193  **
1194  * Retrieve and return a level A table for use in a user map.
1195  */
1196 a_tmgr_t *
1197 get_a_table()
1198 {
1199 	a_tmgr_t *tbl;
1200 	pmap_t pmap;
1201 
1202 	/* Get the top A table in the pool */
1203 	tbl = a_pool.tqh_first;
1204 	if (tbl == NULL) {
1205 		/*
1206 		 * XXX - Instead of panicking here and in other get_x_table
1207 		 * functions, we do have the option of sleeping on the head of
1208 		 * the table pool.  Any function which updates the table pool
1209 		 * would then issue a wakeup() on the head, thus waking up any
1210 		 * processes waiting for a table.
1211 		 *
1212 		 * Actually, the place to sleep would be when some process
1213 		 * asks for a "wired" mapping that would run us short of
1214 		 * mapping resources.  This design DEPENDS on always having
1215 		 * some mapping resources in the pool for stealing, so we
1216 		 * must make sure we NEVER let the pool become empty. -gwr
1217 		 */
1218 		panic("get_a_table: out of A tables.");
1219 	}
1220 
1221 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1222 	/*
1223 	 * If the table has a non-null parent pointer then it is in use.
1224 	 * Forcibly abduct it from its parent and clear its entries.
1225 	 * No re-entrancy worries here.  This table would not be in the
1226 	 * table pool unless it was available for use.
1227 	 *
1228 	 * Note that the second argument to free_a_table() is FALSE.  This
1229 	 * indicates that the table should not be relinked into the A table
1230 	 * pool.  That is a job for the function that called us.
1231 	 */
1232 	if (tbl->at_parent) {
1233 		pmap = tbl->at_parent;
1234 		free_a_table(tbl, FALSE);
1235 		pmap->pm_a_tmgr = NULL;
1236 		pmap->pm_a_phys = kernAphys;
1237 	}
1238 	return tbl;
1239 }
1240 
1241 /* get_b_table			INTERNAL
1242  **
1243  * Return a level B table for use.
1244  */
1245 b_tmgr_t *
1246 get_b_table()
1247 {
1248 	b_tmgr_t *tbl;
1249 
1250 	/* See 'get_a_table' for comments. */
1251 	tbl = b_pool.tqh_first;
1252 	if (tbl == NULL)
1253 		panic("get_b_table: out of B tables.");
1254 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1255 	if (tbl->bt_parent) {
1256 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1257 		tbl->bt_parent->at_ecnt--;
1258 		free_b_table(tbl, FALSE);
1259 	}
1260 	return tbl;
1261 }
1262 
1263 /* get_c_table			INTERNAL
1264  **
1265  * Return a level C table for use.
1266  */
1267 c_tmgr_t *
1268 get_c_table()
1269 {
1270 	c_tmgr_t *tbl;
1271 
1272 	/* See 'get_a_table' for comments */
1273 	tbl = c_pool.tqh_first;
1274 	if (tbl == NULL)
1275 		panic("get_c_table: out of C tables.");
1276 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1277 	if (tbl->ct_parent) {
1278 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1279 		tbl->ct_parent->bt_ecnt--;
1280 		free_c_table(tbl, FALSE);
1281 	}
1282 	return tbl;
1283 }
1284 
1285 /*
1286  * The following 'free_table' and 'steal_table' functions are called to
1287  * detach tables from their current obligations (parents and children) and
1288  * prepare them for reuse in another mapping.
1289  *
1290  * Free_table is used when the calling function will handle the fate
1291  * of the parent table, such as returning it to the free pool when it has
1292  * no valid entries.  Functions that do not want to handle this should
1293  * call steal_table, in which the parent table's descriptors and entry
1294  * count are automatically modified when this table is removed.
1295  */
1296 
1297 /* free_a_table			INTERNAL
1298  **
1299  * Unmaps the given A table and all child tables from their current
1300  * mappings.  Returns the number of pages that were invalidated.
1301  * If 'relink' is true, the function will return the table to the head
1302  * of the available table pool.
1303  *
1304  * Cache note: The MC68851 will automatically flush all
1305  * descriptors derived from a given A table from its
1306  * Automatic Translation Cache (ATC) if we issue a
1307  * 'PFLUSHR' instruction with the base address of the
1308  * table.  This function should do, and does so.
1309  * Note note: We are using an MC68030 - there is no
1310  * PFLUSHR.
1311  */
1312 int
1313 free_a_table(a_tbl, relink)
1314 	a_tmgr_t *a_tbl;
1315 	boolean_t relink;
1316 {
1317 	int i, removed_cnt;
1318 	mmu_long_dte_t	*dte;
1319 	mmu_short_dte_t *dtbl;
1320 	b_tmgr_t	*tmgr;
1321 
1322 	/*
1323 	 * Flush the ATC cache of all cached descriptors derived
1324 	 * from this table.
1325 	 * Sun3x does not use 68851's cached table feature
1326 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1327 	 */
1328 
1329 	/*
1330 	 * Remove any pending cache flushes that were designated
1331 	 * for the pmap this A table belongs to.
1332 	 * a_tbl->parent->atc_flushq[0] = 0;
1333 	 * Not implemented in sun3x.
1334 	 */
1335 
1336 	/*
1337 	 * All A tables in the system should retain a map for the
1338 	 * kernel. If the table contains any valid descriptors
1339 	 * (other than those for the kernel area), invalidate them all,
1340 	 * stopping short of the kernel's entries.
1341 	 */
1342 	removed_cnt = 0;
1343 	if (a_tbl->at_ecnt) {
1344 		dte = a_tbl->at_dtbl;
1345 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
1346 			/*
1347 			 * If a table entry points to a valid B table, free
1348 			 * it and its children.
1349 			 */
1350 			if (MMU_VALID_DT(dte[i])) {
1351 				/*
1352 				 * The following block does several things,
1353 				 * from innermost expression to the
1354 				 * outermost:
1355 				 * 1) It extracts the base (cc 1996)
1356 				 *    address of the B table pointed
1357 				 *    to in the A table entry dte[i].
1358 				 * 2) It converts this base address into
1359 				 *    the virtual address it can be
1360 				 *    accessed with. (all MMU tables point
1361 				 *    to physical addresses.)
1362 				 * 3) It finds the corresponding manager
1363 				 *    structure which manages this MMU table.
1364 				 * 4) It frees the manager structure.
1365 				 *    (This frees the MMU table and all
1366 				 *    child tables. See 'free_b_table' for
1367 				 *    details.)
1368 				 */
1369 				dtbl = mmu_ptov(dte[i].addr.raw);
1370 				tmgr = mmuB2tmgr(dtbl);
1371 				removed_cnt += free_b_table(tmgr, TRUE);
1372 				dte[i].attr.raw = MMU_DT_INVALID;
1373 			}
1374 		}
1375 		a_tbl->at_ecnt = 0;
1376 	}
1377 	if (relink) {
1378 		a_tbl->at_parent = NULL;
1379 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1380 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1381 	}
1382 	return removed_cnt;
1383 }
1384 
1385 /* free_b_table			INTERNAL
1386  **
1387  * Unmaps the given B table and all its children from their current
1388  * mappings.  Returns the number of pages that were invalidated.
1389  * (For comments, see 'free_a_table()').
1390  */
1391 int
1392 free_b_table(b_tbl, relink)
1393 	b_tmgr_t *b_tbl;
1394 	boolean_t relink;
1395 {
1396 	int i, removed_cnt;
1397 	mmu_short_dte_t *dte;
1398 	mmu_short_pte_t	*dtbl;
1399 	c_tmgr_t	*tmgr;
1400 
1401 	removed_cnt = 0;
1402 	if (b_tbl->bt_ecnt) {
1403 		dte = b_tbl->bt_dtbl;
1404 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
1405 			if (MMU_VALID_DT(dte[i])) {
1406 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1407 				tmgr = mmuC2tmgr(dtbl);
1408 				removed_cnt += free_c_table(tmgr, TRUE);
1409 				dte[i].attr.raw = MMU_DT_INVALID;
1410 			}
1411 		}
1412 		b_tbl->bt_ecnt = 0;
1413 	}
1414 
1415 	if (relink) {
1416 		b_tbl->bt_parent = NULL;
1417 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1418 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1419 	}
1420 	return removed_cnt;
1421 }
1422 
1423 /* free_c_table			INTERNAL
1424  **
1425  * Unmaps the given C table from use and returns it to the pool for
1426  * re-use.  Returns the number of pages that were invalidated.
1427  *
1428  * This function preserves any physical page modification information
1429  * contained in the page descriptors within the C table by calling
1430  * 'pmap_remove_pte().'
1431  */
1432 int
1433 free_c_table(c_tbl, relink)
1434 	c_tmgr_t *c_tbl;
1435 	boolean_t relink;
1436 {
1437 	int i, removed_cnt;
1438 
1439 	removed_cnt = 0;
1440 	if (c_tbl->ct_ecnt) {
1441 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
1442 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1443 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1444 				removed_cnt++;
1445 			}
1446 		}
1447 		c_tbl->ct_ecnt = 0;
1448 	}
1449 
1450 	if (relink) {
1451 		c_tbl->ct_parent = NULL;
1452 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1453 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1454 	}
1455 	return removed_cnt;
1456 }
1457 
1458 
1459 /* pmap_remove_pte			INTERNAL
1460  **
1461  * Unmap the given pte and preserve any page modification
1462  * information by transfering it to the pv head of the
1463  * physical page it maps to.  This function does not update
1464  * any reference counts because it is assumed that the calling
1465  * function will do so.
1466  */
1467 void
1468 pmap_remove_pte(pte)
1469 	mmu_short_pte_t *pte;
1470 {
1471 	u_short     pv_idx, targ_idx;
1472 	paddr_t     pa;
1473 	pv_t       *pv;
1474 
1475 	pa = MMU_PTE_PA(*pte);
1476 	if (is_managed(pa)) {
1477 		pv = pa2pv(pa);
1478 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1479 
1480 		/*
1481 		 * If the PTE being removed is the first (or only) PTE in
1482 		 * the list of PTEs currently mapped to this page, remove the
1483 		 * PTE by changing the index found on the PV head.  Otherwise
1484 		 * a linear search through the list will have to be executed
1485 		 * in order to find the PVE which points to the PTE being
1486 		 * removed, so that it may be modified to point to its new
1487 		 * neighbor.
1488 		 */
1489 
1490 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1491 		if (pv_idx == targ_idx) {
1492 			pv->pv_idx = pvebase[targ_idx].pve_next;
1493 		} else {
1494 
1495 			/*
1496 			 * Find the PV element pointing to the target
1497 			 * element.  Note: may have pv_idx==PVE_EOL
1498 			 */
1499 
1500 			for (;;) {
1501 				if (pv_idx == PVE_EOL) {
1502 					goto pv_not_found;
1503 				}
1504 				if (pvebase[pv_idx].pve_next == targ_idx)
1505 					break;
1506 				pv_idx = pvebase[pv_idx].pve_next;
1507 			}
1508 
1509 			/*
1510 			 * At this point, pv_idx is the index of the PV
1511 			 * element just before the target element in the list.
1512 			 * Unlink the target.
1513 			 */
1514 
1515 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1516 		}
1517 
1518 		/*
1519 		 * Save the mod/ref bits of the pte by simply
1520 		 * ORing the entire pte onto the pv_flags member
1521 		 * of the pv structure.
1522 		 * There is no need to use a separate bit pattern
1523 		 * for usage information on the pv head than that
1524 		 * which is used on the MMU ptes.
1525 		 */
1526 
1527 pv_not_found:
1528 		pv->pv_flags |= (u_short) pte->attr.raw;
1529 	}
1530 	pte->attr.raw = MMU_DT_INVALID;
1531 }
1532 
1533 /* pmap_stroll			INTERNAL
1534  **
1535  * Retrieve the addresses of all table managers involved in the mapping of
1536  * the given virtual address.  If the table walk completed successfully,
1537  * return TRUE.  If it was only partially successful, return FALSE.
1538  * The table walk performed by this function is important to many other
1539  * functions in this module.
1540  *
1541  * Note: This function ought to be easier to read.
1542  */
1543 boolean_t
1544 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1545 	pmap_t pmap;
1546 	vaddr_t va;
1547 	a_tmgr_t **a_tbl;
1548 	b_tmgr_t **b_tbl;
1549 	c_tmgr_t **c_tbl;
1550 	mmu_short_pte_t **pte;
1551 	int *a_idx, *b_idx, *pte_idx;
1552 {
1553 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1554 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1555 
1556 	if (pmap == pmap_kernel())
1557 		return FALSE;
1558 
1559 	/* Does the given pmap have its own A table? */
1560 	*a_tbl = pmap->pm_a_tmgr;
1561 	if (*a_tbl == NULL)
1562 		return FALSE; /* No.  Return unknown. */
1563 	/* Does the A table have a valid B table
1564 	 * under the corresponding table entry?
1565 	 */
1566 	*a_idx = MMU_TIA(va);
1567 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1568 	if (!MMU_VALID_DT(*a_dte))
1569 		return FALSE; /* No. Return unknown. */
1570 	/* Yes. Extract B table from the A table. */
1571 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1572 	/* Does the B table have a valid C table
1573 	 * under the corresponding table entry?
1574 	 */
1575 	*b_idx = MMU_TIB(va);
1576 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1577 	if (!MMU_VALID_DT(*b_dte))
1578 		return FALSE; /* No. Return unknown. */
1579 	/* Yes. Extract C table from the B table. */
1580 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1581 	*pte_idx = MMU_TIC(va);
1582 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1583 
1584 	return	TRUE;
1585 }
1586 
1587 /* pmap_enter			INTERFACE
1588  **
1589  * Called by the kernel to map a virtual address
1590  * to a physical address in the given process map.
1591  *
1592  * Note: this function should apply an exclusive lock
1593  * on the pmap system for its duration.  (it certainly
1594  * would save my hair!!)
1595  * This function ought to be easier to read.
1596  */
1597 int
1598 pmap_enter(pmap, va, pa, prot, flags)
1599 	pmap_t	pmap;
1600 	vaddr_t va;
1601 	paddr_t pa;
1602 	vm_prot_t prot;
1603 	int flags;
1604 {
1605 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
1606 	u_short nidx;            /* PV list index                     */
1607 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1608 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1609 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1610 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1611 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1612 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1613 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1614 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1615 	pv_t      *pv;           /* pv list head                      */
1616 	boolean_t wired;         /* is the mapping to be wired?       */
1617 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1618 
1619 	if (pmap == pmap_kernel()) {
1620 		pmap_enter_kernel(va, pa, prot);
1621 		return 0;
1622 	}
1623 
1624 	/*
1625 	 * Determine if the mapping should be wired.
1626 	 */
1627 	wired = ((flags & PMAP_WIRED) != 0);
1628 
1629 	/*
1630 	 * NOTE1:
1631 	 *
1632 	 * On November 13, 1999, someone changed the pmap_enter() API such
1633 	 * that it now accepts a 'flags' argument.  This new argument
1634 	 * contains bit-flags for the architecture-independent (UVM) system to
1635 	 * use in signalling certain mapping requirements to the architecture-
1636 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1637 	 * one of the flags within it.
1638 	 *
1639 	 * In addition to flags signaled by the architecture-independent
1640 	 * system, parts of the architecture-dependent section of the sun3x
1641 	 * kernel pass their own flags in the lower, unused bits of the
1642 	 * physical address supplied to this function.  These flags are
1643 	 * extracted and stored in the temporary variable 'mapflags'.
1644 	 *
1645 	 * Extract sun3x specific flags from the physical address.
1646 	 */
1647 	mapflags  = (pa & ~MMU_PAGE_MASK);
1648 	pa       &= MMU_PAGE_MASK;
1649 
1650 	/*
1651 	 * Determine if the physical address being mapped is on-board RAM.
1652 	 * Any other area of the address space is likely to belong to a
1653 	 * device and hence it would be disasterous to cache its contents.
1654 	 */
1655 	if ((managed = is_managed(pa)) == FALSE)
1656 		mapflags |= PMAP_NC;
1657 
1658 	/*
1659 	 * For user mappings we walk along the MMU tables of the given
1660 	 * pmap, reaching a PTE which describes the virtual page being
1661 	 * mapped or changed.  If any level of the walk ends in an invalid
1662 	 * entry, a table must be allocated and the entry must be updated
1663 	 * to point to it.
1664 	 * There is a bit of confusion as to whether this code must be
1665 	 * re-entrant.  For now we will assume it is.  To support
1666 	 * re-entrancy we must unlink tables from the table pool before
1667 	 * we assume we may use them.  Tables are re-linked into the pool
1668 	 * when we are finished with them at the end of the function.
1669 	 * But I don't feel like doing that until we have proof that this
1670 	 * needs to be re-entrant.
1671 	 * 'llevel' records which tables need to be relinked.
1672 	 */
1673 	llevel = NONE;
1674 
1675 	/*
1676 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1677 	 * A table, allocate a new one from the available pool.
1678 	 */
1679 
1680 	a_tbl = pmap->pm_a_tmgr;
1681 	if (a_tbl == NULL) {
1682 		/*
1683 		 * This pmap does not currently have an A table.  Allocate
1684 		 * a new one.
1685 		 */
1686 		a_tbl = get_a_table();
1687 		a_tbl->at_parent = pmap;
1688 
1689 		/*
1690 		 * Assign this new A table to the pmap, and calculate its
1691 		 * physical address so that loadcrp() can be used to make
1692 		 * the table active.
1693 		 */
1694 		pmap->pm_a_tmgr = a_tbl;
1695 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1696 
1697 		/*
1698 		 * If the process receiving a new A table is the current
1699 		 * process, we are responsible for setting the MMU so that
1700 		 * it becomes the current address space.  This only adds
1701 		 * new mappings, so no need to flush anything.
1702 		 */
1703 		if (pmap == current_pmap()) {
1704 			kernel_crp.rp_addr = pmap->pm_a_phys;
1705 			loadcrp(&kernel_crp);
1706 		}
1707 
1708 		if (!wired)
1709 			llevel = NEWA;
1710 	} else {
1711 		/*
1712 		 * Use the A table already allocated for this pmap.
1713 		 * Unlink it from the A table pool if necessary.
1714 		 */
1715 		if (wired && !a_tbl->at_wcnt)
1716 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1717 	}
1718 
1719 	/*
1720 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1721 	 * allocate one.
1722 	 */
1723 
1724 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1725 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1726 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1727 		/* The descriptor is valid.  Use the B table it points to. */
1728 		/*************************************
1729 		 *               a_idx               *
1730 		 *                 v                 *
1731 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1732 		 *          | | | | | | | | | | | |  *
1733 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1734 		 *                 |                 *
1735 		 *                 \- b_tbl -> +-+-  *
1736 		 *                             | |   *
1737 		 *                             +-+-  *
1738 		 *************************************/
1739 		b_dte = mmu_ptov(a_dte->addr.raw);
1740 		b_tbl = mmuB2tmgr(b_dte);
1741 
1742 		/*
1743 		 * If the requested mapping must be wired, but this table
1744 		 * being used to map it is not, the table must be removed
1745 		 * from the available pool and its wired entry count
1746 		 * incremented.
1747 		 */
1748 		if (wired && !b_tbl->bt_wcnt) {
1749 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1750 			a_tbl->at_wcnt++;
1751 		}
1752 	} else {
1753 		/* The descriptor is invalid.  Allocate a new B table. */
1754 		b_tbl = get_b_table();
1755 
1756 		/* Point the parent A table descriptor to this new B table. */
1757 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1758 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1759 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1760 
1761 		/* Create the necessary back references to the parent table */
1762 		b_tbl->bt_parent = a_tbl;
1763 		b_tbl->bt_pidx = a_idx;
1764 
1765 		/*
1766 		 * If this table is to be wired, make sure the parent A table
1767 		 * wired count is updated to reflect that it has another wired
1768 		 * entry.
1769 		 */
1770 		if (wired)
1771 			a_tbl->at_wcnt++;
1772 		else if (llevel == NONE)
1773 			llevel = NEWB;
1774 	}
1775 
1776 	/*
1777 	 * Step 3 - Walk into the C table, if there is no valid C table,
1778 	 * allocate one.
1779 	 */
1780 
1781 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1782 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1783 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1784 		/* The descriptor is valid.  Use the C table it points to. */
1785 		/**************************************
1786 		 *               c_idx                *
1787 		 * |                v                 *
1788 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1789 		 *             | | | | | | | | | | |  *
1790 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1791 		 *                  |                 *
1792 		 *                  \- c_tbl -> +-+-- *
1793 		 *                              | | | *
1794 		 *                              +-+-- *
1795 		 **************************************/
1796 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1797 		c_tbl = mmuC2tmgr(c_pte);
1798 
1799 		/* If mapping is wired and table is not */
1800 		if (wired && !c_tbl->ct_wcnt) {
1801 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1802 			b_tbl->bt_wcnt++;
1803 		}
1804 	} else {
1805 		/* The descriptor is invalid.  Allocate a new C table. */
1806 		c_tbl = get_c_table();
1807 
1808 		/* Point the parent B table descriptor to this new C table. */
1809 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1810 		b_dte->attr.raw |= MMU_DT_SHORT;
1811 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1812 
1813 		/* Create the necessary back references to the parent table */
1814 		c_tbl->ct_parent = b_tbl;
1815 		c_tbl->ct_pidx = b_idx;
1816 		/*
1817 		 * Store the pmap and base virtual managed address for faster
1818 		 * retrieval in the PV functions.
1819 		 */
1820 		c_tbl->ct_pmap = pmap;
1821 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1822 
1823 		/*
1824 		 * If this table is to be wired, make sure the parent B table
1825 		 * wired count is updated to reflect that it has another wired
1826 		 * entry.
1827 		 */
1828 		if (wired)
1829 			b_tbl->bt_wcnt++;
1830 		else if (llevel == NONE)
1831 			llevel = NEWC;
1832 	}
1833 
1834 	/*
1835 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1836 	 * slot of the C table, describing the PA to which the VA is mapped.
1837 	 */
1838 
1839 	pte_idx = MMU_TIC(va);
1840 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1841 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1842 		/*
1843 		 * The PTE is currently valid.  This particular call
1844 		 * is just a synonym for one (or more) of the following
1845 		 * operations:
1846 		 *     change protection of a page
1847 		 *     change wiring status of a page
1848 		 *     remove the mapping of a page
1849 		 *
1850 		 * XXX - Semi critical: This code should unwire the PTE
1851 		 * and, possibly, associated parent tables if this is a
1852 		 * change wiring operation.  Currently it does not.
1853 		 *
1854 		 * This may be ok if pmap_unwire() is the only
1855 		 * interface used to UNWIRE a page.
1856 		 */
1857 
1858 		/* First check if this is a wiring operation. */
1859 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1860 			/*
1861 			 * The PTE is already wired.  To prevent it from being
1862 			 * counted as a new wiring operation, reset the 'wired'
1863 			 * variable.
1864 			 */
1865 			wired = FALSE;
1866 		}
1867 
1868 		/* Is the new address the same as the old? */
1869 		if (MMU_PTE_PA(*c_pte) == pa) {
1870 			/*
1871 			 * Yes, mark that it does not need to be reinserted
1872 			 * into the PV list.
1873 			 */
1874 			insert = FALSE;
1875 
1876 			/*
1877 			 * Clear all but the modified, referenced and wired
1878 			 * bits on the PTE.
1879 			 */
1880 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1881 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1882 		} else {
1883 			/* No, remove the old entry */
1884 			pmap_remove_pte(c_pte);
1885 			insert = TRUE;
1886 		}
1887 
1888 		/*
1889 		 * TLB flush is only necessary if modifying current map.
1890 		 * However, in pmap_enter(), the pmap almost always IS
1891 		 * the current pmap, so don't even bother to check.
1892 		 */
1893 		TBIS(va);
1894 	} else {
1895 		/*
1896 		 * The PTE is invalid.  Increment the valid entry count in
1897 		 * the C table manager to reflect the addition of a new entry.
1898 		 */
1899 		c_tbl->ct_ecnt++;
1900 
1901 		/* XXX - temporarily make sure the PTE is cleared. */
1902 		c_pte->attr.raw = 0;
1903 
1904 		/* It will also need to be inserted into the PV list. */
1905 		insert = TRUE;
1906 	}
1907 
1908 	/*
1909 	 * If page is changing from unwired to wired status, set an unused bit
1910 	 * within the PTE to indicate that it is wired.  Also increment the
1911 	 * wired entry count in the C table manager.
1912 	 */
1913 	if (wired) {
1914 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1915 		c_tbl->ct_wcnt++;
1916 	}
1917 
1918 	/*
1919 	 * Map the page, being careful to preserve modify/reference/wired
1920 	 * bits.  At this point it is assumed that the PTE either has no bits
1921 	 * set, or if there are set bits, they are only modified, reference or
1922 	 * wired bits.  If not, the following statement will cause erratic
1923 	 * behavior.
1924 	 */
1925 #ifdef	PMAP_DEBUG
1926 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1927 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1928 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1929 		Debugger();
1930 	}
1931 #endif
1932 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1933 
1934 	/*
1935 	 * If the mapping should be read-only, set the write protect
1936 	 * bit in the PTE.
1937 	 */
1938 	if (!(prot & VM_PROT_WRITE))
1939 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1940 
1941 	/*
1942 	 * If the mapping should be cache inhibited (indicated by the flag
1943 	 * bits found on the lower order of the physical address.)
1944 	 * mark the PTE as a cache inhibited page.
1945 	 */
1946 	if (mapflags & PMAP_NC)
1947 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1948 
1949 	/*
1950 	 * If the physical address being mapped is managed by the PV
1951 	 * system then link the pte into the list of pages mapped to that
1952 	 * address.
1953 	 */
1954 	if (insert && managed) {
1955 		pv = pa2pv(pa);
1956 		nidx = pteidx(c_pte);
1957 
1958 		pvebase[nidx].pve_next = pv->pv_idx;
1959 		pv->pv_idx = nidx;
1960 	}
1961 
1962 	/* Move any allocated tables back into the active pool. */
1963 
1964 	switch (llevel) {
1965 		case NEWA:
1966 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1967 			/* FALLTHROUGH */
1968 		case NEWB:
1969 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1970 			/* FALLTHROUGH */
1971 		case NEWC:
1972 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1973 			/* FALLTHROUGH */
1974 		default:
1975 			break;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 /* pmap_enter_kernel			INTERNAL
1982  **
1983  * Map the given virtual address to the given physical address within the
1984  * kernel address space.  This function exists because the kernel map does
1985  * not do dynamic table allocation.  It consists of a contiguous array of ptes
1986  * and can be edited directly without the need to walk through any tables.
1987  *
1988  * XXX: "Danger, Will Robinson!"
1989  * Note that the kernel should never take a fault on any page
1990  * between [ KERNBASE .. virtual_avail ] and this is checked in
1991  * trap.c for kernel-mode MMU faults.  This means that mappings
1992  * created in that range must be implicily wired. -gwr
1993  */
1994 void
1995 pmap_enter_kernel(va, pa, prot)
1996 	vaddr_t va;
1997 	paddr_t pa;
1998 	vm_prot_t   prot;
1999 {
2000 	boolean_t       was_valid, insert;
2001 	u_short         pte_idx;
2002 	int             flags;
2003 	mmu_short_pte_t *pte;
2004 	pv_t            *pv;
2005 	paddr_t     old_pa;
2006 
2007 	flags = (pa & ~MMU_PAGE_MASK);
2008 	pa &= MMU_PAGE_MASK;
2009 
2010 	if (is_managed(pa))
2011 		insert = TRUE;
2012 	else
2013 		insert = FALSE;
2014 
2015 	/*
2016 	 * Calculate the index of the PTE being modified.
2017 	 */
2018 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
2019 
2020 	/* This array is traditionally named "Sysmap" */
2021 	pte = &kernCbase[pte_idx];
2022 
2023 	if (MMU_VALID_DT(*pte)) {
2024 		was_valid = TRUE;
2025 		/*
2026 		 * If the PTE already maps a different
2027 		 * physical address, umap and pv_unlink.
2028 		 */
2029 		old_pa = MMU_PTE_PA(*pte);
2030 		if (pa != old_pa)
2031 			pmap_remove_pte(pte);
2032 		else {
2033 		    /*
2034 		     * Old PA and new PA are the same.  No need to
2035 		     * relink the mapping within the PV list.
2036 		     */
2037 		     insert = FALSE;
2038 
2039 		    /*
2040 		     * Save any mod/ref bits on the PTE.
2041 		     */
2042 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2043 		}
2044 	} else {
2045 		pte->attr.raw = MMU_DT_INVALID;
2046 		was_valid = FALSE;
2047 	}
2048 
2049 	/*
2050 	 * Map the page.  Being careful to preserve modified/referenced bits
2051 	 * on the PTE.
2052 	 */
2053 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2054 
2055 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2056 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2057 	if (flags & PMAP_NC)
2058 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2059 	if (was_valid)
2060 		TBIS(va);
2061 
2062 	/*
2063 	 * Insert the PTE into the PV system, if need be.
2064 	 */
2065 	if (insert) {
2066 		pv = pa2pv(pa);
2067 		pvebase[pte_idx].pve_next = pv->pv_idx;
2068 		pv->pv_idx = pte_idx;
2069 	}
2070 }
2071 
2072 void
2073 pmap_kenter_pa(va, pa, prot)
2074 	vaddr_t va;
2075 	paddr_t pa;
2076 	vm_prot_t prot;
2077 {
2078 	mmu_short_pte_t	*pte;
2079 
2080 	/* This array is traditionally named "Sysmap" */
2081 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2082 
2083 	KASSERT(!MMU_VALID_DT(*pte));
2084 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2085 	if (!(prot & VM_PROT_WRITE))
2086 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2087 }
2088 
2089 void
2090 pmap_kremove(va, len)
2091 	vaddr_t va;
2092 	vsize_t len;
2093 {
2094 	int idx, eidx;
2095 
2096 #ifdef	PMAP_DEBUG
2097 	if ((sva & PGOFSET) || (eva & PGOFSET))
2098 		panic("pmap_kremove: alignment");
2099 #endif
2100 
2101 	idx  = m68k_btop(va - KERNBASE);
2102 	eidx = m68k_btop(va + len - KERNBASE);
2103 
2104 	while (idx < eidx) {
2105 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2106 		TBIS(va);
2107 		va += PAGE_SIZE;
2108 	}
2109 }
2110 
2111 /* pmap_map			INTERNAL
2112  **
2113  * Map a contiguous range of physical memory into a contiguous range of
2114  * the kernel virtual address space.
2115  *
2116  * Used for device mappings and early mapping of the kernel text/data/bss.
2117  * Returns the first virtual address beyond the end of the range.
2118  */
2119 vaddr_t
2120 pmap_map(va, pa, endpa, prot)
2121 	vaddr_t	va;
2122 	paddr_t	pa;
2123 	paddr_t	endpa;
2124 	int		prot;
2125 {
2126 	int sz;
2127 
2128 	sz = endpa - pa;
2129 	do {
2130 		pmap_enter_kernel(va, pa, prot);
2131 		va += PAGE_SIZE;
2132 		pa += PAGE_SIZE;
2133 		sz -= PAGE_SIZE;
2134 	} while (sz > 0);
2135 	pmap_update(pmap_kernel());
2136 	return(va);
2137 }
2138 
2139 /* pmap_protect			INTERFACE
2140  **
2141  * Apply the given protection to the given virtual address range within
2142  * the given map.
2143  *
2144  * It is ok for the protection applied to be stronger than what is
2145  * specified.  We use this to our advantage when the given map has no
2146  * mapping for the virtual address.  By skipping a page when this
2147  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2148  * and therefore do not need to map the page just to apply a protection
2149  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2150  *
2151  * XXX - This function could be speeded up by using pmap_stroll() for inital
2152  *       setup, and then manual scrolling in the for() loop.
2153  */
2154 void
2155 pmap_protect(pmap, startva, endva, prot)
2156 	pmap_t pmap;
2157 	vaddr_t startva, endva;
2158 	vm_prot_t prot;
2159 {
2160 	boolean_t iscurpmap;
2161 	int a_idx, b_idx, c_idx;
2162 	a_tmgr_t *a_tbl;
2163 	b_tmgr_t *b_tbl;
2164 	c_tmgr_t *c_tbl;
2165 	mmu_short_pte_t *pte;
2166 
2167 	if (pmap == pmap_kernel()) {
2168 		pmap_protect_kernel(startva, endva, prot);
2169 		return;
2170 	}
2171 
2172 	/*
2173 	 * In this particular pmap implementation, there are only three
2174 	 * types of memory protection: 'all' (read/write/execute),
2175 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2176 	 * It is not possible for us to treat 'executable' as a separate
2177 	 * protection type.  Therefore, protection requests that seek to
2178 	 * remove execute permission while retaining read or write, and those
2179 	 * that make little sense (write-only for example) are ignored.
2180 	 */
2181 	switch (prot) {
2182 		case VM_PROT_NONE:
2183 			/*
2184 			 * A request to apply the protection code of
2185 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2186 			 */
2187 			pmap_remove(pmap, startva, endva);
2188 			return;
2189 		case	VM_PROT_EXECUTE:
2190 		case	VM_PROT_READ:
2191 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2192 			/* continue */
2193 			break;
2194 		case	VM_PROT_WRITE:
2195 		case	VM_PROT_WRITE|VM_PROT_READ:
2196 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2197 		case	VM_PROT_ALL:
2198 			/* None of these should happen in a sane system. */
2199 			return;
2200 	}
2201 
2202 	/*
2203 	 * If the pmap has no A table, it has no mappings and therefore
2204 	 * there is nothing to protect.
2205 	 */
2206 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2207 		return;
2208 
2209 	a_idx = MMU_TIA(startva);
2210 	b_idx = MMU_TIB(startva);
2211 	c_idx = MMU_TIC(startva);
2212 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
2213 
2214 	iscurpmap = (pmap == current_pmap());
2215 	while (startva < endva) {
2216 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2217 		  if (b_tbl == NULL) {
2218 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2219 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2220 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2221 		  }
2222 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2223 		    if (c_tbl == NULL) {
2224 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2225 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2226 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2227 		    }
2228 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2229 		      pte = &c_tbl->ct_dtbl[c_idx];
2230 		      /* make the mapping read-only */
2231 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2232 		      /*
2233 		       * If we just modified the current address space,
2234 		       * flush any translations for the modified page from
2235 		       * the translation cache and any data from it in the
2236 		       * data cache.
2237 		       */
2238 		      if (iscurpmap)
2239 		          TBIS(startva);
2240 		    }
2241 		    startva += PAGE_SIZE;
2242 
2243 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2244 		      c_tbl = NULL;
2245 		      c_idx = 0;
2246 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2247 		        b_tbl = NULL;
2248 		        b_idx = 0;
2249 		      }
2250 		    }
2251 		  } else { /* C table wasn't valid */
2252 		    c_tbl = NULL;
2253 		    c_idx = 0;
2254 		    startva += MMU_TIB_RANGE;
2255 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2256 		      b_tbl = NULL;
2257 		      b_idx = 0;
2258 		    }
2259 		  } /* C table */
2260 		} else { /* B table wasn't valid */
2261 		  b_tbl = NULL;
2262 		  b_idx = 0;
2263 		  startva += MMU_TIA_RANGE;
2264 		  a_idx++;
2265 		} /* B table */
2266 	}
2267 }
2268 
2269 /* pmap_protect_kernel			INTERNAL
2270  **
2271  * Apply the given protection code to a kernel address range.
2272  */
2273 void
2274 pmap_protect_kernel(startva, endva, prot)
2275 	vaddr_t startva, endva;
2276 	vm_prot_t prot;
2277 {
2278 	vaddr_t va;
2279 	mmu_short_pte_t *pte;
2280 
2281 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2282 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2283 		if (MMU_VALID_DT(*pte)) {
2284 		    switch (prot) {
2285 		        case VM_PROT_ALL:
2286 		            break;
2287 		        case VM_PROT_EXECUTE:
2288 		        case VM_PROT_READ:
2289 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2290 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2291 		            break;
2292 		        case VM_PROT_NONE:
2293 		            /* this is an alias for 'pmap_remove_kernel' */
2294 		            pmap_remove_pte(pte);
2295 		            break;
2296 		        default:
2297 		            break;
2298 		    }
2299 		    /*
2300 		     * since this is the kernel, immediately flush any cached
2301 		     * descriptors for this address.
2302 		     */
2303 		    TBIS(va);
2304 		}
2305 	}
2306 }
2307 
2308 /* pmap_unwire				INTERFACE
2309  **
2310  * Clear the wired attribute of the specified page.
2311  *
2312  * This function is called from vm_fault.c to unwire
2313  * a mapping.
2314  */
2315 void
2316 pmap_unwire(pmap, va)
2317 	pmap_t pmap;
2318 	vaddr_t va;
2319 {
2320 	int a_idx, b_idx, c_idx;
2321 	a_tmgr_t *a_tbl;
2322 	b_tmgr_t *b_tbl;
2323 	c_tmgr_t *c_tbl;
2324 	mmu_short_pte_t *pte;
2325 
2326 	/* Kernel mappings always remain wired. */
2327 	if (pmap == pmap_kernel())
2328 		return;
2329 
2330 	/*
2331 	 * Walk through the tables.  If the walk terminates without
2332 	 * a valid PTE then the address wasn't wired in the first place.
2333 	 * Return immediately.
2334 	 */
2335 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2336 		&b_idx, &c_idx) == FALSE)
2337 		return;
2338 
2339 
2340 	/* Is the PTE wired?  If not, return. */
2341 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2342 		return;
2343 
2344 	/* Remove the wiring bit. */
2345 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2346 
2347 	/*
2348 	 * Decrement the wired entry count in the C table.
2349 	 * If it reaches zero the following things happen:
2350 	 * 1. The table no longer has any wired entries and is considered
2351 	 *    unwired.
2352 	 * 2. It is placed on the available queue.
2353 	 * 3. The parent table's wired entry count is decremented.
2354 	 * 4. If it reaches zero, this process repeats at step 1 and
2355 	 *    stops at after reaching the A table.
2356 	 */
2357 	if (--c_tbl->ct_wcnt == 0) {
2358 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2359 		if (--b_tbl->bt_wcnt == 0) {
2360 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2361 			if (--a_tbl->at_wcnt == 0) {
2362 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2363 			}
2364 		}
2365 	}
2366 }
2367 
2368 /* pmap_copy				INTERFACE
2369  **
2370  * Copy the mappings of a range of addresses in one pmap, into
2371  * the destination address of another.
2372  *
2373  * This routine is advisory.  Should we one day decide that MMU tables
2374  * may be shared by more than one pmap, this function should be used to
2375  * link them together.  Until that day however, we do nothing.
2376  */
2377 void
2378 pmap_copy(pmap_a, pmap_b, dst, len, src)
2379 	pmap_t pmap_a, pmap_b;
2380 	vaddr_t dst;
2381 	vsize_t len;
2382 	vaddr_t src;
2383 {
2384 	/* not implemented. */
2385 }
2386 
2387 /* pmap_copy_page			INTERFACE
2388  **
2389  * Copy the contents of one physical page into another.
2390  *
2391  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2392  * to map the two specified physical pages into the kernel address space.
2393  *
2394  * Note: We could use the transparent translation registers to make the
2395  * mappings.  If we do so, be sure to disable interrupts before using them.
2396  */
2397 void
2398 pmap_copy_page(srcpa, dstpa)
2399 	paddr_t srcpa, dstpa;
2400 {
2401 	vaddr_t srcva, dstva;
2402 	int s;
2403 
2404 	srcva = tmp_vpages[0];
2405 	dstva = tmp_vpages[1];
2406 
2407 	s = splvm();
2408 #ifdef DIAGNOSTIC
2409 	if (tmp_vpages_inuse++)
2410 		panic("pmap_copy_page: temporary vpages are in use.");
2411 #endif
2412 
2413 	/* Map pages as non-cacheable to avoid cache polution? */
2414 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2415 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2416 
2417 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2418 	copypage((char *) srcva, (char *) dstva);
2419 
2420 	pmap_kremove(srcva, PAGE_SIZE);
2421 	pmap_kremove(dstva, PAGE_SIZE);
2422 
2423 #ifdef DIAGNOSTIC
2424 	--tmp_vpages_inuse;
2425 #endif
2426 	splx(s);
2427 }
2428 
2429 /* pmap_zero_page			INTERFACE
2430  **
2431  * Zero the contents of the specified physical page.
2432  *
2433  * Uses one of the virtual pages allocated in pmap_boostrap()
2434  * to map the specified page into the kernel address space.
2435  */
2436 void
2437 pmap_zero_page(dstpa)
2438 	paddr_t dstpa;
2439 {
2440 	vaddr_t dstva;
2441 	int s;
2442 
2443 	dstva = tmp_vpages[1];
2444 	s = splvm();
2445 #ifdef DIAGNOSTIC
2446 	if (tmp_vpages_inuse++)
2447 		panic("pmap_zero_page: temporary vpages are in use.");
2448 #endif
2449 
2450 	/* The comments in pmap_copy_page() above apply here also. */
2451 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2452 
2453 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2454 	zeropage((char *) dstva);
2455 
2456 	pmap_kremove(dstva, PAGE_SIZE);
2457 #ifdef DIAGNOSTIC
2458 	--tmp_vpages_inuse;
2459 #endif
2460 	splx(s);
2461 }
2462 
2463 /* pmap_collect			INTERFACE
2464  **
2465  * Called from the VM system when we are about to swap out
2466  * the process using this pmap.  This should give up any
2467  * resources held here, including all its MMU tables.
2468  */
2469 void
2470 pmap_collect(pmap)
2471 	pmap_t pmap;
2472 {
2473 	/* XXX - todo... */
2474 }
2475 
2476 /* pmap_create			INTERFACE
2477  **
2478  * Create and return a pmap structure.
2479  */
2480 pmap_t
2481 pmap_create()
2482 {
2483 	pmap_t	pmap;
2484 
2485 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2486 	pmap_pinit(pmap);
2487 	return pmap;
2488 }
2489 
2490 /* pmap_pinit			INTERNAL
2491  **
2492  * Initialize a pmap structure.
2493  */
2494 void
2495 pmap_pinit(pmap)
2496 	pmap_t pmap;
2497 {
2498 	memset(pmap, 0, sizeof(struct pmap));
2499 	pmap->pm_a_tmgr = NULL;
2500 	pmap->pm_a_phys = kernAphys;
2501 	pmap->pm_refcount = 1;
2502 	simple_lock_init(&pmap->pm_lock);
2503 }
2504 
2505 /* pmap_release				INTERFACE
2506  **
2507  * Release any resources held by the given pmap.
2508  *
2509  * This is the reverse analog to pmap_pinit.  It does not
2510  * necessarily mean for the pmap structure to be deallocated,
2511  * as in pmap_destroy.
2512  */
2513 void
2514 pmap_release(pmap)
2515 	pmap_t pmap;
2516 {
2517 	/*
2518 	 * As long as the pmap contains no mappings,
2519 	 * which always should be the case whenever
2520 	 * this function is called, there really should
2521 	 * be nothing to do.
2522 	 */
2523 #ifdef	PMAP_DEBUG
2524 	if (pmap == pmap_kernel())
2525 		panic("pmap_release: kernel pmap");
2526 #endif
2527 	/*
2528 	 * XXX - If this pmap has an A table, give it back.
2529 	 * The pmap SHOULD be empty by now, and pmap_remove
2530 	 * should have already given back the A table...
2531 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2532 	 * at this point, which means some mapping was not
2533 	 * removed when it should have been. -gwr
2534 	 */
2535 	if (pmap->pm_a_tmgr != NULL) {
2536 		/* First make sure we are not using it! */
2537 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2538 			kernel_crp.rp_addr = kernAphys;
2539 			loadcrp(&kernel_crp);
2540 		}
2541 #ifdef	PMAP_DEBUG /* XXX - todo! */
2542 		/* XXX - Now complain... */
2543 		printf("pmap_release: still have table\n");
2544 		Debugger();
2545 #endif
2546 		free_a_table(pmap->pm_a_tmgr, TRUE);
2547 		pmap->pm_a_tmgr = NULL;
2548 		pmap->pm_a_phys = kernAphys;
2549 	}
2550 }
2551 
2552 /* pmap_reference			INTERFACE
2553  **
2554  * Increment the reference count of a pmap.
2555  */
2556 void
2557 pmap_reference(pmap)
2558 	pmap_t pmap;
2559 {
2560 	pmap_lock(pmap);
2561 	pmap_add_ref(pmap);
2562 	pmap_unlock(pmap);
2563 }
2564 
2565 /* pmap_dereference			INTERNAL
2566  **
2567  * Decrease the reference count on the given pmap
2568  * by one and return the current count.
2569  */
2570 int
2571 pmap_dereference(pmap)
2572 	pmap_t pmap;
2573 {
2574 	int rtn;
2575 
2576 	pmap_lock(pmap);
2577 	rtn = pmap_del_ref(pmap);
2578 	pmap_unlock(pmap);
2579 
2580 	return rtn;
2581 }
2582 
2583 /* pmap_destroy			INTERFACE
2584  **
2585  * Decrement a pmap's reference count and delete
2586  * the pmap if it becomes zero.  Will be called
2587  * only after all mappings have been removed.
2588  */
2589 void
2590 pmap_destroy(pmap)
2591 	pmap_t pmap;
2592 {
2593 	if (pmap_dereference(pmap) == 0) {
2594 		pmap_release(pmap);
2595 		pool_put(&pmap_pmap_pool, pmap);
2596 	}
2597 }
2598 
2599 /* pmap_is_referenced			INTERFACE
2600  **
2601  * Determine if the given physical page has been
2602  * referenced (read from [or written to.])
2603  */
2604 boolean_t
2605 pmap_is_referenced(pg)
2606 	struct vm_page *pg;
2607 {
2608 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2609 	pv_t      *pv;
2610 	int       idx;
2611 
2612 	/*
2613 	 * Check the flags on the pv head.  If they are set,
2614 	 * return immediately.  Otherwise a search must be done.
2615 	 */
2616 
2617 	pv = pa2pv(pa);
2618 	if (pv->pv_flags & PV_FLAGS_USED)
2619 		return TRUE;
2620 
2621 	/*
2622 	 * Search through all pv elements pointing
2623 	 * to this page and query their reference bits
2624 	 */
2625 
2626 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2627 		if (MMU_PTE_USED(kernCbase[idx])) {
2628 			return TRUE;
2629 		}
2630 	}
2631 	return FALSE;
2632 }
2633 
2634 /* pmap_is_modified			INTERFACE
2635  **
2636  * Determine if the given physical page has been
2637  * modified (written to.)
2638  */
2639 boolean_t
2640 pmap_is_modified(pg)
2641 	struct vm_page *pg;
2642 {
2643 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2644 	pv_t      *pv;
2645 	int       idx;
2646 
2647 	/* see comments in pmap_is_referenced() */
2648 	pv = pa2pv(pa);
2649 	if (pv->pv_flags & PV_FLAGS_MDFY)
2650 		return TRUE;
2651 
2652 	for (idx = pv->pv_idx;
2653 		 idx != PVE_EOL;
2654 		 idx = pvebase[idx].pve_next) {
2655 
2656 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2657 			return TRUE;
2658 		}
2659 	}
2660 
2661 	return FALSE;
2662 }
2663 
2664 /* pmap_page_protect			INTERFACE
2665  **
2666  * Applies the given protection to all mappings to the given
2667  * physical page.
2668  */
2669 void
2670 pmap_page_protect(pg, prot)
2671 	struct vm_page *pg;
2672 	vm_prot_t prot;
2673 {
2674 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2675 	pv_t      *pv;
2676 	int       idx;
2677 	vaddr_t va;
2678 	struct mmu_short_pte_struct *pte;
2679 	c_tmgr_t  *c_tbl;
2680 	pmap_t    pmap, curpmap;
2681 
2682 	curpmap = current_pmap();
2683 	pv = pa2pv(pa);
2684 
2685 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2686 		pte = &kernCbase[idx];
2687 		switch (prot) {
2688 			case VM_PROT_ALL:
2689 				/* do nothing */
2690 				break;
2691 			case VM_PROT_EXECUTE:
2692 			case VM_PROT_READ:
2693 			case VM_PROT_READ|VM_PROT_EXECUTE:
2694 				/*
2695 				 * Determine the virtual address mapped by
2696 				 * the PTE and flush ATC entries if necessary.
2697 				 */
2698 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2699 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2700 				if (pmap == curpmap || pmap == pmap_kernel())
2701 					TBIS(va);
2702 				break;
2703 			case VM_PROT_NONE:
2704 				/* Save the mod/ref bits. */
2705 				pv->pv_flags |= pte->attr.raw;
2706 				/* Invalidate the PTE. */
2707 				pte->attr.raw = MMU_DT_INVALID;
2708 
2709 				/*
2710 				 * Update table counts.  And flush ATC entries
2711 				 * if necessary.
2712 				 */
2713 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2714 
2715 				/*
2716 				 * If the PTE belongs to the kernel map,
2717 				 * be sure to flush the page it maps.
2718 				 */
2719 				if (pmap == pmap_kernel()) {
2720 					TBIS(va);
2721 				} else {
2722 					/*
2723 					 * The PTE belongs to a user map.
2724 					 * update the entry count in the C
2725 					 * table to which it belongs and flush
2726 					 * the ATC if the mapping belongs to
2727 					 * the current pmap.
2728 					 */
2729 					c_tbl->ct_ecnt--;
2730 					if (pmap == curpmap)
2731 						TBIS(va);
2732 				}
2733 				break;
2734 			default:
2735 				break;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * If the protection code indicates that all mappings to the page
2741 	 * be removed, truncate the PV list to zero entries.
2742 	 */
2743 	if (prot == VM_PROT_NONE)
2744 		pv->pv_idx = PVE_EOL;
2745 }
2746 
2747 /* pmap_get_pteinfo		INTERNAL
2748  **
2749  * Called internally to find the pmap and virtual address within that
2750  * map to which the pte at the given index maps.  Also includes the PTE's C
2751  * table manager.
2752  *
2753  * Returns the pmap in the argument provided, and the virtual address
2754  * by return value.
2755  */
2756 vaddr_t
2757 pmap_get_pteinfo(idx, pmap, tbl)
2758 	u_int idx;
2759 	pmap_t *pmap;
2760 	c_tmgr_t **tbl;
2761 {
2762 	vaddr_t     va = 0;
2763 
2764 	/*
2765 	 * Determine if the PTE is a kernel PTE or a user PTE.
2766 	 */
2767 	if (idx >= NUM_KERN_PTES) {
2768 		/*
2769 		 * The PTE belongs to a user mapping.
2770 		 */
2771 		/* XXX: Would like an inline for this to validate idx... */
2772 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2773 
2774 		*pmap = (*tbl)->ct_pmap;
2775 		/*
2776 		 * To find the va to which the PTE maps, we first take
2777 		 * the table's base virtual address mapping which is stored
2778 		 * in ct_va.  We then increment this address by a page for
2779 		 * every slot skipped until we reach the PTE.
2780 		 */
2781 		va =    (*tbl)->ct_va;
2782 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2783 	} else {
2784 		/*
2785 		 * The PTE belongs to the kernel map.
2786 		 */
2787 		*pmap = pmap_kernel();
2788 
2789 		va = m68k_ptob(idx);
2790 		va += KERNBASE;
2791 	}
2792 
2793 	return va;
2794 }
2795 
2796 /* pmap_clear_modify			INTERFACE
2797  **
2798  * Clear the modification bit on the page at the specified
2799  * physical address.
2800  *
2801  */
2802 boolean_t
2803 pmap_clear_modify(pg)
2804 	struct vm_page *pg;
2805 {
2806 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2807 	boolean_t rv;
2808 
2809 	rv = pmap_is_modified(pg);
2810 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2811 	return rv;
2812 }
2813 
2814 /* pmap_clear_reference			INTERFACE
2815  **
2816  * Clear the referenced bit on the page at the specified
2817  * physical address.
2818  */
2819 boolean_t
2820 pmap_clear_reference(pg)
2821 	struct vm_page *pg;
2822 {
2823 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2824 	boolean_t rv;
2825 
2826 	rv = pmap_is_referenced(pg);
2827 	pmap_clear_pv(pa, PV_FLAGS_USED);
2828 	return rv;
2829 }
2830 
2831 /* pmap_clear_pv			INTERNAL
2832  **
2833  * Clears the specified flag from the specified physical address.
2834  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2835  *
2836  * Flag is one of:
2837  *   PV_FLAGS_MDFY - Page modified bit.
2838  *   PV_FLAGS_USED - Page used (referenced) bit.
2839  *
2840  * This routine must not only clear the flag on the pv list
2841  * head.  It must also clear the bit on every pte in the pv
2842  * list associated with the address.
2843  */
2844 void
2845 pmap_clear_pv(pa, flag)
2846 	paddr_t pa;
2847 	int flag;
2848 {
2849 	pv_t      *pv;
2850 	int       idx;
2851 	vaddr_t   va;
2852 	pmap_t          pmap;
2853 	mmu_short_pte_t *pte;
2854 	c_tmgr_t        *c_tbl;
2855 
2856 	pv = pa2pv(pa);
2857 	pv->pv_flags &= ~(flag);
2858 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2859 		pte = &kernCbase[idx];
2860 		pte->attr.raw &= ~(flag);
2861 
2862 		/*
2863 		 * The MC68030 MMU will not set the modified or
2864 		 * referenced bits on any MMU tables for which it has
2865 		 * a cached descriptor with its modify bit set.  To insure
2866 		 * that it will modify these bits on the PTE during the next
2867 		 * time it is written to or read from, we must flush it from
2868 		 * the ATC.
2869 		 *
2870 		 * Ordinarily it is only necessary to flush the descriptor
2871 		 * if it is used in the current address space.  But since I
2872 		 * am not sure that there will always be a notion of
2873 		 * 'the current address space' when this function is called,
2874 		 * I will skip the test and always flush the address.  It
2875 		 * does no harm.
2876 		 */
2877 
2878 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2879 		TBIS(va);
2880 	}
2881 }
2882 
2883 /* pmap_extract			INTERFACE
2884  **
2885  * Return the physical address mapped by the virtual address
2886  * in the specified pmap.
2887  *
2888  * Note: this function should also apply an exclusive lock
2889  * on the pmap system during its duration.
2890  */
2891 boolean_t
2892 pmap_extract(pmap, va, pap)
2893 	pmap_t pmap;
2894 	vaddr_t va;
2895 	paddr_t *pap;
2896 {
2897 	int a_idx, b_idx, pte_idx;
2898 	a_tmgr_t	*a_tbl;
2899 	b_tmgr_t	*b_tbl;
2900 	c_tmgr_t	*c_tbl;
2901 	mmu_short_pte_t	*c_pte;
2902 
2903 	if (pmap == pmap_kernel())
2904 		return pmap_extract_kernel(va, pap);
2905 
2906 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2907 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2908 		return FALSE;
2909 
2910 	if (!MMU_VALID_DT(*c_pte))
2911 		return FALSE;
2912 
2913 	if (pap != NULL)
2914 		*pap = MMU_PTE_PA(*c_pte);
2915 	return (TRUE);
2916 }
2917 
2918 /* pmap_extract_kernel		INTERNAL
2919  **
2920  * Extract a translation from the kernel address space.
2921  */
2922 boolean_t
2923 pmap_extract_kernel(va, pap)
2924 	vaddr_t va;
2925 	paddr_t *pap;
2926 {
2927 	mmu_short_pte_t *pte;
2928 
2929 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2930 	if (!MMU_VALID_DT(*pte))
2931 		return (FALSE);
2932 	if (pap != NULL)
2933 		*pap = MMU_PTE_PA(*pte);
2934 	return (TRUE);
2935 }
2936 
2937 /* pmap_remove_kernel		INTERNAL
2938  **
2939  * Remove the mapping of a range of virtual addresses from the kernel map.
2940  * The arguments are already page-aligned.
2941  */
2942 void
2943 pmap_remove_kernel(sva, eva)
2944 	vaddr_t sva;
2945 	vaddr_t eva;
2946 {
2947 	int idx, eidx;
2948 
2949 #ifdef	PMAP_DEBUG
2950 	if ((sva & PGOFSET) || (eva & PGOFSET))
2951 		panic("pmap_remove_kernel: alignment");
2952 #endif
2953 
2954 	idx  = m68k_btop(sva - KERNBASE);
2955 	eidx = m68k_btop(eva - KERNBASE);
2956 
2957 	while (idx < eidx) {
2958 		pmap_remove_pte(&kernCbase[idx++]);
2959 		TBIS(sva);
2960 		sva += PAGE_SIZE;
2961 	}
2962 }
2963 
2964 /* pmap_remove			INTERFACE
2965  **
2966  * Remove the mapping of a range of virtual addresses from the given pmap.
2967  *
2968  * If the range contains any wired entries, this function will probably create
2969  * disaster.
2970  */
2971 void
2972 pmap_remove(pmap, start, end)
2973 	pmap_t pmap;
2974 	vaddr_t start;
2975 	vaddr_t end;
2976 {
2977 
2978 	if (pmap == pmap_kernel()) {
2979 		pmap_remove_kernel(start, end);
2980 		return;
2981 	}
2982 
2983 	/*
2984 	 * If the pmap doesn't have an A table of its own, it has no mappings
2985 	 * that can be removed.
2986 	 */
2987 	if (pmap->pm_a_tmgr == NULL)
2988 		return;
2989 
2990 	/*
2991 	 * Remove the specified range from the pmap.  If the function
2992 	 * returns true, the operation removed all the valid mappings
2993 	 * in the pmap and freed its A table.  If this happened to the
2994 	 * currently loaded pmap, the MMU root pointer must be reloaded
2995 	 * with the default 'kernel' map.
2996 	 */
2997 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2998 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2999 			kernel_crp.rp_addr = kernAphys;
3000 			loadcrp(&kernel_crp);
3001 			/* will do TLB flush below */
3002 		}
3003 		pmap->pm_a_tmgr = NULL;
3004 		pmap->pm_a_phys = kernAphys;
3005 	}
3006 
3007 	/*
3008 	 * If we just modified the current address space,
3009 	 * make sure to flush the MMU cache.
3010 	 *
3011 	 * XXX - this could be an unecessarily large flush.
3012 	 * XXX - Could decide, based on the size of the VA range
3013 	 * to be removed, whether to flush "by pages" or "all".
3014 	 */
3015 	if (pmap == current_pmap())
3016 		TBIAU();
3017 }
3018 
3019 /* pmap_remove_a			INTERNAL
3020  **
3021  * This is function number one in a set of three that removes a range
3022  * of memory in the most efficient manner by removing the highest possible
3023  * tables from the memory space.  This particular function attempts to remove
3024  * as many B tables as it can, delegating the remaining fragmented ranges to
3025  * pmap_remove_b().
3026  *
3027  * If the removal operation results in an empty A table, the function returns
3028  * TRUE.
3029  *
3030  * It's ugly but will do for now.
3031  */
3032 boolean_t
3033 pmap_remove_a(a_tbl, start, end)
3034 	a_tmgr_t *a_tbl;
3035 	vaddr_t start;
3036 	vaddr_t end;
3037 {
3038 	boolean_t empty;
3039 	int idx;
3040 	vaddr_t nstart, nend;
3041 	b_tmgr_t *b_tbl;
3042 	mmu_long_dte_t  *a_dte;
3043 	mmu_short_dte_t *b_dte;
3044 
3045 	/*
3046 	 * The following code works with what I call a 'granularity
3047 	 * reduction algorithim'.  A range of addresses will always have
3048 	 * the following properties, which are classified according to
3049 	 * how the range relates to the size of the current granularity
3050 	 * - an A table entry:
3051 	 *
3052 	 *            1 2       3 4
3053 	 * -+---+---+---+---+---+---+---+-
3054 	 * -+---+---+---+---+---+---+---+-
3055 	 *
3056 	 * A range will always start on a granularity boundary, illustrated
3057 	 * by '+' signs in the table above, or it will start at some point
3058 	 * inbetween a granularity boundary, as illustrated by point 1.
3059 	 * The first step in removing a range of addresses is to remove the
3060 	 * range between 1 and 2, the nearest granularity boundary.  This
3061 	 * job is handled by the section of code governed by the
3062 	 * 'if (start < nstart)' statement.
3063 	 *
3064 	 * A range will always encompass zero or more intergral granules,
3065 	 * illustrated by points 2 and 3.  Integral granules are easy to
3066 	 * remove.  The removal of these granules is the second step, and
3067 	 * is handled by the code block 'if (nstart < nend)'.
3068 	 *
3069 	 * Lastly, a range will always end on a granularity boundary,
3070 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3071 	 * 4.  The last step involves removing this range and is handled by
3072 	 * the code block 'if (nend < end)'.
3073 	 */
3074 	nstart = MMU_ROUND_UP_A(start);
3075 	nend = MMU_ROUND_A(end);
3076 
3077 	if (start < nstart) {
3078 		/*
3079 		 * This block is executed if the range starts between
3080 		 * a granularity boundary.
3081 		 *
3082 		 * First find the DTE which is responsible for mapping
3083 		 * the start of the range.
3084 		 */
3085 		idx = MMU_TIA(start);
3086 		a_dte = &a_tbl->at_dtbl[idx];
3087 
3088 		/*
3089 		 * If the DTE is valid then delegate the removal of the sub
3090 		 * range to pmap_remove_b(), which can remove addresses at
3091 		 * a finer granularity.
3092 		 */
3093 		if (MMU_VALID_DT(*a_dte)) {
3094 			b_dte = mmu_ptov(a_dte->addr.raw);
3095 			b_tbl = mmuB2tmgr(b_dte);
3096 
3097 			/*
3098 			 * The sub range to be removed starts at the start
3099 			 * of the full range we were asked to remove, and ends
3100 			 * at the greater of:
3101 			 * 1. The end of the full range, -or-
3102 			 * 2. The end of the full range, rounded down to the
3103 			 *    nearest granularity boundary.
3104 			 */
3105 			if (end < nstart)
3106 				empty = pmap_remove_b(b_tbl, start, end);
3107 			else
3108 				empty = pmap_remove_b(b_tbl, start, nstart);
3109 
3110 			/*
3111 			 * If the removal resulted in an empty B table,
3112 			 * invalidate the DTE that points to it and decrement
3113 			 * the valid entry count of the A table.
3114 			 */
3115 			if (empty) {
3116 				a_dte->attr.raw = MMU_DT_INVALID;
3117 				a_tbl->at_ecnt--;
3118 			}
3119 		}
3120 		/*
3121 		 * If the DTE is invalid, the address range is already non-
3122 		 * existent and can simply be skipped.
3123 		 */
3124 	}
3125 	if (nstart < nend) {
3126 		/*
3127 		 * This block is executed if the range spans a whole number
3128 		 * multiple of granules (A table entries.)
3129 		 *
3130 		 * First find the DTE which is responsible for mapping
3131 		 * the start of the first granule involved.
3132 		 */
3133 		idx = MMU_TIA(nstart);
3134 		a_dte = &a_tbl->at_dtbl[idx];
3135 
3136 		/*
3137 		 * Remove entire sub-granules (B tables) one at a time,
3138 		 * until reaching the end of the range.
3139 		 */
3140 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3141 			if (MMU_VALID_DT(*a_dte)) {
3142 				/*
3143 				 * Find the B table manager for the
3144 				 * entry and free it.
3145 				 */
3146 				b_dte = mmu_ptov(a_dte->addr.raw);
3147 				b_tbl = mmuB2tmgr(b_dte);
3148 				free_b_table(b_tbl, TRUE);
3149 
3150 				/*
3151 				 * Invalidate the DTE that points to the
3152 				 * B table and decrement the valid entry
3153 				 * count of the A table.
3154 				 */
3155 				a_dte->attr.raw = MMU_DT_INVALID;
3156 				a_tbl->at_ecnt--;
3157 			}
3158 	}
3159 	if (nend < end) {
3160 		/*
3161 		 * This block is executed if the range ends beyond a
3162 		 * granularity boundary.
3163 		 *
3164 		 * First find the DTE which is responsible for mapping
3165 		 * the start of the nearest (rounded down) granularity
3166 		 * boundary.
3167 		 */
3168 		idx = MMU_TIA(nend);
3169 		a_dte = &a_tbl->at_dtbl[idx];
3170 
3171 		/*
3172 		 * If the DTE is valid then delegate the removal of the sub
3173 		 * range to pmap_remove_b(), which can remove addresses at
3174 		 * a finer granularity.
3175 		 */
3176 		if (MMU_VALID_DT(*a_dte)) {
3177 			/*
3178 			 * Find the B table manager for the entry
3179 			 * and hand it to pmap_remove_b() along with
3180 			 * the sub range.
3181 			 */
3182 			b_dte = mmu_ptov(a_dte->addr.raw);
3183 			b_tbl = mmuB2tmgr(b_dte);
3184 
3185 			empty = pmap_remove_b(b_tbl, nend, end);
3186 
3187 			/*
3188 			 * If the removal resulted in an empty B table,
3189 			 * invalidate the DTE that points to it and decrement
3190 			 * the valid entry count of the A table.
3191 			 */
3192 			if (empty) {
3193 				a_dte->attr.raw = MMU_DT_INVALID;
3194 				a_tbl->at_ecnt--;
3195 			}
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * If there are no more entries in the A table, release it
3201 	 * back to the available pool and return TRUE.
3202 	 */
3203 	if (a_tbl->at_ecnt == 0) {
3204 		a_tbl->at_parent = NULL;
3205 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3206 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3207 		empty = TRUE;
3208 	} else {
3209 		empty = FALSE;
3210 	}
3211 
3212 	return empty;
3213 }
3214 
3215 /* pmap_remove_b			INTERNAL
3216  **
3217  * Remove a range of addresses from an address space, trying to remove entire
3218  * C tables if possible.
3219  *
3220  * If the operation results in an empty B table, the function returns TRUE.
3221  */
3222 boolean_t
3223 pmap_remove_b(b_tbl, start, end)
3224 	b_tmgr_t *b_tbl;
3225 	vaddr_t start;
3226 	vaddr_t end;
3227 {
3228 	boolean_t empty;
3229 	int idx;
3230 	vaddr_t nstart, nend, rstart;
3231 	c_tmgr_t *c_tbl;
3232 	mmu_short_dte_t  *b_dte;
3233 	mmu_short_pte_t  *c_dte;
3234 
3235 
3236 	nstart = MMU_ROUND_UP_B(start);
3237 	nend = MMU_ROUND_B(end);
3238 
3239 	if (start < nstart) {
3240 		idx = MMU_TIB(start);
3241 		b_dte = &b_tbl->bt_dtbl[idx];
3242 		if (MMU_VALID_DT(*b_dte)) {
3243 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3244 			c_tbl = mmuC2tmgr(c_dte);
3245 			if (end < nstart)
3246 				empty = pmap_remove_c(c_tbl, start, end);
3247 			else
3248 				empty = pmap_remove_c(c_tbl, start, nstart);
3249 			if (empty) {
3250 				b_dte->attr.raw = MMU_DT_INVALID;
3251 				b_tbl->bt_ecnt--;
3252 			}
3253 		}
3254 	}
3255 	if (nstart < nend) {
3256 		idx = MMU_TIB(nstart);
3257 		b_dte = &b_tbl->bt_dtbl[idx];
3258 		rstart = nstart;
3259 		while (rstart < nend) {
3260 			if (MMU_VALID_DT(*b_dte)) {
3261 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3262 				c_tbl = mmuC2tmgr(c_dte);
3263 				free_c_table(c_tbl, TRUE);
3264 				b_dte->attr.raw = MMU_DT_INVALID;
3265 				b_tbl->bt_ecnt--;
3266 			}
3267 			b_dte++;
3268 			rstart += MMU_TIB_RANGE;
3269 		}
3270 	}
3271 	if (nend < end) {
3272 		idx = MMU_TIB(nend);
3273 		b_dte = &b_tbl->bt_dtbl[idx];
3274 		if (MMU_VALID_DT(*b_dte)) {
3275 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3276 			c_tbl = mmuC2tmgr(c_dte);
3277 			empty = pmap_remove_c(c_tbl, nend, end);
3278 			if (empty) {
3279 				b_dte->attr.raw = MMU_DT_INVALID;
3280 				b_tbl->bt_ecnt--;
3281 			}
3282 		}
3283 	}
3284 
3285 	if (b_tbl->bt_ecnt == 0) {
3286 		b_tbl->bt_parent = NULL;
3287 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3288 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3289 		empty = TRUE;
3290 	} else {
3291 		empty = FALSE;
3292 	}
3293 
3294 	return empty;
3295 }
3296 
3297 /* pmap_remove_c			INTERNAL
3298  **
3299  * Remove a range of addresses from the given C table.
3300  */
3301 boolean_t
3302 pmap_remove_c(c_tbl, start, end)
3303 	c_tmgr_t *c_tbl;
3304 	vaddr_t start;
3305 	vaddr_t end;
3306 {
3307 	boolean_t empty;
3308 	int idx;
3309 	mmu_short_pte_t *c_pte;
3310 
3311 	idx = MMU_TIC(start);
3312 	c_pte = &c_tbl->ct_dtbl[idx];
3313 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3314 		if (MMU_VALID_DT(*c_pte)) {
3315 			pmap_remove_pte(c_pte);
3316 			c_tbl->ct_ecnt--;
3317 		}
3318 	}
3319 
3320 	if (c_tbl->ct_ecnt == 0) {
3321 		c_tbl->ct_parent = NULL;
3322 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3323 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3324 		empty = TRUE;
3325 	} else {
3326 		empty = FALSE;
3327 	}
3328 
3329 	return empty;
3330 }
3331 
3332 /* is_managed				INTERNAL
3333  **
3334  * Determine if the given physical address is managed by the PV system.
3335  * Note that this logic assumes that no one will ask for the status of
3336  * addresses which lie in-between the memory banks on the 3/80.  If they
3337  * do so, it will falsely report that it is managed.
3338  *
3339  * Note: A "managed" address is one that was reported to the VM system as
3340  * a "usable page" during system startup.  As such, the VM system expects the
3341  * pmap module to keep an accurate track of the useage of those pages.
3342  * Any page not given to the VM system at startup does not exist (as far as
3343  * the VM system is concerned) and is therefore "unmanaged."  Examples are
3344  * those pages which belong to the ROM monitor and the memory allocated before
3345  * the VM system was started.
3346  */
3347 boolean_t
3348 is_managed(pa)
3349 	paddr_t pa;
3350 {
3351 	if (pa >= avail_start && pa < avail_end)
3352 		return TRUE;
3353 	else
3354 		return FALSE;
3355 }
3356 
3357 /* pmap_bootstrap_alloc			INTERNAL
3358  **
3359  * Used internally for memory allocation at startup when malloc is not
3360  * available.  This code will fail once it crosses the first memory
3361  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3362  * will be in charge of allocation.
3363  */
3364 void *
3365 pmap_bootstrap_alloc(size)
3366 	int size;
3367 {
3368 	void *rtn;
3369 
3370 #ifdef	PMAP_DEBUG
3371 	if (bootstrap_alloc_enabled == FALSE) {
3372 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3373 		sunmon_abort();
3374 	}
3375 #endif
3376 
3377 	rtn = (void *) virtual_avail;
3378 	virtual_avail += size;
3379 
3380 #ifdef	PMAP_DEBUG
3381 	if (virtual_avail > virtual_contig_end) {
3382 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3383 		sunmon_abort();
3384 	}
3385 #endif
3386 
3387 	return rtn;
3388 }
3389 
3390 /* pmap_bootstap_aalign			INTERNAL
3391  **
3392  * Used to insure that the next call to pmap_bootstrap_alloc() will
3393  * return a chunk of memory aligned to the specified size.
3394  *
3395  * Note: This function will only support alignment sizes that are powers
3396  * of two.
3397  */
3398 void
3399 pmap_bootstrap_aalign(size)
3400 	int size;
3401 {
3402 	int off;
3403 
3404 	off = virtual_avail & (size - 1);
3405 	if (off) {
3406 		(void) pmap_bootstrap_alloc(size - off);
3407 	}
3408 }
3409 
3410 /* pmap_pa_exists
3411  **
3412  * Used by the /dev/mem driver to see if a given PA is memory
3413  * that can be mapped.  (The PA is not in a hole.)
3414  */
3415 int
3416 pmap_pa_exists(pa)
3417 	paddr_t pa;
3418 {
3419 	int i;
3420 
3421 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3422 		if ((pa >= avail_mem[i].pmem_start) &&
3423 			(pa <  avail_mem[i].pmem_end))
3424 			return (1);
3425 		if (avail_mem[i].pmem_next == NULL)
3426 			break;
3427 	}
3428 	return (0);
3429 }
3430 
3431 /* Called only from locore.s and pmap.c */
3432 void	_pmap_switch __P((pmap_t pmap));
3433 
3434 /*
3435  * _pmap_switch			INTERNAL
3436  *
3437  * This is called by locore.s:cpu_switch() when it is
3438  * switching to a new process.  Load new translations.
3439  * Note: done in-line by locore.s unless PMAP_DEBUG
3440  *
3441  * Note that we do NOT allocate a context here, but
3442  * share the "kernel only" context until we really
3443  * need our own context for user-space mappings in
3444  * pmap_enter_user().  [ s/context/mmu A table/ ]
3445  */
3446 void
3447 _pmap_switch(pmap)
3448 	pmap_t pmap;
3449 {
3450 	u_long rootpa;
3451 
3452 	/*
3453 	 * Only do reload/flush if we have to.
3454 	 * Note that if the old and new process
3455 	 * were BOTH using the "null" context,
3456 	 * then this will NOT flush the TLB.
3457 	 */
3458 	rootpa = pmap->pm_a_phys;
3459 	if (kernel_crp.rp_addr != rootpa) {
3460 		DPRINT(("pmap_activate(%p)\n", pmap));
3461 		kernel_crp.rp_addr = rootpa;
3462 		loadcrp(&kernel_crp);
3463 		TBIAU();
3464 	}
3465 }
3466 
3467 /*
3468  * Exported version of pmap_activate().  This is called from the
3469  * machine-independent VM code when a process is given a new pmap.
3470  * If (p == curlwp) do like cpu_switch would do; otherwise just
3471  * take this as notification that the process has a new pmap.
3472  */
3473 void
3474 pmap_activate(l)
3475 	struct lwp *l;
3476 {
3477 	if (l->l_proc == curproc) {
3478 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3479 	}
3480 }
3481 
3482 /*
3483  * pmap_deactivate			INTERFACE
3484  **
3485  * This is called to deactivate the specified process's address space.
3486  */
3487 void
3488 pmap_deactivate(l)
3489 struct lwp *l;
3490 {
3491 	/* Nothing to do. */
3492 }
3493 
3494 /*
3495  * Fill in the sun3x-specific part of the kernel core header
3496  * for dumpsys().  (See machdep.c for the rest.)
3497  */
3498 void
3499 pmap_kcore_hdr(sh)
3500 	struct sun3x_kcore_hdr *sh;
3501 {
3502 	u_long spa, len;
3503 	int i;
3504 
3505 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3506 	sh->pg_valid = MMU_DT_PAGE;
3507 	sh->contig_end = virtual_contig_end;
3508 	sh->kernCbase = (u_long)kernCbase;
3509 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3510 		spa = avail_mem[i].pmem_start;
3511 		spa = m68k_trunc_page(spa);
3512 		len = avail_mem[i].pmem_end - spa;
3513 		len = m68k_round_page(len);
3514 		sh->ram_segs[i].start = spa;
3515 		sh->ram_segs[i].size  = len;
3516 	}
3517 }
3518 
3519 
3520 /* pmap_virtual_space			INTERFACE
3521  **
3522  * Return the current available range of virtual addresses in the
3523  * arguuments provided.  Only really called once.
3524  */
3525 void
3526 pmap_virtual_space(vstart, vend)
3527 	vaddr_t *vstart, *vend;
3528 {
3529 	*vstart = virtual_avail;
3530 	*vend = virtual_end;
3531 }
3532 
3533 /*
3534  * Provide memory to the VM system.
3535  *
3536  * Assume avail_start is always in the
3537  * first segment as pmap_bootstrap does.
3538  */
3539 static void
3540 pmap_page_upload()
3541 {
3542 	paddr_t	a, b;	/* memory range */
3543 	int i;
3544 
3545 	/* Supply the memory in segments. */
3546 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3547 		a = atop(avail_mem[i].pmem_start);
3548 		b = atop(avail_mem[i].pmem_end);
3549 		if (i == 0)
3550 			a = atop(avail_start);
3551 		if (avail_mem[i].pmem_end > avail_end)
3552 			b = atop(avail_end);
3553 
3554 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3555 
3556 		if (avail_mem[i].pmem_next == NULL)
3557 			break;
3558 	}
3559 }
3560 
3561 /* pmap_count			INTERFACE
3562  **
3563  * Return the number of resident (valid) pages in the given pmap.
3564  *
3565  * Note:  If this function is handed the kernel map, it will report
3566  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3567  * map statistics.
3568  */
3569 segsz_t
3570 pmap_count(pmap, type)
3571 	pmap_t pmap;
3572 	int    type;
3573 {
3574 	u_int     count;
3575 	int       a_idx, b_idx;
3576 	a_tmgr_t *a_tbl;
3577 	b_tmgr_t *b_tbl;
3578 	c_tmgr_t *c_tbl;
3579 
3580 	/*
3581 	 * If the pmap does not have its own A table manager, it has no
3582 	 * valid entires.
3583 	 */
3584 	if (pmap->pm_a_tmgr == NULL)
3585 		return 0;
3586 
3587 	a_tbl = pmap->pm_a_tmgr;
3588 
3589 	count = 0;
3590 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3591 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3592 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3593 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3594 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3595 	                c_tbl = mmuC2tmgr(
3596 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3597 	                if (type == 0)
3598 	                    /*
3599 	                     * A resident entry count has been requested.
3600 	                     */
3601 	                    count += c_tbl->ct_ecnt;
3602 	                else
3603 	                    /*
3604 	                     * A wired entry count has been requested.
3605 	                     */
3606 	                    count += c_tbl->ct_wcnt;
3607 	            }
3608 	        }
3609 	    }
3610 	}
3611 
3612 	return count;
3613 }
3614 
3615 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3616  * The following routines are only used by DDB for tricky kernel text    *
3617  * text operations in db_memrw.c.  They are provided for sun3            *
3618  * compatibility.                                                        *
3619  *************************************************************************/
3620 /* get_pte			INTERNAL
3621  **
3622  * Return the page descriptor the describes the kernel mapping
3623  * of the given virtual address.
3624  */
3625 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
3626 u_int
3627 get_pte(va)
3628 	vaddr_t va;
3629 {
3630 	u_long pte_pa;
3631 	mmu_short_pte_t *pte;
3632 
3633 	/* Get the physical address of the PTE */
3634 	pte_pa = ptest_addr(va & ~PGOFSET);
3635 
3636 	/* Convert to a virtual address... */
3637 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3638 
3639 	/* Make sure it is in our level-C tables... */
3640 	if ((pte < kernCbase) ||
3641 		(pte >= &mmuCbase[NUM_USER_PTES]))
3642 		return 0;
3643 
3644 	/* ... and just return its contents. */
3645 	return (pte->attr.raw);
3646 }
3647 
3648 
3649 /* set_pte			INTERNAL
3650  **
3651  * Set the page descriptor that describes the kernel mapping
3652  * of the given virtual address.
3653  */
3654 void
3655 set_pte(va, pte)
3656 	vaddr_t va;
3657 	u_int pte;
3658 {
3659 	u_long idx;
3660 
3661 	if (va < KERNBASE)
3662 		return;
3663 
3664 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3665 	kernCbase[idx].attr.raw = pte;
3666 	TBIS(va);
3667 }
3668 
3669 /*
3670  *	Routine:        pmap_procwr
3671  *
3672  *	Function:
3673  *		Synchronize caches corresponding to [addr, addr+len) in p.
3674  */
3675 void
3676 pmap_procwr(p, va, len)
3677 	struct proc	*p;
3678 	vaddr_t		va;
3679 	size_t		len;
3680 {
3681 	(void)cachectl1(0x80000004, va, len, p);
3682 }
3683 
3684 
3685 #ifdef	PMAP_DEBUG
3686 /************************** DEBUGGING ROUTINES **************************
3687  * The following routines are meant to be an aid to debugging the pmap  *
3688  * system.  They are callable from the DDB command line and should be   *
3689  * prepared to be handed unstable or incomplete states of the system.   *
3690  ************************************************************************/
3691 
3692 /* pv_list
3693  **
3694  * List all pages found on the pv list for the given physical page.
3695  * To avoid endless loops, the listing will stop at the end of the list
3696  * or after 'n' entries - whichever comes first.
3697  */
3698 void
3699 pv_list(pa, n)
3700 	paddr_t pa;
3701 	int n;
3702 {
3703 	int  idx;
3704 	vaddr_t va;
3705 	pv_t *pv;
3706 	c_tmgr_t *c_tbl;
3707 	pmap_t pmap;
3708 
3709 	pv = pa2pv(pa);
3710 	idx = pv->pv_idx;
3711 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3712 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3713 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3714 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3715 	}
3716 }
3717 #endif	/* PMAP_DEBUG */
3718 
3719 #ifdef NOT_YET
3720 /* and maybe not ever */
3721 /************************** LOW-LEVEL ROUTINES **************************
3722  * These routines will eventually be re-written into assembly and placed*
3723  * in locore.s.  They are here now as stubs so that the pmap module can *
3724  * be linked as a standalone user program for testing.                  *
3725  ************************************************************************/
3726 /* flush_atc_crp			INTERNAL
3727  **
3728  * Flush all page descriptors derived from the given CPU Root Pointer
3729  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3730  * cache.
3731  */
3732 void
3733 flush_atc_crp(a_tbl)
3734 {
3735 	mmu_long_rp_t rp;
3736 
3737 	/* Create a temporary root table pointer that points to the
3738 	 * given A table.
3739 	 */
3740 	rp.attr.raw = ~MMU_LONG_RP_LU;
3741 	rp.addr.raw = (unsigned int) a_tbl;
3742 
3743 	mmu_pflushr(&rp);
3744 	/* mmu_pflushr:
3745 	 * 	movel   sp(4)@,a0
3746 	 * 	pflushr a0@
3747 	 *	rts
3748 	 */
3749 }
3750 #endif /* NOT_YET */
3751