1 /* $NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jeremy Cooper. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * XXX These comments aren't quite accurate. Need to change. 34 * The sun3x uses the MC68851 Memory Management Unit, which is built 35 * into the CPU. The 68851 maps virtual to physical addresses using 36 * a multi-level table lookup, which is stored in the very memory that 37 * it maps. The number of levels of lookup is configurable from one 38 * to four. In this implementation, we use three, named 'A' through 'C'. 39 * 40 * The MMU translates virtual addresses into physical addresses by 41 * traversing these tables in a process called a 'table walk'. The most 42 * significant 7 bits of the Virtual Address ('VA') being translated are 43 * used as an index into the level A table, whose base in physical memory 44 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The 45 * address found at that index in the A table is used as the base 46 * address for the next table, the B table. The next six bits of the VA are 47 * used as an index into the B table, which in turn gives the base address 48 * of the third and final C table. 49 * 50 * The next six bits of the VA are used as an index into the C table to 51 * locate a Page Table Entry (PTE). The PTE is a physical address in memory 52 * to which the remaining 13 bits of the VA are added, producing the 53 * mapped physical address. 54 * 55 * To map the entire memory space in this manner would require 2114296 bytes 56 * of page tables per process - quite expensive. Instead we will 57 * allocate a fixed but considerably smaller space for the page tables at 58 * the time the VM system is initialized. When the pmap code is asked by 59 * the kernel to map a VA to a PA, it allocates tables as needed from this 60 * pool. When there are no more tables in the pool, tables are stolen 61 * from the oldest mapped entries in the tree. This is only possible 62 * because all memory mappings are stored in the kernel memory map 63 * structures, independent of the pmap structures. A VA which references 64 * one of these invalidated maps will cause a page fault. The kernel 65 * will determine that the page fault was caused by a task using a valid 66 * VA, but for some reason (which does not concern it), that address was 67 * not mapped. It will ask the pmap code to re-map the entry and then 68 * it will resume executing the faulting task. 69 * 70 * In this manner the most efficient use of the page table space is 71 * achieved. Tasks which do not execute often will have their tables 72 * stolen and reused by tasks which execute more frequently. The best 73 * size for the page table pool will probably be determined by 74 * experimentation. 75 * 76 * You read all of the comments so far. Good for you. 77 * Now go play! 78 */ 79 80 /*** A Note About the 68851 Address Translation Cache 81 * The MC68851 has a 64 entry cache, called the Address Translation Cache 82 * or 'ATC'. This cache stores the most recently used page descriptors 83 * accessed by the MMU when it does translations. Using a marker called a 84 * 'task alias' the MMU can store the descriptors from 8 different table 85 * spaces concurrently. The task alias is associated with the base 86 * address of the level A table of that address space. When an address 87 * space is currently active (the CRP currently points to its A table) 88 * the only cached descriptors that will be obeyed are ones which have a 89 * matching task alias of the current space associated with them. 90 * 91 * Since the cache is always consulted before any table lookups are done, 92 * it is important that it accurately reflect the state of the MMU tables. 93 * Whenever a change has been made to a table that has been loaded into 94 * the MMU, the code must be sure to flush any cached entries that are 95 * affected by the change. These instances are documented in the code at 96 * various points. 97 */ 98 /*** A Note About the Note About the 68851 Address Translation Cache 99 * 4 months into this code I discovered that the sun3x does not have 100 * a MC68851 chip. Instead, it has a version of this MMU that is part of the 101 * the 68030 CPU. 102 * All though it behaves very similarly to the 68851, it only has 1 task 103 * alias and a 22 entry cache. So sadly (or happily), the first paragraph 104 * of the previous note does not apply to the sun3x pmap. 105 */ 106 107 #include <sys/cdefs.h> 108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $"); 109 110 #include "opt_ddb.h" 111 #include "opt_pmap_debug.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/proc.h> 116 #include <sys/pool.h> 117 #include <sys/queue.h> 118 #include <sys/kcore.h> 119 #include <sys/atomic.h> 120 121 #include <uvm/uvm.h> 122 123 #include <machine/cpu.h> 124 #include <machine/kcore.h> 125 #include <machine/mon.h> 126 #include <machine/pmap.h> 127 #include <machine/pte.h> 128 #include <machine/vmparam.h> 129 #include <m68k/cacheops.h> 130 131 #include <sun3/sun3/cache.h> 132 #include <sun3/sun3/machdep.h> 133 134 #include "pmap_pvt.h" 135 136 /* XXX - What headers declare these? */ 137 extern struct pcb *curpcb; 138 139 /* Defined in locore.s */ 140 extern char kernel_text[]; 141 142 /* Defined by the linker */ 143 extern char etext[], edata[], end[]; 144 extern char *esym; /* DDB */ 145 146 /*************************** DEBUGGING DEFINITIONS *********************** 147 * Macros, preprocessor defines and variables used in debugging can make * 148 * code hard to read. Anything used exclusively for debugging purposes * 149 * is defined here to avoid having such mess scattered around the file. * 150 *************************************************************************/ 151 #ifdef PMAP_DEBUG 152 /* 153 * To aid the debugging process, macros should be expanded into smaller steps 154 * that accomplish the same goal, yet provide convenient places for placing 155 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the 156 * 'INLINE' keyword is defined to an empty string. This way, any function 157 * defined to be a 'static INLINE' will become 'outlined' and compiled as 158 * a separate function, which is much easier to debug. 159 */ 160 #define INLINE /* nothing */ 161 162 /* 163 * It is sometimes convenient to watch the activity of a particular table 164 * in the system. The following variables are used for that purpose. 165 */ 166 a_tmgr_t *pmap_watch_atbl = 0; 167 b_tmgr_t *pmap_watch_btbl = 0; 168 c_tmgr_t *pmap_watch_ctbl = 0; 169 170 int pmap_debug = 0; 171 #define DPRINT(args) if (pmap_debug) printf args 172 173 #else /********** Stuff below is defined if NOT debugging **************/ 174 175 #define INLINE inline 176 #define DPRINT(args) /* nada */ 177 178 #endif /* PMAP_DEBUG */ 179 /*********************** END OF DEBUGGING DEFINITIONS ********************/ 180 181 /*** Management Structure - Memory Layout 182 * For every MMU table in the sun3x pmap system there must be a way to 183 * manage it; we must know which process is using it, what other tables 184 * depend on it, and whether or not it contains any locked pages. This 185 * is solved by the creation of 'table management' or 'tmgr' 186 * structures. One for each MMU table in the system. 187 * 188 * MAP OF MEMORY USED BY THE PMAP SYSTEM 189 * 190 * towards lower memory 191 * kernAbase -> +-------------------------------------------------------+ 192 * | Kernel MMU A level table | 193 * kernBbase -> +-------------------------------------------------------+ 194 * | Kernel MMU B level tables | 195 * kernCbase -> +-------------------------------------------------------+ 196 * | | 197 * | Kernel MMU C level tables | 198 * | | 199 * mmuCbase -> +-------------------------------------------------------+ 200 * | User MMU C level tables | 201 * mmuAbase -> +-------------------------------------------------------+ 202 * | | 203 * | User MMU A level tables | 204 * | | 205 * mmuBbase -> +-------------------------------------------------------+ 206 * | User MMU B level tables | 207 * tmgrAbase -> +-------------------------------------------------------+ 208 * | TMGR A level table structures | 209 * tmgrBbase -> +-------------------------------------------------------+ 210 * | TMGR B level table structures | 211 * tmgrCbase -> +-------------------------------------------------------+ 212 * | TMGR C level table structures | 213 * pvbase -> +-------------------------------------------------------+ 214 * | Physical to Virtual mapping table (list heads) | 215 * pvebase -> +-------------------------------------------------------+ 216 * | Physical to Virtual mapping table (list elements) | 217 * | | 218 * +-------------------------------------------------------+ 219 * towards higher memory 220 * 221 * For every A table in the MMU A area, there will be a corresponding 222 * a_tmgr structure in the TMGR A area. The same will be true for 223 * the B and C tables. This arrangement will make it easy to find the 224 * controlling tmgr structure for any table in the system by use of 225 * (relatively) simple macros. 226 */ 227 228 /* 229 * Global variables for storing the base addresses for the areas 230 * labeled above. 231 */ 232 static vaddr_t kernAphys; 233 static mmu_long_dte_t *kernAbase; 234 static mmu_short_dte_t *kernBbase; 235 static mmu_short_pte_t *kernCbase; 236 static mmu_short_pte_t *mmuCbase; 237 static mmu_short_dte_t *mmuBbase; 238 static mmu_long_dte_t *mmuAbase; 239 static a_tmgr_t *Atmgrbase; 240 static b_tmgr_t *Btmgrbase; 241 static c_tmgr_t *Ctmgrbase; 242 static pv_t *pvbase; 243 static pv_elem_t *pvebase; 244 static struct pmap kernel_pmap; 245 struct pmap *const kernel_pmap_ptr = &kernel_pmap; 246 247 /* 248 * This holds the CRP currently loaded into the MMU. 249 */ 250 struct mmu_rootptr kernel_crp; 251 252 /* 253 * Just all around global variables. 254 */ 255 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool; 256 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool; 257 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool; 258 259 260 /* 261 * Flags used to mark the safety/availability of certain operations or 262 * resources. 263 */ 264 /* Safe to use pmap_bootstrap_alloc(). */ 265 static bool bootstrap_alloc_enabled = false; 266 /* Temporary virtual pages are in use */ 267 int tmp_vpages_inuse; 268 269 /* 270 * XXX: For now, retain the traditional variables that were 271 * used in the old pmap/vm interface (without NONCONTIG). 272 */ 273 /* Kernel virtual address space available: */ 274 vaddr_t virtual_avail, virtual_end; 275 /* Physical address space available: */ 276 paddr_t avail_start, avail_end; 277 278 /* This keep track of the end of the contiguously mapped range. */ 279 vaddr_t virtual_contig_end; 280 281 /* Physical address used by pmap_next_page() */ 282 paddr_t avail_next; 283 284 /* These are used by pmap_copy_page(), etc. */ 285 vaddr_t tmp_vpages[2]; 286 287 /* memory pool for pmap structures */ 288 struct pool pmap_pmap_pool; 289 290 /* 291 * The 3/80 is the only member of the sun3x family that has non-contiguous 292 * physical memory. Memory is divided into 4 banks which are physically 293 * locatable on the system board. Although the size of these banks varies 294 * with the size of memory they contain, their base addresses are 295 * permanently fixed. The following structure, which describes these 296 * banks, is initialized by pmap_bootstrap() after it reads from a similar 297 * structure provided by the ROM Monitor. 298 * 299 * For the other machines in the sun3x architecture which do have contiguous 300 * RAM, this list will have only one entry, which will describe the entire 301 * range of available memory. 302 */ 303 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS]; 304 u_int total_phys_mem; 305 306 /*************************************************************************/ 307 308 /* 309 * XXX - Should "tune" these based on statistics. 310 * 311 * My first guess about the relative numbers of these needed is 312 * based on the fact that a "typical" process will have several 313 * pages mapped at low virtual addresses (text, data, bss), then 314 * some mapped shared libraries, and then some stack pages mapped 315 * near the high end of the VA space. Each process can use only 316 * one A table, and most will use only two B tables (maybe three) 317 * and probably about four C tables. Therefore, the first guess 318 * at the relative numbers of these needed is 1:2:4 -gwr 319 * 320 * The number of C tables needed is closely related to the amount 321 * of physical memory available plus a certain amount attributable 322 * to the use of double mappings. With a few simulation statistics 323 * we can find a reasonably good estimation of this unknown value. 324 * Armed with that and the above ratios, we have a good idea of what 325 * is needed at each level. -j 326 * 327 * Note: It is not physical memory memory size, but the total mapped 328 * virtual space required by the combined working sets of all the 329 * currently _runnable_ processes. (Sleeping ones don't count.) 330 * The amount of physical memory should be irrelevant. -gwr 331 */ 332 #ifdef FIXED_NTABLES 333 #define NUM_A_TABLES 16 334 #define NUM_B_TABLES 32 335 #define NUM_C_TABLES 64 336 #else 337 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES; 338 #endif /* FIXED_NTABLES */ 339 340 /* 341 * This determines our total virtual mapping capacity. 342 * Yes, it is a FIXED value so we can pre-allocate. 343 */ 344 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE) 345 346 /* 347 * The size of the Kernel Virtual Address Space (KVAS) 348 * for purposes of MMU table allocation is -KERNBASE 349 * (length from KERNBASE to 0xFFFFffff) 350 */ 351 #define KVAS_SIZE (-KERNBASE3X) 352 353 /* Numbers of kernel MMU tables to support KVAS_SIZE. */ 354 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT) 355 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT) 356 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT) 357 358 /*************************** MISCELLANEOUS MACROS *************************/ 359 void *pmap_bootstrap_alloc(int); 360 361 static INLINE void *mmu_ptov(paddr_t); 362 static INLINE paddr_t mmu_vtop(void *); 363 364 #if 0 365 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *); 366 #endif /* 0 */ 367 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *); 368 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *); 369 370 static INLINE pv_t *pa2pv(paddr_t); 371 static INLINE int pteidx(mmu_short_pte_t *); 372 static INLINE pmap_t current_pmap(void); 373 374 /* 375 * We can always convert between virtual and physical addresses 376 * for anything in the range [KERNBASE ... avail_start] because 377 * that range is GUARANTEED to be mapped linearly. 378 * We rely heavily upon this feature! 379 */ 380 static INLINE void * 381 mmu_ptov(paddr_t pa) 382 { 383 vaddr_t va; 384 385 va = (pa + KERNBASE3X); 386 #ifdef PMAP_DEBUG 387 if ((va < KERNBASE3X) || (va >= virtual_contig_end)) 388 panic("mmu_ptov"); 389 #endif 390 return (void *)va; 391 } 392 393 static INLINE paddr_t 394 mmu_vtop(void *vva) 395 { 396 vaddr_t va; 397 398 va = (vaddr_t)vva; 399 #ifdef PMAP_DEBUG 400 if ((va < KERNBASE3X) || (va >= virtual_contig_end)) 401 panic("mmu_vtop"); 402 #endif 403 return va - KERNBASE3X; 404 } 405 406 /* 407 * These macros map MMU tables to their corresponding manager structures. 408 * They are needed quite often because many of the pointers in the pmap 409 * system reference MMU tables and not the structures that control them. 410 * There needs to be a way to find one when given the other and these 411 * macros do so by taking advantage of the memory layout described above. 412 * Here's a quick step through the first macro, mmuA2tmgr(): 413 * 414 * 1) find the offset of the given MMU A table from the base of its table 415 * pool (table - mmuAbase). 416 * 2) convert this offset into a table index by dividing it by the 417 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE) 418 * 3) use this index to select the corresponding 'A' table manager 419 * structure from the 'A' table manager pool (Atmgrbase[index]). 420 */ 421 /* This function is not currently used. */ 422 #if 0 423 static INLINE a_tmgr_t * 424 mmuA2tmgr(mmu_long_dte_t *mmuAtbl) 425 { 426 int idx; 427 428 /* Which table is this in? */ 429 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE; 430 #ifdef PMAP_DEBUG 431 if ((idx < 0) || (idx >= NUM_A_TABLES)) 432 panic("mmuA2tmgr"); 433 #endif 434 return &Atmgrbase[idx]; 435 } 436 #endif /* 0 */ 437 438 static INLINE b_tmgr_t * 439 mmuB2tmgr(mmu_short_dte_t *mmuBtbl) 440 { 441 int idx; 442 443 /* Which table is this in? */ 444 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE; 445 #ifdef PMAP_DEBUG 446 if ((idx < 0) || (idx >= NUM_B_TABLES)) 447 panic("mmuB2tmgr"); 448 #endif 449 return &Btmgrbase[idx]; 450 } 451 452 /* mmuC2tmgr INTERNAL 453 ** 454 * Given a pte known to belong to a C table, return the address of 455 * that table's management structure. 456 */ 457 static INLINE c_tmgr_t * 458 mmuC2tmgr(mmu_short_pte_t *mmuCtbl) 459 { 460 int idx; 461 462 /* Which table is this in? */ 463 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE; 464 #ifdef PMAP_DEBUG 465 if ((idx < 0) || (idx >= NUM_C_TABLES)) 466 panic("mmuC2tmgr"); 467 #endif 468 return &Ctmgrbase[idx]; 469 } 470 471 /* This is now a function call below. 472 * #define pa2pv(pa) \ 473 * (&pvbase[(unsigned long)\ 474 * m68k_btop(pa)\ 475 * ]) 476 */ 477 478 /* pa2pv INTERNAL 479 ** 480 * Return the pv_list_head element which manages the given physical 481 * address. 482 */ 483 static INLINE pv_t * 484 pa2pv(paddr_t pa) 485 { 486 struct pmap_physmem_struct *bank; 487 int idx; 488 489 bank = &avail_mem[0]; 490 while (pa >= bank->pmem_end) 491 bank = bank->pmem_next; 492 493 pa -= bank->pmem_start; 494 idx = bank->pmem_pvbase + m68k_btop(pa); 495 #ifdef PMAP_DEBUG 496 if ((idx < 0) || (idx >= physmem)) 497 panic("pa2pv"); 498 #endif 499 return &pvbase[idx]; 500 } 501 502 /* pteidx INTERNAL 503 ** 504 * Return the index of the given PTE within the entire fixed table of 505 * PTEs. 506 */ 507 static INLINE int 508 pteidx(mmu_short_pte_t *pte) 509 { 510 511 return pte - kernCbase; 512 } 513 514 /* 515 * This just offers a place to put some debugging checks, 516 * and reduces the number of places "curlwp" appears... 517 */ 518 static INLINE pmap_t 519 current_pmap(void) 520 { 521 struct vmspace *vm; 522 struct vm_map *map; 523 pmap_t pmap; 524 525 vm = curproc->p_vmspace; 526 map = &vm->vm_map; 527 pmap = vm_map_pmap(map); 528 529 return pmap; 530 } 531 532 533 /*************************** FUNCTION DEFINITIONS ************************ 534 * These appear here merely for the compiler to enforce type checking on * 535 * all function calls. * 536 *************************************************************************/ 537 538 /* 539 * Internal functions 540 */ 541 a_tmgr_t *get_a_table(void); 542 b_tmgr_t *get_b_table(void); 543 c_tmgr_t *get_c_table(void); 544 int free_a_table(a_tmgr_t *, bool); 545 int free_b_table(b_tmgr_t *, bool); 546 int free_c_table(c_tmgr_t *, bool); 547 548 void pmap_bootstrap_aalign(int); 549 void pmap_alloc_usermmu(void); 550 void pmap_alloc_usertmgr(void); 551 void pmap_alloc_pv(void); 552 void pmap_init_a_tables(void); 553 void pmap_init_b_tables(void); 554 void pmap_init_c_tables(void); 555 void pmap_init_pv(void); 556 void pmap_clear_pv(paddr_t, int); 557 static INLINE bool is_managed(paddr_t); 558 559 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t); 560 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t); 561 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t); 562 void pmap_remove_pte(mmu_short_pte_t *); 563 564 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t); 565 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t); 566 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t); 567 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *); 568 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **); 569 static INLINE int pmap_dereference(pmap_t); 570 571 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **, 572 mmu_short_pte_t **, int *, int *, int *); 573 void pmap_bootstrap_copyprom(void); 574 void pmap_takeover_mmu(void); 575 void pmap_bootstrap_setprom(void); 576 static void pmap_page_upload(void); 577 578 #ifdef PMAP_DEBUG 579 /* Debugging function definitions */ 580 void pv_list(paddr_t, int); 581 #endif /* PMAP_DEBUG */ 582 583 /** Interface functions 584 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG 585 ** defined. 586 ** The new UVM doesn't require them so now INTERNAL. 587 **/ 588 static INLINE void pmap_pinit(pmap_t); 589 static INLINE void pmap_release(pmap_t); 590 591 /********************************** CODE ******************************** 592 * Functions that are called from other parts of the kernel are labeled * 593 * as 'INTERFACE' functions. Functions that are only called from * 594 * within the pmap module are labeled as 'INTERNAL' functions. * 595 * Functions that are internal, but are not (currently) used at all are * 596 * labeled 'INTERNAL_X'. * 597 ************************************************************************/ 598 599 /* pmap_bootstrap INTERNAL 600 ** 601 * Initializes the pmap system. Called at boot time from 602 * locore2.c:_vm_init() 603 * 604 * Reminder: having a pmap_bootstrap_alloc() and also having the VM 605 * system implement pmap_steal_memory() is redundant. 606 * Don't release this code without removing one or the other! 607 */ 608 void 609 pmap_bootstrap(vaddr_t nextva) 610 { 611 struct physmemory *membank; 612 struct pmap_physmem_struct *pmap_membank; 613 vaddr_t va, eva; 614 paddr_t pa; 615 int b, c, i, j; /* running table counts */ 616 int size, resvmem; 617 618 /* 619 * This function is called by __bootstrap after it has 620 * determined the type of machine and made the appropriate 621 * patches to the ROM vectors (XXX- I don't quite know what I meant 622 * by that.) It allocates and sets up enough of the pmap system 623 * to manage the kernel's address space. 624 */ 625 626 /* 627 * Determine the range of kernel virtual and physical 628 * space available. Note that we ABSOLUTELY DEPEND on 629 * the fact that the first bank of memory (4MB) is 630 * mapped linearly to KERNBASE (which we guaranteed in 631 * the first instructions of locore.s). 632 * That is plenty for our bootstrap work. 633 */ 634 virtual_avail = m68k_round_page(nextva); 635 virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */ 636 virtual_end = VM_MAX_KERNEL_ADDRESS; 637 /* Don't need avail_start til later. */ 638 639 /* We may now call pmap_bootstrap_alloc(). */ 640 bootstrap_alloc_enabled = true; 641 642 /* 643 * This is a somewhat unwrapped loop to deal with 644 * copying the PROM's 'phsymem' banks into the pmap's 645 * banks. The following is always assumed: 646 * 1. There is always at least one bank of memory. 647 * 2. There is always a last bank of memory, and its 648 * pmem_next member must be set to NULL. 649 */ 650 membank = romVectorPtr->v_physmemory; 651 pmap_membank = avail_mem; 652 total_phys_mem = 0; 653 654 for (;;) { /* break on !membank */ 655 pmap_membank->pmem_start = membank->address; 656 pmap_membank->pmem_end = membank->address + membank->size; 657 total_phys_mem += membank->size; 658 membank = membank->next; 659 if (!membank) 660 break; 661 /* This silly syntax arises because pmap_membank 662 * is really a pre-allocated array, but it is put into 663 * use as a linked list. 664 */ 665 pmap_membank->pmem_next = pmap_membank + 1; 666 pmap_membank = pmap_membank->pmem_next; 667 } 668 /* This is the last element. */ 669 pmap_membank->pmem_next = NULL; 670 671 /* 672 * Note: total_phys_mem, physmem represent 673 * actual physical memory, including that 674 * reserved for the PROM monitor. 675 */ 676 physmem = btoc(total_phys_mem); 677 678 /* 679 * Avail_end is set to the first byte of physical memory 680 * after the end of the last bank. We use this only to 681 * determine if a physical address is "managed" memory. 682 * This address range should be reduced to prevent the 683 * physical pages needed by the PROM monitor from being used 684 * in the VM system. 685 */ 686 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail); 687 resvmem = m68k_round_page(resvmem); 688 avail_end = pmap_membank->pmem_end - resvmem; 689 690 /* 691 * First allocate enough kernel MMU tables to map all 692 * of kernel virtual space from KERNBASE to 0xFFFFFFFF. 693 * Note: All must be aligned on 256 byte boundaries. 694 * Start with the level-A table (one of those). 695 */ 696 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE; 697 kernAbase = pmap_bootstrap_alloc(size); 698 memset(kernAbase, 0, size); 699 700 /* Now the level-B kernel tables... */ 701 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES; 702 kernBbase = pmap_bootstrap_alloc(size); 703 memset(kernBbase, 0, size); 704 705 /* Now the level-C kernel tables... */ 706 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES; 707 kernCbase = pmap_bootstrap_alloc(size); 708 memset(kernCbase, 0, size); 709 /* 710 * Note: In order for the PV system to work correctly, the kernel 711 * and user-level C tables must be allocated contiguously. 712 * Nothing should be allocated between here and the allocation of 713 * mmuCbase below. XXX: Should do this as one allocation, and 714 * then compute a pointer for mmuCbase instead of this... 715 * 716 * Allocate user MMU tables. 717 * These must be contiguous with the preceding. 718 */ 719 720 #ifndef FIXED_NTABLES 721 /* 722 * The number of user-level C tables that should be allocated is 723 * related to the size of physical memory. In general, there should 724 * be enough tables to map four times the amount of available RAM. 725 * The extra amount is needed because some table space is wasted by 726 * fragmentation. 727 */ 728 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE); 729 NUM_B_TABLES = NUM_C_TABLES / 2; 730 NUM_A_TABLES = NUM_B_TABLES / 2; 731 #endif /* !FIXED_NTABLES */ 732 733 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES; 734 mmuCbase = pmap_bootstrap_alloc(size); 735 736 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES; 737 mmuBbase = pmap_bootstrap_alloc(size); 738 739 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES; 740 mmuAbase = pmap_bootstrap_alloc(size); 741 742 /* 743 * Fill in the never-changing part of the kernel tables. 744 * For simplicity, the kernel's mappings will be editable as a 745 * flat array of page table entries at kernCbase. The 746 * higher level 'A' and 'B' tables must be initialized to point 747 * to this lower one. 748 */ 749 b = c = 0; 750 751 /* 752 * Invalidate all mappings below KERNBASE in the A table. 753 * This area has already been zeroed out, but it is good 754 * practice to explicitly show that we are interpreting 755 * it as a list of A table descriptors. 756 */ 757 for (i = 0; i < MMU_TIA(KERNBASE3X); i++) { 758 kernAbase[i].addr.raw = 0; 759 } 760 761 /* 762 * Set up the kernel A and B tables so that they will reference the 763 * correct spots in the contiguous table of PTEs allocated for the 764 * kernel's virtual memory space. 765 */ 766 for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) { 767 kernAbase[i].attr.raw = 768 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT; 769 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]); 770 771 for (j = 0; j < MMU_B_TBL_SIZE; j++) { 772 kernBbase[b + j].attr.raw = 773 mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT; 774 c += MMU_C_TBL_SIZE; 775 } 776 b += MMU_B_TBL_SIZE; 777 } 778 779 pmap_alloc_usermmu(); /* Allocate user MMU tables. */ 780 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/ 781 pmap_alloc_pv(); /* Allocate physical->virtual map. */ 782 783 /* 784 * We are now done with pmap_bootstrap_alloc(). Round up 785 * `virtual_avail' to the nearest page, and set the flag 786 * to prevent use of pmap_bootstrap_alloc() hereafter. 787 */ 788 pmap_bootstrap_aalign(PAGE_SIZE); 789 bootstrap_alloc_enabled = false; 790 791 /* 792 * Now that we are done with pmap_bootstrap_alloc(), we 793 * must save the virtual and physical addresses of the 794 * end of the linearly mapped range, which are stored in 795 * virtual_contig_end and avail_start, respectively. 796 * These variables will never change after this point. 797 */ 798 virtual_contig_end = virtual_avail; 799 avail_start = virtual_avail - KERNBASE3X; 800 801 /* 802 * `avail_next' is a running pointer used by pmap_next_page() to 803 * keep track of the next available physical page to be handed 804 * to the VM system during its initialization, in which it 805 * asks for physical pages, one at a time. 806 */ 807 avail_next = avail_start; 808 809 /* 810 * Now allocate some virtual addresses, but not the physical pages 811 * behind them. Note that virtual_avail is already page-aligned. 812 * 813 * tmp_vpages[] is an array of two virtual pages used for temporary 814 * kernel mappings in the pmap module to facilitate various physical 815 * address-oritented operations. 816 */ 817 tmp_vpages[0] = virtual_avail; 818 virtual_avail += PAGE_SIZE; 819 tmp_vpages[1] = virtual_avail; 820 virtual_avail += PAGE_SIZE; 821 822 /** Initialize the PV system **/ 823 pmap_init_pv(); 824 825 /* 826 * Fill in the kernel_pmap structure and kernel_crp. 827 */ 828 kernAphys = mmu_vtop(kernAbase); 829 kernel_pmap.pm_a_tmgr = NULL; 830 kernel_pmap.pm_a_phys = kernAphys; 831 kernel_pmap.pm_refcount = 1; /* always in use */ 832 833 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG; 834 kernel_crp.rp_addr = kernAphys; 835 836 /* 837 * Now pmap_enter_kernel() may be used safely and will be 838 * the main interface used hereafter to modify the kernel's 839 * virtual address space. Note that since we are still running 840 * under the PROM's address table, none of these table modifications 841 * actually take effect until pmap_takeover_mmu() is called. 842 * 843 * Note: Our tables do NOT have the PROM linear mappings! 844 * Only the mappings created here exist in our tables, so 845 * remember to map anything we expect to use. 846 */ 847 va = (vaddr_t)KERNBASE3X; 848 pa = 0; 849 850 /* 851 * The first page of the kernel virtual address space is the msgbuf 852 * page. The page attributes (data, non-cached) are set here, while 853 * the address is assigned to this global pointer in cpu_startup(). 854 * It is non-cached, mostly due to paranoia. 855 */ 856 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL); 857 va += PAGE_SIZE; 858 pa += PAGE_SIZE; 859 860 /* Next page is used as the temporary stack. */ 861 pmap_enter_kernel(va, pa, VM_PROT_ALL); 862 va += PAGE_SIZE; 863 pa += PAGE_SIZE; 864 865 /* 866 * Map all of the kernel's text segment as read-only and cacheable. 867 * (Cacheable is implied by default). Unfortunately, the last bytes 868 * of kernel text and the first bytes of kernel data will often be 869 * sharing the same page. Therefore, the last page of kernel text 870 * has to be mapped as read/write, to accommodate the data. 871 */ 872 eva = m68k_trunc_page((vaddr_t)etext); 873 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE) 874 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE); 875 876 /* 877 * Map all of the kernel's data as read/write and cacheable. 878 * This includes: data, BSS, symbols, and everything in the 879 * contiguous memory used by pmap_bootstrap_alloc() 880 */ 881 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE) 882 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE); 883 884 /* 885 * At this point we are almost ready to take over the MMU. But first 886 * we must save the PROM's address space in our map, as we call its 887 * routines and make references to its data later in the kernel. 888 */ 889 pmap_bootstrap_copyprom(); 890 pmap_takeover_mmu(); 891 pmap_bootstrap_setprom(); 892 893 /* Notify the VM system of our page size. */ 894 uvmexp.pagesize = PAGE_SIZE; 895 uvm_md_init(); 896 897 pmap_page_upload(); 898 } 899 900 901 /* pmap_alloc_usermmu INTERNAL 902 ** 903 * Called from pmap_bootstrap() to allocate MMU tables that will 904 * eventually be used for user mappings. 905 */ 906 void 907 pmap_alloc_usermmu(void) 908 { 909 910 /* XXX: Moved into caller. */ 911 } 912 913 /* pmap_alloc_pv INTERNAL 914 ** 915 * Called from pmap_bootstrap() to allocate the physical 916 * to virtual mapping list. Each physical page of memory 917 * in the system has a corresponding element in this list. 918 */ 919 void 920 pmap_alloc_pv(void) 921 { 922 int i; 923 unsigned int total_mem; 924 925 /* 926 * Allocate a pv_head structure for every page of physical 927 * memory that will be managed by the system. Since memory on 928 * the 3/80 is non-contiguous, we cannot arrive at a total page 929 * count by subtraction of the lowest available address from the 930 * highest, but rather we have to step through each memory 931 * bank and add the number of pages in each to the total. 932 * 933 * At this time we also initialize the offset of each bank's 934 * starting pv_head within the pv_head list so that the physical 935 * memory state routines (pmap_is_referenced(), 936 * pmap_is_modified(), et al.) can quickly find corresponding 937 * pv_heads in spite of the non-contiguity. 938 */ 939 total_mem = 0; 940 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 941 avail_mem[i].pmem_pvbase = m68k_btop(total_mem); 942 total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start; 943 if (avail_mem[i].pmem_next == NULL) 944 break; 945 } 946 pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) * 947 m68k_btop(total_phys_mem)); 948 } 949 950 /* pmap_alloc_usertmgr INTERNAL 951 ** 952 * Called from pmap_bootstrap() to allocate the structures which 953 * facilitate management of user MMU tables. Each user MMU table 954 * in the system has one such structure associated with it. 955 */ 956 void 957 pmap_alloc_usertmgr(void) 958 { 959 /* Allocate user MMU table managers */ 960 /* It would be a lot simpler to just make these BSS, but */ 961 /* we may want to change their size at boot time... -j */ 962 Atmgrbase = 963 (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES); 964 Btmgrbase = 965 (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES); 966 Ctmgrbase = 967 (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES); 968 969 /* 970 * Allocate PV list elements for the physical to virtual 971 * mapping system. 972 */ 973 pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) * 974 (NUM_USER_PTES + NUM_KERN_PTES)); 975 } 976 977 /* pmap_bootstrap_copyprom() INTERNAL 978 ** 979 * Copy the PROM mappings into our own tables. Note, we 980 * can use physical addresses until __bootstrap returns. 981 */ 982 void 983 pmap_bootstrap_copyprom(void) 984 { 985 struct sunromvec *romp; 986 int *mon_ctbl; 987 mmu_short_pte_t *kpte; 988 int i, len; 989 990 romp = romVectorPtr; 991 992 /* 993 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND 994 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE 995 */ 996 mon_ctbl = *romp->monptaddr; 997 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X); 998 kpte = &kernCbase[i]; 999 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE); 1000 1001 for (i = 0; i < len; i++) { 1002 kpte[i].attr.raw = mon_ctbl[i]; 1003 } 1004 1005 /* 1006 * Copy the mappings at MON_DVMA_BASE (to the end). 1007 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE. 1008 * Actually, we only want the last page, which the 1009 * PROM has set up for use by the "ie" driver. 1010 * (The i82686 needs its SCP there.) 1011 * If we copy all the mappings, pmap_enter_kernel 1012 * may complain about finding valid PTEs that are 1013 * not recorded in our PV lists... 1014 */ 1015 mon_ctbl = *romp->shadowpteaddr; 1016 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X); 1017 kpte = &kernCbase[i]; 1018 len = m68k_btop(SUN3X_MON_DVMA_SIZE); 1019 for (i = (len - 1); i < len; i++) { 1020 kpte[i].attr.raw = mon_ctbl[i]; 1021 } 1022 } 1023 1024 /* pmap_takeover_mmu INTERNAL 1025 ** 1026 * Called from pmap_bootstrap() after it has copied enough of the 1027 * PROM mappings into the kernel map so that we can use our own 1028 * MMU table. 1029 */ 1030 void 1031 pmap_takeover_mmu(void) 1032 { 1033 1034 loadcrp(&kernel_crp); 1035 } 1036 1037 /* pmap_bootstrap_setprom() INTERNAL 1038 ** 1039 * Set the PROM mappings so it can see kernel space. 1040 * Note that physical addresses are used here, which 1041 * we can get away with because this runs with the 1042 * low 1GB set for transparent translation. 1043 */ 1044 void 1045 pmap_bootstrap_setprom(void) 1046 { 1047 mmu_long_dte_t *mon_dte; 1048 extern struct mmu_rootptr mon_crp; 1049 int i; 1050 1051 mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr; 1052 for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) { 1053 mon_dte[i].attr.raw = kernAbase[i].attr.raw; 1054 mon_dte[i].addr.raw = kernAbase[i].addr.raw; 1055 } 1056 } 1057 1058 1059 /* pmap_init INTERFACE 1060 ** 1061 * Called at the end of vm_init() to set up the pmap system to go 1062 * into full time operation. All initialization of kernel_pmap 1063 * should be already done by now, so this should just do things 1064 * needed for user-level pmaps to work. 1065 */ 1066 void 1067 pmap_init(void) 1068 { 1069 1070 /** Initialize the manager pools **/ 1071 TAILQ_INIT(&a_pool); 1072 TAILQ_INIT(&b_pool); 1073 TAILQ_INIT(&c_pool); 1074 1075 /************************************************************** 1076 * Initialize all tmgr structures and MMU tables they manage. * 1077 **************************************************************/ 1078 /** Initialize A tables **/ 1079 pmap_init_a_tables(); 1080 /** Initialize B tables **/ 1081 pmap_init_b_tables(); 1082 /** Initialize C tables **/ 1083 pmap_init_c_tables(); 1084 1085 /** Initialize the pmap pools **/ 1086 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl", 1087 &pool_allocator_nointr, IPL_NONE); 1088 } 1089 1090 /* pmap_init_a_tables() INTERNAL 1091 ** 1092 * Initializes all A managers, their MMU A tables, and inserts 1093 * them into the A manager pool for use by the system. 1094 */ 1095 void 1096 pmap_init_a_tables(void) 1097 { 1098 int i; 1099 a_tmgr_t *a_tbl; 1100 1101 for (i = 0; i < NUM_A_TABLES; i++) { 1102 /* Select the next available A manager from the pool */ 1103 a_tbl = &Atmgrbase[i]; 1104 1105 /* 1106 * Clear its parent entry. Set its wired and valid 1107 * entry count to zero. 1108 */ 1109 a_tbl->at_parent = NULL; 1110 a_tbl->at_wcnt = a_tbl->at_ecnt = 0; 1111 1112 /* Assign it the next available MMU A table from the pool */ 1113 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE]; 1114 1115 /* 1116 * Initialize the MMU A table with the table in the `lwp0', 1117 * or kernel, mapping. This ensures that every process has 1118 * the kernel mapped in the top part of its address space. 1119 */ 1120 memcpy(a_tbl->at_dtbl, kernAbase, 1121 MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t)); 1122 1123 /* 1124 * Finally, insert the manager into the A pool, 1125 * making it ready to be used by the system. 1126 */ 1127 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1128 } 1129 } 1130 1131 /* pmap_init_b_tables() INTERNAL 1132 ** 1133 * Initializes all B table managers, their MMU B tables, and 1134 * inserts them into the B manager pool for use by the system. 1135 */ 1136 void 1137 pmap_init_b_tables(void) 1138 { 1139 int i, j; 1140 b_tmgr_t *b_tbl; 1141 1142 for (i = 0; i < NUM_B_TABLES; i++) { 1143 /* Select the next available B manager from the pool */ 1144 b_tbl = &Btmgrbase[i]; 1145 1146 b_tbl->bt_parent = NULL; /* clear its parent, */ 1147 b_tbl->bt_pidx = 0; /* parent index, */ 1148 b_tbl->bt_wcnt = 0; /* wired entry count, */ 1149 b_tbl->bt_ecnt = 0; /* valid entry count. */ 1150 1151 /* Assign it the next available MMU B table from the pool */ 1152 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE]; 1153 1154 /* Invalidate every descriptor in the table */ 1155 for (j = 0; j < MMU_B_TBL_SIZE; j++) 1156 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID; 1157 1158 /* Insert the manager into the B pool */ 1159 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1160 } 1161 } 1162 1163 /* pmap_init_c_tables() INTERNAL 1164 ** 1165 * Initializes all C table managers, their MMU C tables, and 1166 * inserts them into the C manager pool for use by the system. 1167 */ 1168 void 1169 pmap_init_c_tables(void) 1170 { 1171 int i, j; 1172 c_tmgr_t *c_tbl; 1173 1174 for (i = 0; i < NUM_C_TABLES; i++) { 1175 /* Select the next available C manager from the pool */ 1176 c_tbl = &Ctmgrbase[i]; 1177 1178 c_tbl->ct_parent = NULL; /* clear its parent, */ 1179 c_tbl->ct_pidx = 0; /* parent index, */ 1180 c_tbl->ct_wcnt = 0; /* wired entry count, */ 1181 c_tbl->ct_ecnt = 0; /* valid entry count, */ 1182 c_tbl->ct_pmap = NULL; /* parent pmap, */ 1183 c_tbl->ct_va = 0; /* base of managed range */ 1184 1185 /* Assign it the next available MMU C table from the pool */ 1186 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE]; 1187 1188 for (j = 0; j < MMU_C_TBL_SIZE; j++) 1189 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID; 1190 1191 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1192 } 1193 } 1194 1195 /* pmap_init_pv() INTERNAL 1196 ** 1197 * Initializes the Physical to Virtual mapping system. 1198 */ 1199 void 1200 pmap_init_pv(void) 1201 { 1202 int i; 1203 1204 /* Initialize every PV head. */ 1205 for (i = 0; i < m68k_btop(total_phys_mem); i++) { 1206 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */ 1207 pvbase[i].pv_flags = 0; /* Zero out page flags */ 1208 } 1209 } 1210 1211 /* is_managed INTERNAL 1212 ** 1213 * Determine if the given physical address is managed by the PV system. 1214 * Note that this logic assumes that no one will ask for the status of 1215 * addresses which lie in-between the memory banks on the 3/80. If they 1216 * do so, it will falsely report that it is managed. 1217 * 1218 * Note: A "managed" address is one that was reported to the VM system as 1219 * a "usable page" during system startup. As such, the VM system expects the 1220 * pmap module to keep an accurate track of the usage of those pages. 1221 * Any page not given to the VM system at startup does not exist (as far as 1222 * the VM system is concerned) and is therefore "unmanaged." Examples are 1223 * those pages which belong to the ROM monitor and the memory allocated before 1224 * the VM system was started. 1225 */ 1226 static INLINE bool 1227 is_managed(paddr_t pa) 1228 { 1229 if (pa >= avail_start && pa < avail_end) 1230 return true; 1231 else 1232 return false; 1233 } 1234 1235 /* get_a_table INTERNAL 1236 ** 1237 * Retrieve and return a level A table for use in a user map. 1238 */ 1239 a_tmgr_t * 1240 get_a_table(void) 1241 { 1242 a_tmgr_t *tbl; 1243 pmap_t pmap; 1244 1245 /* Get the top A table in the pool */ 1246 tbl = TAILQ_FIRST(&a_pool); 1247 if (tbl == NULL) { 1248 /* 1249 * XXX - Instead of panicking here and in other get_x_table 1250 * functions, we do have the option of sleeping on the head of 1251 * the table pool. Any function which updates the table pool 1252 * would then issue a wakeup() on the head, thus waking up any 1253 * processes waiting for a table. 1254 * 1255 * Actually, the place to sleep would be when some process 1256 * asks for a "wired" mapping that would run us short of 1257 * mapping resources. This design DEPENDS on always having 1258 * some mapping resources in the pool for stealing, so we 1259 * must make sure we NEVER let the pool become empty. -gwr 1260 */ 1261 panic("get_a_table: out of A tables."); 1262 } 1263 1264 TAILQ_REMOVE(&a_pool, tbl, at_link); 1265 /* 1266 * If the table has a non-null parent pointer then it is in use. 1267 * Forcibly abduct it from its parent and clear its entries. 1268 * No re-entrancy worries here. This table would not be in the 1269 * table pool unless it was available for use. 1270 * 1271 * Note that the second argument to free_a_table() is false. This 1272 * indicates that the table should not be relinked into the A table 1273 * pool. That is a job for the function that called us. 1274 */ 1275 if (tbl->at_parent) { 1276 KASSERT(tbl->at_wcnt == 0); 1277 pmap = tbl->at_parent; 1278 free_a_table(tbl, false); 1279 pmap->pm_a_tmgr = NULL; 1280 pmap->pm_a_phys = kernAphys; 1281 } 1282 return tbl; 1283 } 1284 1285 /* get_b_table INTERNAL 1286 ** 1287 * Return a level B table for use. 1288 */ 1289 b_tmgr_t * 1290 get_b_table(void) 1291 { 1292 b_tmgr_t *tbl; 1293 1294 /* See 'get_a_table' for comments. */ 1295 tbl = TAILQ_FIRST(&b_pool); 1296 if (tbl == NULL) 1297 panic("get_b_table: out of B tables."); 1298 TAILQ_REMOVE(&b_pool, tbl, bt_link); 1299 if (tbl->bt_parent) { 1300 KASSERT(tbl->bt_wcnt == 0); 1301 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID; 1302 tbl->bt_parent->at_ecnt--; 1303 free_b_table(tbl, false); 1304 } 1305 return tbl; 1306 } 1307 1308 /* get_c_table INTERNAL 1309 ** 1310 * Return a level C table for use. 1311 */ 1312 c_tmgr_t * 1313 get_c_table(void) 1314 { 1315 c_tmgr_t *tbl; 1316 1317 /* See 'get_a_table' for comments */ 1318 tbl = TAILQ_FIRST(&c_pool); 1319 if (tbl == NULL) 1320 panic("get_c_table: out of C tables."); 1321 TAILQ_REMOVE(&c_pool, tbl, ct_link); 1322 if (tbl->ct_parent) { 1323 KASSERT(tbl->ct_wcnt == 0); 1324 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID; 1325 tbl->ct_parent->bt_ecnt--; 1326 free_c_table(tbl, false); 1327 } 1328 return tbl; 1329 } 1330 1331 /* 1332 * The following 'free_table' and 'steal_table' functions are called to 1333 * detach tables from their current obligations (parents and children) and 1334 * prepare them for reuse in another mapping. 1335 * 1336 * Free_table is used when the calling function will handle the fate 1337 * of the parent table, such as returning it to the free pool when it has 1338 * no valid entries. Functions that do not want to handle this should 1339 * call steal_table, in which the parent table's descriptors and entry 1340 * count are automatically modified when this table is removed. 1341 */ 1342 1343 /* free_a_table INTERNAL 1344 ** 1345 * Unmaps the given A table and all child tables from their current 1346 * mappings. Returns the number of pages that were invalidated. 1347 * If 'relink' is true, the function will return the table to the head 1348 * of the available table pool. 1349 * 1350 * Cache note: The MC68851 will automatically flush all 1351 * descriptors derived from a given A table from its 1352 * Automatic Translation Cache (ATC) if we issue a 1353 * 'PFLUSHR' instruction with the base address of the 1354 * table. This function should do, and does so. 1355 * Note note: We are using an MC68030 - there is no 1356 * PFLUSHR. 1357 */ 1358 int 1359 free_a_table(a_tmgr_t *a_tbl, bool relink) 1360 { 1361 int i, removed_cnt; 1362 mmu_long_dte_t *dte; 1363 mmu_short_dte_t *dtbl; 1364 b_tmgr_t *b_tbl; 1365 uint8_t at_wired, bt_wired; 1366 1367 /* 1368 * Flush the ATC cache of all cached descriptors derived 1369 * from this table. 1370 * Sun3x does not use 68851's cached table feature 1371 * flush_atc_crp(mmu_vtop(a_tbl->dte)); 1372 */ 1373 1374 /* 1375 * Remove any pending cache flushes that were designated 1376 * for the pmap this A table belongs to. 1377 * a_tbl->parent->atc_flushq[0] = 0; 1378 * Not implemented in sun3x. 1379 */ 1380 1381 /* 1382 * All A tables in the system should retain a map for the 1383 * kernel. If the table contains any valid descriptors 1384 * (other than those for the kernel area), invalidate them all, 1385 * stopping short of the kernel's entries. 1386 */ 1387 removed_cnt = 0; 1388 at_wired = a_tbl->at_wcnt; 1389 if (a_tbl->at_ecnt) { 1390 dte = a_tbl->at_dtbl; 1391 for (i = 0; i < MMU_TIA(KERNBASE3X); i++) { 1392 /* 1393 * If a table entry points to a valid B table, free 1394 * it and its children. 1395 */ 1396 if (MMU_VALID_DT(dte[i])) { 1397 /* 1398 * The following block does several things, 1399 * from innermost expression to the 1400 * outermost: 1401 * 1) It extracts the base (cc 1996) 1402 * address of the B table pointed 1403 * to in the A table entry dte[i]. 1404 * 2) It converts this base address into 1405 * the virtual address it can be 1406 * accessed with. (all MMU tables point 1407 * to physical addresses.) 1408 * 3) It finds the corresponding manager 1409 * structure which manages this MMU table. 1410 * 4) It frees the manager structure. 1411 * (This frees the MMU table and all 1412 * child tables. See 'free_b_table' for 1413 * details.) 1414 */ 1415 dtbl = mmu_ptov(dte[i].addr.raw); 1416 b_tbl = mmuB2tmgr(dtbl); 1417 bt_wired = b_tbl->bt_wcnt; 1418 removed_cnt += free_b_table(b_tbl, true); 1419 if (bt_wired) 1420 a_tbl->at_wcnt--; 1421 dte[i].attr.raw = MMU_DT_INVALID; 1422 } 1423 } 1424 a_tbl->at_ecnt = 0; 1425 } 1426 KASSERT(a_tbl->at_wcnt == 0); 1427 1428 if (relink) { 1429 a_tbl->at_parent = NULL; 1430 if (!at_wired) 1431 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1432 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 1433 } 1434 return removed_cnt; 1435 } 1436 1437 /* free_b_table INTERNAL 1438 ** 1439 * Unmaps the given B table and all its children from their current 1440 * mappings. Returns the number of pages that were invalidated. 1441 * (For comments, see 'free_a_table()'). 1442 */ 1443 int 1444 free_b_table(b_tmgr_t *b_tbl, bool relink) 1445 { 1446 int i, removed_cnt; 1447 mmu_short_dte_t *dte; 1448 mmu_short_pte_t *dtbl; 1449 c_tmgr_t *c_tbl; 1450 uint8_t bt_wired, ct_wired; 1451 1452 removed_cnt = 0; 1453 bt_wired = b_tbl->bt_wcnt; 1454 if (b_tbl->bt_ecnt) { 1455 dte = b_tbl->bt_dtbl; 1456 for (i = 0; i < MMU_B_TBL_SIZE; i++) { 1457 if (MMU_VALID_DT(dte[i])) { 1458 dtbl = mmu_ptov(MMU_DTE_PA(dte[i])); 1459 c_tbl = mmuC2tmgr(dtbl); 1460 ct_wired = c_tbl->ct_wcnt; 1461 removed_cnt += free_c_table(c_tbl, true); 1462 if (ct_wired) 1463 b_tbl->bt_wcnt--; 1464 dte[i].attr.raw = MMU_DT_INVALID; 1465 } 1466 } 1467 b_tbl->bt_ecnt = 0; 1468 } 1469 KASSERT(b_tbl->bt_wcnt == 0); 1470 1471 if (relink) { 1472 b_tbl->bt_parent = NULL; 1473 if (!bt_wired) 1474 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1475 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 1476 } 1477 return removed_cnt; 1478 } 1479 1480 /* free_c_table INTERNAL 1481 ** 1482 * Unmaps the given C table from use and returns it to the pool for 1483 * re-use. Returns the number of pages that were invalidated. 1484 * 1485 * This function preserves any physical page modification information 1486 * contained in the page descriptors within the C table by calling 1487 * 'pmap_remove_pte().' 1488 */ 1489 int 1490 free_c_table(c_tmgr_t *c_tbl, bool relink) 1491 { 1492 mmu_short_pte_t *c_pte; 1493 int i, removed_cnt; 1494 uint8_t ct_wired; 1495 1496 removed_cnt = 0; 1497 ct_wired = c_tbl->ct_wcnt; 1498 if (c_tbl->ct_ecnt) { 1499 for (i = 0; i < MMU_C_TBL_SIZE; i++) { 1500 c_pte = &c_tbl->ct_dtbl[i]; 1501 if (MMU_VALID_DT(*c_pte)) { 1502 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) 1503 c_tbl->ct_wcnt--; 1504 pmap_remove_pte(c_pte); 1505 removed_cnt++; 1506 } 1507 } 1508 c_tbl->ct_ecnt = 0; 1509 } 1510 KASSERT(c_tbl->ct_wcnt == 0); 1511 1512 if (relink) { 1513 c_tbl->ct_parent = NULL; 1514 if (!ct_wired) 1515 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1516 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 1517 } 1518 return removed_cnt; 1519 } 1520 1521 1522 /* pmap_remove_pte INTERNAL 1523 ** 1524 * Unmap the given pte and preserve any page modification 1525 * information by transferring it to the pv head of the 1526 * physical page it maps to. This function does not update 1527 * any reference counts because it is assumed that the calling 1528 * function will do so. 1529 */ 1530 void 1531 pmap_remove_pte(mmu_short_pte_t *pte) 1532 { 1533 u_short pv_idx, targ_idx; 1534 paddr_t pa; 1535 pv_t *pv; 1536 1537 pa = MMU_PTE_PA(*pte); 1538 if (is_managed(pa)) { 1539 pv = pa2pv(pa); 1540 targ_idx = pteidx(pte); /* Index of PTE being removed */ 1541 1542 /* 1543 * If the PTE being removed is the first (or only) PTE in 1544 * the list of PTEs currently mapped to this page, remove the 1545 * PTE by changing the index found on the PV head. Otherwise 1546 * a linear search through the list will have to be executed 1547 * in order to find the PVE which points to the PTE being 1548 * removed, so that it may be modified to point to its new 1549 * neighbor. 1550 */ 1551 1552 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */ 1553 if (pv_idx == targ_idx) { 1554 pv->pv_idx = pvebase[targ_idx].pve_next; 1555 } else { 1556 1557 /* 1558 * Find the PV element pointing to the target 1559 * element. Note: may have pv_idx==PVE_EOL 1560 */ 1561 1562 for (;;) { 1563 if (pv_idx == PVE_EOL) { 1564 goto pv_not_found; 1565 } 1566 if (pvebase[pv_idx].pve_next == targ_idx) 1567 break; 1568 pv_idx = pvebase[pv_idx].pve_next; 1569 } 1570 1571 /* 1572 * At this point, pv_idx is the index of the PV 1573 * element just before the target element in the list. 1574 * Unlink the target. 1575 */ 1576 1577 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next; 1578 } 1579 1580 /* 1581 * Save the mod/ref bits of the pte by simply 1582 * ORing the entire pte onto the pv_flags member 1583 * of the pv structure. 1584 * There is no need to use a separate bit pattern 1585 * for usage information on the pv head than that 1586 * which is used on the MMU ptes. 1587 */ 1588 1589 pv_not_found: 1590 pv->pv_flags |= (u_short) pte->attr.raw; 1591 } 1592 pte->attr.raw = MMU_DT_INVALID; 1593 } 1594 1595 /* pmap_stroll INTERNAL 1596 ** 1597 * Retrieve the addresses of all table managers involved in the mapping of 1598 * the given virtual address. If the table walk completed successfully, 1599 * return true. If it was only partially successful, return false. 1600 * The table walk performed by this function is important to many other 1601 * functions in this module. 1602 * 1603 * Note: This function ought to be easier to read. 1604 */ 1605 bool 1606 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl, 1607 c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx, 1608 int *pte_idx) 1609 { 1610 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1611 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1612 1613 if (pmap == pmap_kernel()) 1614 return false; 1615 1616 /* Does the given pmap have its own A table? */ 1617 *a_tbl = pmap->pm_a_tmgr; 1618 if (*a_tbl == NULL) 1619 return false; /* No. Return unknown. */ 1620 /* Does the A table have a valid B table 1621 * under the corresponding table entry? 1622 */ 1623 *a_idx = MMU_TIA(va); 1624 a_dte = &((*a_tbl)->at_dtbl[*a_idx]); 1625 if (!MMU_VALID_DT(*a_dte)) 1626 return false; /* No. Return unknown. */ 1627 /* Yes. Extract B table from the A table. */ 1628 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw)); 1629 /* 1630 * Does the B table have a valid C table 1631 * under the corresponding table entry? 1632 */ 1633 *b_idx = MMU_TIB(va); 1634 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]); 1635 if (!MMU_VALID_DT(*b_dte)) 1636 return false; /* No. Return unknown. */ 1637 /* Yes. Extract C table from the B table. */ 1638 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte))); 1639 *pte_idx = MMU_TIC(va); 1640 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]); 1641 1642 return true; 1643 } 1644 1645 /* pmap_enter INTERFACE 1646 ** 1647 * Called by the kernel to map a virtual address 1648 * to a physical address in the given process map. 1649 * 1650 * Note: this function should apply an exclusive lock 1651 * on the pmap system for its duration. (it certainly 1652 * would save my hair!!) 1653 * This function ought to be easier to read. 1654 */ 1655 int 1656 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 1657 { 1658 bool insert, managed; /* Marks the need for PV insertion.*/ 1659 u_short nidx; /* PV list index */ 1660 int mapflags; /* Flags for the mapping (see NOTE1) */ 1661 u_int a_idx, b_idx, pte_idx; /* table indices */ 1662 a_tmgr_t *a_tbl; /* A: long descriptor table manager */ 1663 b_tmgr_t *b_tbl; /* B: short descriptor table manager */ 1664 c_tmgr_t *c_tbl; /* C: short page table manager */ 1665 mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1666 mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1667 mmu_short_pte_t *c_pte; /* C: short page descriptor table */ 1668 pv_t *pv; /* pv list head */ 1669 bool wired; /* is the mapping to be wired? */ 1670 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */ 1671 1672 if (pmap == pmap_kernel()) { 1673 pmap_enter_kernel(va, pa, prot); 1674 return 0; 1675 } 1676 1677 /* 1678 * Determine if the mapping should be wired. 1679 */ 1680 wired = ((flags & PMAP_WIRED) != 0); 1681 1682 /* 1683 * NOTE1: 1684 * 1685 * On November 13, 1999, someone changed the pmap_enter() API such 1686 * that it now accepts a 'flags' argument. This new argument 1687 * contains bit-flags for the architecture-independent (UVM) system to 1688 * use in signalling certain mapping requirements to the architecture- 1689 * dependent (pmap) system. The argument it replaces, 'wired', is now 1690 * one of the flags within it. 1691 * 1692 * In addition to flags signaled by the architecture-independent 1693 * system, parts of the architecture-dependent section of the sun3x 1694 * kernel pass their own flags in the lower, unused bits of the 1695 * physical address supplied to this function. These flags are 1696 * extracted and stored in the temporary variable 'mapflags'. 1697 * 1698 * Extract sun3x specific flags from the physical address. 1699 */ 1700 mapflags = (pa & ~MMU_PAGE_MASK); 1701 pa &= MMU_PAGE_MASK; 1702 1703 /* 1704 * Determine if the physical address being mapped is on-board RAM. 1705 * Any other area of the address space is likely to belong to a 1706 * device and hence it would be disastrous to cache its contents. 1707 */ 1708 if ((managed = is_managed(pa)) == false) 1709 mapflags |= PMAP_NC; 1710 1711 /* 1712 * For user mappings we walk along the MMU tables of the given 1713 * pmap, reaching a PTE which describes the virtual page being 1714 * mapped or changed. If any level of the walk ends in an invalid 1715 * entry, a table must be allocated and the entry must be updated 1716 * to point to it. 1717 * There is a bit of confusion as to whether this code must be 1718 * re-entrant. For now we will assume it is. To support 1719 * re-entrancy we must unlink tables from the table pool before 1720 * we assume we may use them. Tables are re-linked into the pool 1721 * when we are finished with them at the end of the function. 1722 * But I don't feel like doing that until we have proof that this 1723 * needs to be re-entrant. 1724 * 'llevel' records which tables need to be relinked. 1725 */ 1726 llevel = NONE; 1727 1728 /* 1729 * Step 1 - Retrieve the A table from the pmap. If it has no 1730 * A table, allocate a new one from the available pool. 1731 */ 1732 1733 a_tbl = pmap->pm_a_tmgr; 1734 if (a_tbl == NULL) { 1735 /* 1736 * This pmap does not currently have an A table. Allocate 1737 * a new one. 1738 */ 1739 a_tbl = get_a_table(); 1740 a_tbl->at_parent = pmap; 1741 1742 /* 1743 * Assign this new A table to the pmap, and calculate its 1744 * physical address so that loadcrp() can be used to make 1745 * the table active. 1746 */ 1747 pmap->pm_a_tmgr = a_tbl; 1748 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl); 1749 1750 /* 1751 * If the process receiving a new A table is the current 1752 * process, we are responsible for setting the MMU so that 1753 * it becomes the current address space. This only adds 1754 * new mappings, so no need to flush anything. 1755 */ 1756 if (pmap == current_pmap()) { 1757 kernel_crp.rp_addr = pmap->pm_a_phys; 1758 loadcrp(&kernel_crp); 1759 } 1760 1761 if (!wired) 1762 llevel = NEWA; 1763 } else { 1764 /* 1765 * Use the A table already allocated for this pmap. 1766 * Unlink it from the A table pool if necessary. 1767 */ 1768 if (wired && !a_tbl->at_wcnt) 1769 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1770 } 1771 1772 /* 1773 * Step 2 - Walk into the B table. If there is no valid B table, 1774 * allocate one. 1775 */ 1776 1777 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */ 1778 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */ 1779 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */ 1780 /* The descriptor is valid. Use the B table it points to. */ 1781 /************************************* 1782 * a_idx * 1783 * v * 1784 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- * 1785 * | | | | | | | | | | | | * 1786 * +-+-+-+-+-+-+-+-+-+-+-+- * 1787 * | * 1788 * \- b_tbl -> +-+- * 1789 * | | * 1790 * +-+- * 1791 *************************************/ 1792 b_dte = mmu_ptov(a_dte->addr.raw); 1793 b_tbl = mmuB2tmgr(b_dte); 1794 1795 /* 1796 * If the requested mapping must be wired, but this table 1797 * being used to map it is not, the table must be removed 1798 * from the available pool and its wired entry count 1799 * incremented. 1800 */ 1801 if (wired && !b_tbl->bt_wcnt) { 1802 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1803 a_tbl->at_wcnt++; 1804 } 1805 } else { 1806 /* The descriptor is invalid. Allocate a new B table. */ 1807 b_tbl = get_b_table(); 1808 1809 /* Point the parent A table descriptor to this new B table. */ 1810 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl); 1811 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT; 1812 a_tbl->at_ecnt++; /* Update parent's valid entry count */ 1813 1814 /* Create the necessary back references to the parent table */ 1815 b_tbl->bt_parent = a_tbl; 1816 b_tbl->bt_pidx = a_idx; 1817 1818 /* 1819 * If this table is to be wired, make sure the parent A table 1820 * wired count is updated to reflect that it has another wired 1821 * entry. 1822 */ 1823 if (wired) 1824 a_tbl->at_wcnt++; 1825 else if (llevel == NONE) 1826 llevel = NEWB; 1827 } 1828 1829 /* 1830 * Step 3 - Walk into the C table, if there is no valid C table, 1831 * allocate one. 1832 */ 1833 1834 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */ 1835 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */ 1836 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */ 1837 /* The descriptor is valid. Use the C table it points to. */ 1838 /************************************** 1839 * c_idx * 1840 * | v * 1841 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- * 1842 * | | | | | | | | | | | * 1843 * +-+-+-+-+-+-+-+-+-+-+- * 1844 * | * 1845 * \- c_tbl -> +-+-- * 1846 * | | | * 1847 * +-+-- * 1848 **************************************/ 1849 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte)); 1850 c_tbl = mmuC2tmgr(c_pte); 1851 1852 /* If mapping is wired and table is not */ 1853 if (wired && !c_tbl->ct_wcnt) { 1854 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1855 b_tbl->bt_wcnt++; 1856 } 1857 } else { 1858 /* The descriptor is invalid. Allocate a new C table. */ 1859 c_tbl = get_c_table(); 1860 1861 /* Point the parent B table descriptor to this new C table. */ 1862 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl); 1863 b_dte->attr.raw |= MMU_DT_SHORT; 1864 b_tbl->bt_ecnt++; /* Update parent's valid entry count */ 1865 1866 /* Create the necessary back references to the parent table */ 1867 c_tbl->ct_parent = b_tbl; 1868 c_tbl->ct_pidx = b_idx; 1869 /* 1870 * Store the pmap and base virtual managed address for faster 1871 * retrieval in the PV functions. 1872 */ 1873 c_tbl->ct_pmap = pmap; 1874 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK)); 1875 1876 /* 1877 * If this table is to be wired, make sure the parent B table 1878 * wired count is updated to reflect that it has another wired 1879 * entry. 1880 */ 1881 if (wired) 1882 b_tbl->bt_wcnt++; 1883 else if (llevel == NONE) 1884 llevel = NEWC; 1885 } 1886 1887 /* 1888 * Step 4 - Deposit a page descriptor (PTE) into the appropriate 1889 * slot of the C table, describing the PA to which the VA is mapped. 1890 */ 1891 1892 pte_idx = MMU_TIC(va); 1893 c_pte = &c_tbl->ct_dtbl[pte_idx]; 1894 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */ 1895 /* 1896 * The PTE is currently valid. This particular call 1897 * is just a synonym for one (or more) of the following 1898 * operations: 1899 * change protection of a page 1900 * change wiring status of a page 1901 * remove the mapping of a page 1902 */ 1903 1904 /* First check if this is a wiring operation. */ 1905 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) { 1906 /* 1907 * The existing mapping is wired, so adjust wired 1908 * entry count here. If new mapping is still wired, 1909 * wired entry count will be incremented again later. 1910 */ 1911 c_tbl->ct_wcnt--; 1912 if (!wired) { 1913 /* 1914 * The mapping of this PTE is being changed 1915 * from wired to unwired. 1916 * Adjust wired entry counts in each table and 1917 * set llevel flag to put unwired tables back 1918 * into the active pool. 1919 */ 1920 if (c_tbl->ct_wcnt == 0) { 1921 llevel = NEWC; 1922 if (--b_tbl->bt_wcnt == 0) { 1923 llevel = NEWB; 1924 if (--a_tbl->at_wcnt == 0) { 1925 llevel = NEWA; 1926 } 1927 } 1928 } 1929 } 1930 } 1931 1932 /* Is the new address the same as the old? */ 1933 if (MMU_PTE_PA(*c_pte) == pa) { 1934 /* 1935 * Yes, mark that it does not need to be reinserted 1936 * into the PV list. 1937 */ 1938 insert = false; 1939 1940 /* 1941 * Clear all but the modified, referenced and wired 1942 * bits on the PTE. 1943 */ 1944 c_pte->attr.raw &= (MMU_SHORT_PTE_M 1945 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED); 1946 } else { 1947 /* No, remove the old entry */ 1948 pmap_remove_pte(c_pte); 1949 insert = true; 1950 } 1951 1952 /* 1953 * TLB flush is only necessary if modifying current map. 1954 * However, in pmap_enter(), the pmap almost always IS 1955 * the current pmap, so don't even bother to check. 1956 */ 1957 TBIS(va); 1958 } else { 1959 /* 1960 * The PTE is invalid. Increment the valid entry count in 1961 * the C table manager to reflect the addition of a new entry. 1962 */ 1963 c_tbl->ct_ecnt++; 1964 1965 /* XXX - temporarily make sure the PTE is cleared. */ 1966 c_pte->attr.raw = 0; 1967 1968 /* It will also need to be inserted into the PV list. */ 1969 insert = true; 1970 } 1971 1972 /* 1973 * If page is changing from unwired to wired status, set an unused bit 1974 * within the PTE to indicate that it is wired. Also increment the 1975 * wired entry count in the C table manager. 1976 */ 1977 if (wired) { 1978 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED; 1979 c_tbl->ct_wcnt++; 1980 } 1981 1982 /* 1983 * Map the page, being careful to preserve modify/reference/wired 1984 * bits. At this point it is assumed that the PTE either has no bits 1985 * set, or if there are set bits, they are only modified, reference or 1986 * wired bits. If not, the following statement will cause erratic 1987 * behavior. 1988 */ 1989 #ifdef PMAP_DEBUG 1990 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M | 1991 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) { 1992 printf("pmap_enter: junk left in PTE at %p\n", c_pte); 1993 Debugger(); 1994 } 1995 #endif 1996 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE); 1997 1998 /* 1999 * If the mapping should be read-only, set the write protect 2000 * bit in the PTE. 2001 */ 2002 if (!(prot & VM_PROT_WRITE)) 2003 c_pte->attr.raw |= MMU_SHORT_PTE_WP; 2004 2005 /* 2006 * Mark the PTE as used and/or modified as specified by the flags arg. 2007 */ 2008 if (flags & VM_PROT_ALL) { 2009 c_pte->attr.raw |= MMU_SHORT_PTE_USED; 2010 if (flags & VM_PROT_WRITE) { 2011 c_pte->attr.raw |= MMU_SHORT_PTE_M; 2012 } 2013 } 2014 2015 /* 2016 * If the mapping should be cache inhibited (indicated by the flag 2017 * bits found on the lower order of the physical address.) 2018 * mark the PTE as a cache inhibited page. 2019 */ 2020 if (mapflags & PMAP_NC) 2021 c_pte->attr.raw |= MMU_SHORT_PTE_CI; 2022 2023 /* 2024 * If the physical address being mapped is managed by the PV 2025 * system then link the pte into the list of pages mapped to that 2026 * address. 2027 */ 2028 if (insert && managed) { 2029 pv = pa2pv(pa); 2030 nidx = pteidx(c_pte); 2031 2032 pvebase[nidx].pve_next = pv->pv_idx; 2033 pv->pv_idx = nidx; 2034 } 2035 2036 /* Move any allocated or unwired tables back into the active pool. */ 2037 2038 switch (llevel) { 2039 case NEWA: 2040 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2041 /* FALLTHROUGH */ 2042 case NEWB: 2043 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2044 /* FALLTHROUGH */ 2045 case NEWC: 2046 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2047 /* FALLTHROUGH */ 2048 default: 2049 break; 2050 } 2051 2052 return 0; 2053 } 2054 2055 /* pmap_enter_kernel INTERNAL 2056 ** 2057 * Map the given virtual address to the given physical address within the 2058 * kernel address space. This function exists because the kernel map does 2059 * not do dynamic table allocation. It consists of a contiguous array of ptes 2060 * and can be edited directly without the need to walk through any tables. 2061 * 2062 * XXX: "Danger, Will Robinson!" 2063 * Note that the kernel should never take a fault on any page 2064 * between [ KERNBASE .. virtual_avail ] and this is checked in 2065 * trap.c for kernel-mode MMU faults. This means that mappings 2066 * created in that range must be implicitly wired. -gwr 2067 */ 2068 void 2069 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot) 2070 { 2071 bool was_valid, insert; 2072 u_short pte_idx; 2073 int flags; 2074 mmu_short_pte_t *pte; 2075 pv_t *pv; 2076 paddr_t old_pa; 2077 2078 flags = (pa & ~MMU_PAGE_MASK); 2079 pa &= MMU_PAGE_MASK; 2080 2081 if (is_managed(pa)) 2082 insert = true; 2083 else 2084 insert = false; 2085 2086 /* 2087 * Calculate the index of the PTE being modified. 2088 */ 2089 pte_idx = (u_long)m68k_btop(va - KERNBASE3X); 2090 2091 /* This array is traditionally named "Sysmap" */ 2092 pte = &kernCbase[pte_idx]; 2093 2094 if (MMU_VALID_DT(*pte)) { 2095 was_valid = true; 2096 /* 2097 * If the PTE already maps a different 2098 * physical address, umap and pv_unlink. 2099 */ 2100 old_pa = MMU_PTE_PA(*pte); 2101 if (pa != old_pa) 2102 pmap_remove_pte(pte); 2103 else { 2104 /* 2105 * Old PA and new PA are the same. No need to 2106 * relink the mapping within the PV list. 2107 */ 2108 insert = false; 2109 2110 /* 2111 * Save any mod/ref bits on the PTE. 2112 */ 2113 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M); 2114 } 2115 } else { 2116 pte->attr.raw = MMU_DT_INVALID; 2117 was_valid = false; 2118 } 2119 2120 /* 2121 * Map the page. Being careful to preserve modified/referenced bits 2122 * on the PTE. 2123 */ 2124 pte->attr.raw |= (pa | MMU_DT_PAGE); 2125 2126 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */ 2127 pte->attr.raw |= MMU_SHORT_PTE_WP; 2128 if (flags & PMAP_NC) 2129 pte->attr.raw |= MMU_SHORT_PTE_CI; 2130 if (was_valid) 2131 TBIS(va); 2132 2133 /* 2134 * Insert the PTE into the PV system, if need be. 2135 */ 2136 if (insert) { 2137 pv = pa2pv(pa); 2138 pvebase[pte_idx].pve_next = pv->pv_idx; 2139 pv->pv_idx = pte_idx; 2140 } 2141 } 2142 2143 void 2144 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 2145 { 2146 mmu_short_pte_t *pte; 2147 u_int mapflags; 2148 2149 /* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */ 2150 mapflags = (pa & ~MMU_PAGE_MASK); 2151 if ((mapflags & PMAP_NC) != 0) 2152 flags |= PMAP_NOCACHE; 2153 2154 /* This array is traditionally named "Sysmap" */ 2155 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)]; 2156 2157 KASSERT(!MMU_VALID_DT(*pte)); 2158 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK); 2159 if (!(prot & VM_PROT_WRITE)) 2160 pte->attr.raw |= MMU_SHORT_PTE_WP; 2161 if ((flags & PMAP_NOCACHE) != 0) 2162 pte->attr.raw |= MMU_SHORT_PTE_CI; 2163 } 2164 2165 void 2166 pmap_kremove(vaddr_t va, vsize_t len) 2167 { 2168 int idx, eidx; 2169 2170 #ifdef PMAP_DEBUG 2171 if ((va & PGOFSET) || (len & PGOFSET)) 2172 panic("pmap_kremove: alignment"); 2173 #endif 2174 2175 idx = m68k_btop(va - KERNBASE3X); 2176 eidx = m68k_btop(va + len - KERNBASE3X); 2177 2178 while (idx < eidx) { 2179 kernCbase[idx++].attr.raw = MMU_DT_INVALID; 2180 TBIS(va); 2181 va += PAGE_SIZE; 2182 } 2183 } 2184 2185 /* pmap_map INTERNAL 2186 ** 2187 * Map a contiguous range of physical memory into a contiguous range of 2188 * the kernel virtual address space. 2189 * 2190 * Used for device mappings and early mapping of the kernel text/data/bss. 2191 * Returns the first virtual address beyond the end of the range. 2192 */ 2193 vaddr_t 2194 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot) 2195 { 2196 int sz; 2197 2198 sz = endpa - pa; 2199 do { 2200 pmap_enter_kernel(va, pa, prot); 2201 va += PAGE_SIZE; 2202 pa += PAGE_SIZE; 2203 sz -= PAGE_SIZE; 2204 } while (sz > 0); 2205 pmap_update(pmap_kernel()); 2206 return va; 2207 } 2208 2209 /* pmap_protect_kernel INTERNAL 2210 ** 2211 * Apply the given protection code to a kernel address range. 2212 */ 2213 static INLINE void 2214 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2215 { 2216 vaddr_t va; 2217 mmu_short_pte_t *pte; 2218 2219 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)]; 2220 for (va = startva; va < endva; va += PAGE_SIZE, pte++) { 2221 if (MMU_VALID_DT(*pte)) { 2222 switch (prot) { 2223 case VM_PROT_ALL: 2224 break; 2225 case VM_PROT_EXECUTE: 2226 case VM_PROT_READ: 2227 case VM_PROT_READ|VM_PROT_EXECUTE: 2228 pte->attr.raw |= MMU_SHORT_PTE_WP; 2229 break; 2230 case VM_PROT_NONE: 2231 /* this is an alias for 'pmap_remove_kernel' */ 2232 pmap_remove_pte(pte); 2233 break; 2234 default: 2235 break; 2236 } 2237 /* 2238 * since this is the kernel, immediately flush any cached 2239 * descriptors for this address. 2240 */ 2241 TBIS(va); 2242 } 2243 } 2244 } 2245 2246 /* pmap_protect INTERFACE 2247 ** 2248 * Apply the given protection to the given virtual address range within 2249 * the given map. 2250 * 2251 * It is ok for the protection applied to be stronger than what is 2252 * specified. We use this to our advantage when the given map has no 2253 * mapping for the virtual address. By skipping a page when this 2254 * is discovered, we are effectively applying a protection of VM_PROT_NONE, 2255 * and therefore do not need to map the page just to apply a protection 2256 * code. Only pmap_enter() needs to create new mappings if they do not exist. 2257 * 2258 * XXX - This function could be speeded up by using pmap_stroll() for initial 2259 * setup, and then manual scrolling in the for() loop. 2260 */ 2261 void 2262 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2263 { 2264 bool iscurpmap; 2265 int a_idx, b_idx, c_idx; 2266 a_tmgr_t *a_tbl; 2267 b_tmgr_t *b_tbl; 2268 c_tmgr_t *c_tbl; 2269 mmu_short_pte_t *pte; 2270 2271 if (pmap == pmap_kernel()) { 2272 pmap_protect_kernel(startva, endva, prot); 2273 return; 2274 } 2275 2276 /* 2277 * In this particular pmap implementation, there are only three 2278 * types of memory protection: 'all' (read/write/execute), 2279 * 'read-only' (read/execute) and 'none' (no mapping.) 2280 * It is not possible for us to treat 'executable' as a separate 2281 * protection type. Therefore, protection requests that seek to 2282 * remove execute permission while retaining read or write, and those 2283 * that make little sense (write-only for example) are ignored. 2284 */ 2285 switch (prot) { 2286 case VM_PROT_NONE: 2287 /* 2288 * A request to apply the protection code of 2289 * 'VM_PROT_NONE' is a synonym for pmap_remove(). 2290 */ 2291 pmap_remove(pmap, startva, endva); 2292 return; 2293 case VM_PROT_EXECUTE: 2294 case VM_PROT_READ: 2295 case VM_PROT_READ|VM_PROT_EXECUTE: 2296 /* continue */ 2297 break; 2298 case VM_PROT_WRITE: 2299 case VM_PROT_WRITE|VM_PROT_READ: 2300 case VM_PROT_WRITE|VM_PROT_EXECUTE: 2301 case VM_PROT_ALL: 2302 /* None of these should happen in a sane system. */ 2303 return; 2304 } 2305 2306 /* 2307 * If the pmap has no A table, it has no mappings and therefore 2308 * there is nothing to protect. 2309 */ 2310 if ((a_tbl = pmap->pm_a_tmgr) == NULL) 2311 return; 2312 2313 a_idx = MMU_TIA(startva); 2314 b_idx = MMU_TIB(startva); 2315 c_idx = MMU_TIC(startva); 2316 b_tbl = NULL; 2317 c_tbl = NULL; 2318 2319 iscurpmap = (pmap == current_pmap()); 2320 while (startva < endva) { 2321 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 2322 if (b_tbl == NULL) { 2323 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw; 2324 b_tbl = mmu_ptov((vaddr_t)b_tbl); 2325 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl); 2326 } 2327 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 2328 if (c_tbl == NULL) { 2329 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]); 2330 c_tbl = mmu_ptov((vaddr_t)c_tbl); 2331 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl); 2332 } 2333 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) { 2334 pte = &c_tbl->ct_dtbl[c_idx]; 2335 /* make the mapping read-only */ 2336 pte->attr.raw |= MMU_SHORT_PTE_WP; 2337 /* 2338 * If we just modified the current address space, 2339 * flush any translations for the modified page from 2340 * the translation cache and any data from it in the 2341 * data cache. 2342 */ 2343 if (iscurpmap) 2344 TBIS(startva); 2345 } 2346 startva += PAGE_SIZE; 2347 2348 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */ 2349 c_tbl = NULL; 2350 c_idx = 0; 2351 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2352 b_tbl = NULL; 2353 b_idx = 0; 2354 } 2355 } 2356 } else { /* C table wasn't valid */ 2357 c_tbl = NULL; 2358 c_idx = 0; 2359 startva += MMU_TIB_RANGE; 2360 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2361 b_tbl = NULL; 2362 b_idx = 0; 2363 } 2364 } /* C table */ 2365 } else { /* B table wasn't valid */ 2366 b_tbl = NULL; 2367 b_idx = 0; 2368 startva += MMU_TIA_RANGE; 2369 a_idx++; 2370 } /* B table */ 2371 } 2372 } 2373 2374 /* pmap_unwire INTERFACE 2375 ** 2376 * Clear the wired attribute of the specified page. 2377 * 2378 * This function is called from vm_fault.c to unwire 2379 * a mapping. 2380 */ 2381 void 2382 pmap_unwire(pmap_t pmap, vaddr_t va) 2383 { 2384 int a_idx, b_idx, c_idx; 2385 a_tmgr_t *a_tbl; 2386 b_tmgr_t *b_tbl; 2387 c_tmgr_t *c_tbl; 2388 mmu_short_pte_t *pte; 2389 2390 /* Kernel mappings always remain wired. */ 2391 if (pmap == pmap_kernel()) 2392 return; 2393 2394 /* 2395 * Walk through the tables. If the walk terminates without 2396 * a valid PTE then the address wasn't wired in the first place. 2397 * Return immediately. 2398 */ 2399 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx, 2400 &b_idx, &c_idx) == false) 2401 return; 2402 2403 2404 /* Is the PTE wired? If not, return. */ 2405 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED)) 2406 return; 2407 2408 /* Remove the wiring bit. */ 2409 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED); 2410 2411 /* 2412 * Decrement the wired entry count in the C table. 2413 * If it reaches zero the following things happen: 2414 * 1. The table no longer has any wired entries and is considered 2415 * unwired. 2416 * 2. It is placed on the available queue. 2417 * 3. The parent table's wired entry count is decremented. 2418 * 4. If it reaches zero, this process repeats at step 1 and 2419 * stops at after reaching the A table. 2420 */ 2421 if (--c_tbl->ct_wcnt == 0) { 2422 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2423 if (--b_tbl->bt_wcnt == 0) { 2424 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2425 if (--a_tbl->at_wcnt == 0) { 2426 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2427 } 2428 } 2429 } 2430 } 2431 2432 /* pmap_copy INTERFACE 2433 ** 2434 * Copy the mappings of a range of addresses in one pmap, into 2435 * the destination address of another. 2436 * 2437 * This routine is advisory. Should we one day decide that MMU tables 2438 * may be shared by more than one pmap, this function should be used to 2439 * link them together. Until that day however, we do nothing. 2440 */ 2441 void 2442 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src) 2443 { 2444 2445 /* not implemented. */ 2446 } 2447 2448 /* pmap_copy_page INTERFACE 2449 ** 2450 * Copy the contents of one physical page into another. 2451 * 2452 * This function makes use of two virtual pages allocated in pmap_bootstrap() 2453 * to map the two specified physical pages into the kernel address space. 2454 * 2455 * Note: We could use the transparent translation registers to make the 2456 * mappings. If we do so, be sure to disable interrupts before using them. 2457 */ 2458 void 2459 pmap_copy_page(paddr_t srcpa, paddr_t dstpa) 2460 { 2461 vaddr_t srcva, dstva; 2462 int s; 2463 2464 srcva = tmp_vpages[0]; 2465 dstva = tmp_vpages[1]; 2466 2467 s = splvm(); 2468 #ifdef DIAGNOSTIC 2469 if (tmp_vpages_inuse++) 2470 panic("pmap_copy_page: temporary vpages are in use."); 2471 #endif 2472 2473 /* Map pages as non-cacheable to avoid cache polution? */ 2474 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0); 2475 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0); 2476 2477 /* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */ 2478 copypage((char *)srcva, (char *)dstva); 2479 2480 pmap_kremove(srcva, PAGE_SIZE); 2481 pmap_kremove(dstva, PAGE_SIZE); 2482 2483 #ifdef DIAGNOSTIC 2484 --tmp_vpages_inuse; 2485 #endif 2486 splx(s); 2487 } 2488 2489 /* pmap_zero_page INTERFACE 2490 ** 2491 * Zero the contents of the specified physical page. 2492 * 2493 * Uses one of the virtual pages allocated in pmap_bootstrap() 2494 * to map the specified page into the kernel address space. 2495 */ 2496 void 2497 pmap_zero_page(paddr_t dstpa) 2498 { 2499 vaddr_t dstva; 2500 int s; 2501 2502 dstva = tmp_vpages[1]; 2503 s = splvm(); 2504 #ifdef DIAGNOSTIC 2505 if (tmp_vpages_inuse++) 2506 panic("pmap_zero_page: temporary vpages are in use."); 2507 #endif 2508 2509 /* The comments in pmap_copy_page() above apply here also. */ 2510 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0); 2511 2512 /* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */ 2513 zeropage((char *)dstva); 2514 2515 pmap_kremove(dstva, PAGE_SIZE); 2516 #ifdef DIAGNOSTIC 2517 --tmp_vpages_inuse; 2518 #endif 2519 splx(s); 2520 } 2521 2522 /* pmap_pinit INTERNAL 2523 ** 2524 * Initialize a pmap structure. 2525 */ 2526 static INLINE void 2527 pmap_pinit(pmap_t pmap) 2528 { 2529 2530 memset(pmap, 0, sizeof(struct pmap)); 2531 pmap->pm_a_tmgr = NULL; 2532 pmap->pm_a_phys = kernAphys; 2533 pmap->pm_refcount = 1; 2534 } 2535 2536 /* pmap_create INTERFACE 2537 ** 2538 * Create and return a pmap structure. 2539 */ 2540 pmap_t 2541 pmap_create(void) 2542 { 2543 pmap_t pmap; 2544 2545 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK); 2546 pmap_pinit(pmap); 2547 return pmap; 2548 } 2549 2550 /* pmap_release INTERNAL 2551 ** 2552 * Release any resources held by the given pmap. 2553 * 2554 * This is the reverse analog to pmap_pinit. It does not 2555 * necessarily mean for the pmap structure to be deallocated, 2556 * as in pmap_destroy. 2557 */ 2558 static INLINE void 2559 pmap_release(pmap_t pmap) 2560 { 2561 2562 /* 2563 * As long as the pmap contains no mappings, 2564 * which always should be the case whenever 2565 * this function is called, there really should 2566 * be nothing to do. 2567 */ 2568 #ifdef PMAP_DEBUG 2569 if (pmap == pmap_kernel()) 2570 panic("pmap_release: kernel pmap"); 2571 #endif 2572 /* 2573 * XXX - If this pmap has an A table, give it back. 2574 * The pmap SHOULD be empty by now, and pmap_remove 2575 * should have already given back the A table... 2576 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1 2577 * at this point, which means some mapping was not 2578 * removed when it should have been. -gwr 2579 */ 2580 if (pmap->pm_a_tmgr != NULL) { 2581 /* First make sure we are not using it! */ 2582 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2583 kernel_crp.rp_addr = kernAphys; 2584 loadcrp(&kernel_crp); 2585 } 2586 #ifdef PMAP_DEBUG /* XXX - todo! */ 2587 /* XXX - Now complain... */ 2588 printf("pmap_release: still have table\n"); 2589 Debugger(); 2590 #endif 2591 free_a_table(pmap->pm_a_tmgr, true); 2592 pmap->pm_a_tmgr = NULL; 2593 pmap->pm_a_phys = kernAphys; 2594 } 2595 } 2596 2597 /* pmap_reference INTERFACE 2598 ** 2599 * Increment the reference count of a pmap. 2600 */ 2601 void 2602 pmap_reference(pmap_t pmap) 2603 { 2604 2605 atomic_inc_uint(&pmap->pm_refcount); 2606 } 2607 2608 /* pmap_dereference INTERNAL 2609 ** 2610 * Decrease the reference count on the given pmap 2611 * by one and return the current count. 2612 */ 2613 static INLINE int 2614 pmap_dereference(pmap_t pmap) 2615 { 2616 int rtn; 2617 2618 rtn = atomic_dec_uint_nv(&pmap->pm_refcount); 2619 2620 return rtn; 2621 } 2622 2623 /* pmap_destroy INTERFACE 2624 ** 2625 * Decrement a pmap's reference count and delete 2626 * the pmap if it becomes zero. Will be called 2627 * only after all mappings have been removed. 2628 */ 2629 void 2630 pmap_destroy(pmap_t pmap) 2631 { 2632 2633 if (pmap_dereference(pmap) == 0) { 2634 pmap_release(pmap); 2635 pool_put(&pmap_pmap_pool, pmap); 2636 } 2637 } 2638 2639 /* pmap_is_referenced INTERFACE 2640 ** 2641 * Determine if the given physical page has been 2642 * referenced (read from [or written to.]) 2643 */ 2644 bool 2645 pmap_is_referenced(struct vm_page *pg) 2646 { 2647 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2648 pv_t *pv; 2649 int idx; 2650 2651 /* 2652 * Check the flags on the pv head. If they are set, 2653 * return immediately. Otherwise a search must be done. 2654 */ 2655 2656 pv = pa2pv(pa); 2657 if (pv->pv_flags & PV_FLAGS_USED) 2658 return true; 2659 2660 /* 2661 * Search through all pv elements pointing 2662 * to this page and query their reference bits 2663 */ 2664 2665 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2666 if (MMU_PTE_USED(kernCbase[idx])) { 2667 return true; 2668 } 2669 } 2670 return false; 2671 } 2672 2673 /* pmap_is_modified INTERFACE 2674 ** 2675 * Determine if the given physical page has been 2676 * modified (written to.) 2677 */ 2678 bool 2679 pmap_is_modified(struct vm_page *pg) 2680 { 2681 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2682 pv_t *pv; 2683 int idx; 2684 2685 /* see comments in pmap_is_referenced() */ 2686 pv = pa2pv(pa); 2687 if (pv->pv_flags & PV_FLAGS_MDFY) 2688 return true; 2689 2690 for (idx = pv->pv_idx; 2691 idx != PVE_EOL; 2692 idx = pvebase[idx].pve_next) { 2693 2694 if (MMU_PTE_MODIFIED(kernCbase[idx])) { 2695 return true; 2696 } 2697 } 2698 2699 return false; 2700 } 2701 2702 /* pmap_page_protect INTERFACE 2703 ** 2704 * Applies the given protection to all mappings to the given 2705 * physical page. 2706 */ 2707 void 2708 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 2709 { 2710 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2711 pv_t *pv; 2712 int idx; 2713 vaddr_t va; 2714 struct mmu_short_pte_struct *pte; 2715 c_tmgr_t *c_tbl; 2716 pmap_t pmap, curpmap; 2717 2718 curpmap = current_pmap(); 2719 pv = pa2pv(pa); 2720 2721 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2722 pte = &kernCbase[idx]; 2723 switch (prot) { 2724 case VM_PROT_ALL: 2725 /* do nothing */ 2726 break; 2727 case VM_PROT_EXECUTE: 2728 case VM_PROT_READ: 2729 case VM_PROT_READ|VM_PROT_EXECUTE: 2730 /* 2731 * Determine the virtual address mapped by 2732 * the PTE and flush ATC entries if necessary. 2733 */ 2734 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2735 pte->attr.raw |= MMU_SHORT_PTE_WP; 2736 if (pmap == curpmap || pmap == pmap_kernel()) 2737 TBIS(va); 2738 break; 2739 case VM_PROT_NONE: 2740 /* Save the mod/ref bits. */ 2741 pv->pv_flags |= pte->attr.raw; 2742 /* Invalidate the PTE. */ 2743 pte->attr.raw = MMU_DT_INVALID; 2744 2745 /* 2746 * Update table counts. And flush ATC entries 2747 * if necessary. 2748 */ 2749 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2750 2751 /* 2752 * If the PTE belongs to the kernel map, 2753 * be sure to flush the page it maps. 2754 */ 2755 if (pmap == pmap_kernel()) { 2756 TBIS(va); 2757 } else { 2758 /* 2759 * The PTE belongs to a user map. 2760 * update the entry count in the C 2761 * table to which it belongs and flush 2762 * the ATC if the mapping belongs to 2763 * the current pmap. 2764 */ 2765 c_tbl->ct_ecnt--; 2766 if (pmap == curpmap) 2767 TBIS(va); 2768 } 2769 break; 2770 default: 2771 break; 2772 } 2773 } 2774 2775 /* 2776 * If the protection code indicates that all mappings to the page 2777 * be removed, truncate the PV list to zero entries. 2778 */ 2779 if (prot == VM_PROT_NONE) 2780 pv->pv_idx = PVE_EOL; 2781 } 2782 2783 /* pmap_get_pteinfo INTERNAL 2784 ** 2785 * Called internally to find the pmap and virtual address within that 2786 * map to which the pte at the given index maps. Also includes the PTE's C 2787 * table manager. 2788 * 2789 * Returns the pmap in the argument provided, and the virtual address 2790 * by return value. 2791 */ 2792 vaddr_t 2793 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl) 2794 { 2795 vaddr_t va = 0; 2796 2797 /* 2798 * Determine if the PTE is a kernel PTE or a user PTE. 2799 */ 2800 if (idx >= NUM_KERN_PTES) { 2801 /* 2802 * The PTE belongs to a user mapping. 2803 */ 2804 /* XXX: Would like an inline for this to validate idx... */ 2805 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE]; 2806 2807 *pmap = (*tbl)->ct_pmap; 2808 /* 2809 * To find the va to which the PTE maps, we first take 2810 * the table's base virtual address mapping which is stored 2811 * in ct_va. We then increment this address by a page for 2812 * every slot skipped until we reach the PTE. 2813 */ 2814 va = (*tbl)->ct_va; 2815 va += m68k_ptob(idx % MMU_C_TBL_SIZE); 2816 } else { 2817 /* 2818 * The PTE belongs to the kernel map. 2819 */ 2820 *pmap = pmap_kernel(); 2821 2822 va = m68k_ptob(idx); 2823 va += KERNBASE3X; 2824 } 2825 2826 return va; 2827 } 2828 2829 /* pmap_clear_modify INTERFACE 2830 ** 2831 * Clear the modification bit on the page at the specified 2832 * physical address. 2833 * 2834 */ 2835 bool 2836 pmap_clear_modify(struct vm_page *pg) 2837 { 2838 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2839 bool rv; 2840 2841 rv = pmap_is_modified(pg); 2842 pmap_clear_pv(pa, PV_FLAGS_MDFY); 2843 return rv; 2844 } 2845 2846 /* pmap_clear_reference INTERFACE 2847 ** 2848 * Clear the referenced bit on the page at the specified 2849 * physical address. 2850 */ 2851 bool 2852 pmap_clear_reference(struct vm_page *pg) 2853 { 2854 paddr_t pa = VM_PAGE_TO_PHYS(pg); 2855 bool rv; 2856 2857 rv = pmap_is_referenced(pg); 2858 pmap_clear_pv(pa, PV_FLAGS_USED); 2859 return rv; 2860 } 2861 2862 /* pmap_clear_pv INTERNAL 2863 ** 2864 * Clears the specified flag from the specified physical address. 2865 * (Used by pmap_clear_modify() and pmap_clear_reference().) 2866 * 2867 * Flag is one of: 2868 * PV_FLAGS_MDFY - Page modified bit. 2869 * PV_FLAGS_USED - Page used (referenced) bit. 2870 * 2871 * This routine must not only clear the flag on the pv list 2872 * head. It must also clear the bit on every pte in the pv 2873 * list associated with the address. 2874 */ 2875 void 2876 pmap_clear_pv(paddr_t pa, int flag) 2877 { 2878 pv_t *pv; 2879 int idx; 2880 vaddr_t va; 2881 pmap_t pmap; 2882 mmu_short_pte_t *pte; 2883 c_tmgr_t *c_tbl; 2884 2885 pv = pa2pv(pa); 2886 pv->pv_flags &= ~(flag); 2887 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2888 pte = &kernCbase[idx]; 2889 pte->attr.raw &= ~(flag); 2890 2891 /* 2892 * The MC68030 MMU will not set the modified or 2893 * referenced bits on any MMU tables for which it has 2894 * a cached descriptor with its modify bit set. To insure 2895 * that it will modify these bits on the PTE during the next 2896 * time it is written to or read from, we must flush it from 2897 * the ATC. 2898 * 2899 * Ordinarily it is only necessary to flush the descriptor 2900 * if it is used in the current address space. But since I 2901 * am not sure that there will always be a notion of 2902 * 'the current address space' when this function is called, 2903 * I will skip the test and always flush the address. It 2904 * does no harm. 2905 */ 2906 2907 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2908 TBIS(va); 2909 } 2910 } 2911 2912 /* pmap_extract_kernel INTERNAL 2913 ** 2914 * Extract a translation from the kernel address space. 2915 */ 2916 static INLINE bool 2917 pmap_extract_kernel(vaddr_t va, paddr_t *pap) 2918 { 2919 mmu_short_pte_t *pte; 2920 2921 pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)]; 2922 if (!MMU_VALID_DT(*pte)) 2923 return false; 2924 if (pap != NULL) 2925 *pap = MMU_PTE_PA(*pte); 2926 return true; 2927 } 2928 2929 /* pmap_extract INTERFACE 2930 ** 2931 * Return the physical address mapped by the virtual address 2932 * in the specified pmap. 2933 * 2934 * Note: this function should also apply an exclusive lock 2935 * on the pmap system during its duration. 2936 */ 2937 bool 2938 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap) 2939 { 2940 int a_idx, b_idx, pte_idx; 2941 a_tmgr_t *a_tbl; 2942 b_tmgr_t *b_tbl; 2943 c_tmgr_t *c_tbl; 2944 mmu_short_pte_t *c_pte; 2945 2946 if (pmap == pmap_kernel()) 2947 return pmap_extract_kernel(va, pap); 2948 2949 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, 2950 &c_pte, &a_idx, &b_idx, &pte_idx) == false) 2951 return false; 2952 2953 if (!MMU_VALID_DT(*c_pte)) 2954 return false; 2955 2956 if (pap != NULL) 2957 *pap = MMU_PTE_PA(*c_pte); 2958 return true; 2959 } 2960 2961 /* pmap_remove_kernel INTERNAL 2962 ** 2963 * Remove the mapping of a range of virtual addresses from the kernel map. 2964 * The arguments are already page-aligned. 2965 */ 2966 static INLINE void 2967 pmap_remove_kernel(vaddr_t sva, vaddr_t eva) 2968 { 2969 int idx, eidx; 2970 2971 #ifdef PMAP_DEBUG 2972 if ((sva & PGOFSET) || (eva & PGOFSET)) 2973 panic("pmap_remove_kernel: alignment"); 2974 #endif 2975 2976 idx = m68k_btop(sva - KERNBASE3X); 2977 eidx = m68k_btop(eva - KERNBASE3X); 2978 2979 while (idx < eidx) { 2980 pmap_remove_pte(&kernCbase[idx++]); 2981 TBIS(sva); 2982 sva += PAGE_SIZE; 2983 } 2984 } 2985 2986 /* pmap_remove INTERFACE 2987 ** 2988 * Remove the mapping of a range of virtual addresses from the given pmap. 2989 * 2990 */ 2991 void 2992 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva) 2993 { 2994 2995 if (pmap == pmap_kernel()) { 2996 pmap_remove_kernel(sva, eva); 2997 return; 2998 } 2999 3000 /* 3001 * If the pmap doesn't have an A table of its own, it has no mappings 3002 * that can be removed. 3003 */ 3004 if (pmap->pm_a_tmgr == NULL) 3005 return; 3006 3007 /* 3008 * Remove the specified range from the pmap. If the function 3009 * returns true, the operation removed all the valid mappings 3010 * in the pmap and freed its A table. If this happened to the 3011 * currently loaded pmap, the MMU root pointer must be reloaded 3012 * with the default 'kernel' map. 3013 */ 3014 if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) { 3015 if (kernel_crp.rp_addr == pmap->pm_a_phys) { 3016 kernel_crp.rp_addr = kernAphys; 3017 loadcrp(&kernel_crp); 3018 /* will do TLB flush below */ 3019 } 3020 pmap->pm_a_tmgr = NULL; 3021 pmap->pm_a_phys = kernAphys; 3022 } 3023 3024 /* 3025 * If we just modified the current address space, 3026 * make sure to flush the MMU cache. 3027 * 3028 * XXX - this could be an unnecessarily large flush. 3029 * XXX - Could decide, based on the size of the VA range 3030 * to be removed, whether to flush "by pages" or "all". 3031 */ 3032 if (pmap == current_pmap()) 3033 TBIAU(); 3034 } 3035 3036 /* pmap_remove_a INTERNAL 3037 ** 3038 * This is function number one in a set of three that removes a range 3039 * of memory in the most efficient manner by removing the highest possible 3040 * tables from the memory space. This particular function attempts to remove 3041 * as many B tables as it can, delegating the remaining fragmented ranges to 3042 * pmap_remove_b(). 3043 * 3044 * If the removal operation results in an empty A table, the function returns 3045 * true. 3046 * 3047 * It's ugly but will do for now. 3048 */ 3049 bool 3050 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva) 3051 { 3052 bool empty; 3053 int idx; 3054 vaddr_t nstart, nend; 3055 b_tmgr_t *b_tbl; 3056 mmu_long_dte_t *a_dte; 3057 mmu_short_dte_t *b_dte; 3058 uint8_t at_wired, bt_wired; 3059 3060 /* 3061 * The following code works with what I call a 'granularity 3062 * reduction algorithm'. A range of addresses will always have 3063 * the following properties, which are classified according to 3064 * how the range relates to the size of the current granularity 3065 * - an A table entry: 3066 * 3067 * 1 2 3 4 3068 * -+---+---+---+---+---+---+---+- 3069 * -+---+---+---+---+---+---+---+- 3070 * 3071 * A range will always start on a granularity boundary, illustrated 3072 * by '+' signs in the table above, or it will start at some point 3073 * in-between a granularity boundary, as illustrated by point 1. 3074 * The first step in removing a range of addresses is to remove the 3075 * range between 1 and 2, the nearest granularity boundary. This 3076 * job is handled by the section of code governed by the 3077 * 'if (start < nstart)' statement. 3078 * 3079 * A range will always encompass zero or more integral granules, 3080 * illustrated by points 2 and 3. Integral granules are easy to 3081 * remove. The removal of these granules is the second step, and 3082 * is handled by the code block 'if (nstart < nend)'. 3083 * 3084 * Lastly, a range will always end on a granularity boundary, 3085 * ill. by point 3, or it will fall just beyond one, ill. by point 3086 * 4. The last step involves removing this range and is handled by 3087 * the code block 'if (nend < end)'. 3088 */ 3089 nstart = MMU_ROUND_UP_A(sva); 3090 nend = MMU_ROUND_A(eva); 3091 3092 at_wired = a_tbl->at_wcnt; 3093 3094 if (sva < nstart) { 3095 /* 3096 * This block is executed if the range starts between 3097 * a granularity boundary. 3098 * 3099 * First find the DTE which is responsible for mapping 3100 * the start of the range. 3101 */ 3102 idx = MMU_TIA(sva); 3103 a_dte = &a_tbl->at_dtbl[idx]; 3104 3105 /* 3106 * If the DTE is valid then delegate the removal of the sub 3107 * range to pmap_remove_b(), which can remove addresses at 3108 * a finer granularity. 3109 */ 3110 if (MMU_VALID_DT(*a_dte)) { 3111 b_dte = mmu_ptov(a_dte->addr.raw); 3112 b_tbl = mmuB2tmgr(b_dte); 3113 bt_wired = b_tbl->bt_wcnt; 3114 3115 /* 3116 * The sub range to be removed starts at the start 3117 * of the full range we were asked to remove, and ends 3118 * at the greater of: 3119 * 1. The end of the full range, -or- 3120 * 2. The end of the full range, rounded down to the 3121 * nearest granularity boundary. 3122 */ 3123 if (eva < nstart) 3124 empty = pmap_remove_b(b_tbl, sva, eva); 3125 else 3126 empty = pmap_remove_b(b_tbl, sva, nstart); 3127 3128 /* 3129 * If the child table no longer has wired entries, 3130 * decrement wired entry count. 3131 */ 3132 if (bt_wired && b_tbl->bt_wcnt == 0) 3133 a_tbl->at_wcnt--; 3134 3135 /* 3136 * If the removal resulted in an empty B table, 3137 * invalidate the DTE that points to it and decrement 3138 * the valid entry count of the A table. 3139 */ 3140 if (empty) { 3141 a_dte->attr.raw = MMU_DT_INVALID; 3142 a_tbl->at_ecnt--; 3143 } 3144 } 3145 /* 3146 * If the DTE is invalid, the address range is already non- 3147 * existent and can simply be skipped. 3148 */ 3149 } 3150 if (nstart < nend) { 3151 /* 3152 * This block is executed if the range spans a whole number 3153 * multiple of granules (A table entries.) 3154 * 3155 * First find the DTE which is responsible for mapping 3156 * the start of the first granule involved. 3157 */ 3158 idx = MMU_TIA(nstart); 3159 a_dte = &a_tbl->at_dtbl[idx]; 3160 3161 /* 3162 * Remove entire sub-granules (B tables) one at a time, 3163 * until reaching the end of the range. 3164 */ 3165 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE) 3166 if (MMU_VALID_DT(*a_dte)) { 3167 /* 3168 * Find the B table manager for the 3169 * entry and free it. 3170 */ 3171 b_dte = mmu_ptov(a_dte->addr.raw); 3172 b_tbl = mmuB2tmgr(b_dte); 3173 bt_wired = b_tbl->bt_wcnt; 3174 3175 free_b_table(b_tbl, true); 3176 3177 /* 3178 * All child entries has been removed. 3179 * If there were any wired entries in it, 3180 * decrement wired entry count. 3181 */ 3182 if (bt_wired) 3183 a_tbl->at_wcnt--; 3184 3185 /* 3186 * Invalidate the DTE that points to the 3187 * B table and decrement the valid entry 3188 * count of the A table. 3189 */ 3190 a_dte->attr.raw = MMU_DT_INVALID; 3191 a_tbl->at_ecnt--; 3192 } 3193 } 3194 if (nend < eva) { 3195 /* 3196 * This block is executed if the range ends beyond a 3197 * granularity boundary. 3198 * 3199 * First find the DTE which is responsible for mapping 3200 * the start of the nearest (rounded down) granularity 3201 * boundary. 3202 */ 3203 idx = MMU_TIA(nend); 3204 a_dte = &a_tbl->at_dtbl[idx]; 3205 3206 /* 3207 * If the DTE is valid then delegate the removal of the sub 3208 * range to pmap_remove_b(), which can remove addresses at 3209 * a finer granularity. 3210 */ 3211 if (MMU_VALID_DT(*a_dte)) { 3212 /* 3213 * Find the B table manager for the entry 3214 * and hand it to pmap_remove_b() along with 3215 * the sub range. 3216 */ 3217 b_dte = mmu_ptov(a_dte->addr.raw); 3218 b_tbl = mmuB2tmgr(b_dte); 3219 bt_wired = b_tbl->bt_wcnt; 3220 3221 empty = pmap_remove_b(b_tbl, nend, eva); 3222 3223 /* 3224 * If the child table no longer has wired entries, 3225 * decrement wired entry count. 3226 */ 3227 if (bt_wired && b_tbl->bt_wcnt == 0) 3228 a_tbl->at_wcnt--; 3229 /* 3230 * If the removal resulted in an empty B table, 3231 * invalidate the DTE that points to it and decrement 3232 * the valid entry count of the A table. 3233 */ 3234 if (empty) { 3235 a_dte->attr.raw = MMU_DT_INVALID; 3236 a_tbl->at_ecnt--; 3237 } 3238 } 3239 } 3240 3241 /* 3242 * If there are no more entries in the A table, release it 3243 * back to the available pool and return true. 3244 */ 3245 if (a_tbl->at_ecnt == 0) { 3246 KASSERT(a_tbl->at_wcnt == 0); 3247 a_tbl->at_parent = NULL; 3248 if (!at_wired) 3249 TAILQ_REMOVE(&a_pool, a_tbl, at_link); 3250 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 3251 empty = true; 3252 } else { 3253 /* 3254 * If the table doesn't have wired entries any longer 3255 * but still has unwired entries, put it back into 3256 * the available queue. 3257 */ 3258 if (at_wired && a_tbl->at_wcnt == 0) 3259 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 3260 empty = false; 3261 } 3262 3263 return empty; 3264 } 3265 3266 /* pmap_remove_b INTERNAL 3267 ** 3268 * Remove a range of addresses from an address space, trying to remove entire 3269 * C tables if possible. 3270 * 3271 * If the operation results in an empty B table, the function returns true. 3272 */ 3273 bool 3274 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva) 3275 { 3276 bool empty; 3277 int idx; 3278 vaddr_t nstart, nend, rstart; 3279 c_tmgr_t *c_tbl; 3280 mmu_short_dte_t *b_dte; 3281 mmu_short_pte_t *c_dte; 3282 uint8_t bt_wired, ct_wired; 3283 3284 nstart = MMU_ROUND_UP_B(sva); 3285 nend = MMU_ROUND_B(eva); 3286 3287 bt_wired = b_tbl->bt_wcnt; 3288 3289 if (sva < nstart) { 3290 idx = MMU_TIB(sva); 3291 b_dte = &b_tbl->bt_dtbl[idx]; 3292 if (MMU_VALID_DT(*b_dte)) { 3293 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3294 c_tbl = mmuC2tmgr(c_dte); 3295 ct_wired = c_tbl->ct_wcnt; 3296 3297 if (eva < nstart) 3298 empty = pmap_remove_c(c_tbl, sva, eva); 3299 else 3300 empty = pmap_remove_c(c_tbl, sva, nstart); 3301 3302 /* 3303 * If the child table no longer has wired entries, 3304 * decrement wired entry count. 3305 */ 3306 if (ct_wired && c_tbl->ct_wcnt == 0) 3307 b_tbl->bt_wcnt--; 3308 3309 if (empty) { 3310 b_dte->attr.raw = MMU_DT_INVALID; 3311 b_tbl->bt_ecnt--; 3312 } 3313 } 3314 } 3315 if (nstart < nend) { 3316 idx = MMU_TIB(nstart); 3317 b_dte = &b_tbl->bt_dtbl[idx]; 3318 rstart = nstart; 3319 while (rstart < nend) { 3320 if (MMU_VALID_DT(*b_dte)) { 3321 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3322 c_tbl = mmuC2tmgr(c_dte); 3323 ct_wired = c_tbl->ct_wcnt; 3324 3325 free_c_table(c_tbl, true); 3326 3327 /* 3328 * All child entries has been removed. 3329 * If there were any wired entries in it, 3330 * decrement wired entry count. 3331 */ 3332 if (ct_wired) 3333 b_tbl->bt_wcnt--; 3334 3335 b_dte->attr.raw = MMU_DT_INVALID; 3336 b_tbl->bt_ecnt--; 3337 } 3338 b_dte++; 3339 rstart += MMU_TIB_RANGE; 3340 } 3341 } 3342 if (nend < eva) { 3343 idx = MMU_TIB(nend); 3344 b_dte = &b_tbl->bt_dtbl[idx]; 3345 if (MMU_VALID_DT(*b_dte)) { 3346 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3347 c_tbl = mmuC2tmgr(c_dte); 3348 ct_wired = c_tbl->ct_wcnt; 3349 empty = pmap_remove_c(c_tbl, nend, eva); 3350 3351 /* 3352 * If the child table no longer has wired entries, 3353 * decrement wired entry count. 3354 */ 3355 if (ct_wired && c_tbl->ct_wcnt == 0) 3356 b_tbl->bt_wcnt--; 3357 3358 if (empty) { 3359 b_dte->attr.raw = MMU_DT_INVALID; 3360 b_tbl->bt_ecnt--; 3361 } 3362 } 3363 } 3364 3365 if (b_tbl->bt_ecnt == 0) { 3366 KASSERT(b_tbl->bt_wcnt == 0); 3367 b_tbl->bt_parent = NULL; 3368 if (!bt_wired) 3369 TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 3370 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 3371 empty = true; 3372 } else { 3373 /* 3374 * If the table doesn't have wired entries any longer 3375 * but still has unwired entries, put it back into 3376 * the available queue. 3377 */ 3378 if (bt_wired && b_tbl->bt_wcnt == 0) 3379 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 3380 3381 empty = false; 3382 } 3383 3384 return empty; 3385 } 3386 3387 /* pmap_remove_c INTERNAL 3388 ** 3389 * Remove a range of addresses from the given C table. 3390 */ 3391 bool 3392 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva) 3393 { 3394 bool empty; 3395 int idx; 3396 mmu_short_pte_t *c_pte; 3397 uint8_t ct_wired; 3398 3399 ct_wired = c_tbl->ct_wcnt; 3400 3401 idx = MMU_TIC(sva); 3402 c_pte = &c_tbl->ct_dtbl[idx]; 3403 for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) { 3404 if (MMU_VALID_DT(*c_pte)) { 3405 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) 3406 c_tbl->ct_wcnt--; 3407 pmap_remove_pte(c_pte); 3408 c_tbl->ct_ecnt--; 3409 } 3410 } 3411 3412 if (c_tbl->ct_ecnt == 0) { 3413 KASSERT(c_tbl->ct_wcnt == 0); 3414 c_tbl->ct_parent = NULL; 3415 if (!ct_wired) 3416 TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 3417 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 3418 empty = true; 3419 } else { 3420 /* 3421 * If the table doesn't have wired entries any longer 3422 * but still has unwired entries, put it back into 3423 * the available queue. 3424 */ 3425 if (ct_wired && c_tbl->ct_wcnt == 0) 3426 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 3427 empty = false; 3428 } 3429 3430 return empty; 3431 } 3432 3433 /* pmap_bootstrap_alloc INTERNAL 3434 ** 3435 * Used internally for memory allocation at startup when malloc is not 3436 * available. This code will fail once it crosses the first memory 3437 * bank boundary on the 3/80. Hopefully by then however, the VM system 3438 * will be in charge of allocation. 3439 */ 3440 void * 3441 pmap_bootstrap_alloc(int size) 3442 { 3443 void *rtn; 3444 3445 #ifdef PMAP_DEBUG 3446 if (bootstrap_alloc_enabled == false) { 3447 mon_printf("pmap_bootstrap_alloc: disabled\n"); 3448 sunmon_abort(); 3449 } 3450 #endif 3451 3452 rtn = (void *) virtual_avail; 3453 virtual_avail += size; 3454 3455 #ifdef PMAP_DEBUG 3456 if (virtual_avail > virtual_contig_end) { 3457 mon_printf("pmap_bootstrap_alloc: out of mem\n"); 3458 sunmon_abort(); 3459 } 3460 #endif 3461 3462 return rtn; 3463 } 3464 3465 /* pmap_bootstrap_aalign INTERNAL 3466 ** 3467 * Used to insure that the next call to pmap_bootstrap_alloc() will 3468 * return a chunk of memory aligned to the specified size. 3469 * 3470 * Note: This function will only support alignment sizes that are powers 3471 * of two. 3472 */ 3473 void 3474 pmap_bootstrap_aalign(int size) 3475 { 3476 int off; 3477 3478 off = virtual_avail & (size - 1); 3479 if (off) { 3480 (void)pmap_bootstrap_alloc(size - off); 3481 } 3482 } 3483 3484 /* pmap_pa_exists 3485 ** 3486 * Used by the /dev/mem driver to see if a given PA is memory 3487 * that can be mapped. (The PA is not in a hole.) 3488 */ 3489 int 3490 pmap_pa_exists(paddr_t pa) 3491 { 3492 int i; 3493 3494 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3495 if ((pa >= avail_mem[i].pmem_start) && 3496 (pa < avail_mem[i].pmem_end)) 3497 return 1; 3498 if (avail_mem[i].pmem_next == NULL) 3499 break; 3500 } 3501 return 0; 3502 } 3503 3504 /* Called only from locore.s and pmap.c */ 3505 void _pmap_switch(pmap_t pmap); 3506 3507 /* 3508 * _pmap_switch INTERNAL 3509 * 3510 * This is called by locore.s:cpu_switch() when it is 3511 * switching to a new process. Load new translations. 3512 * Note: done in-line by locore.s unless PMAP_DEBUG 3513 * 3514 * Note that we do NOT allocate a context here, but 3515 * share the "kernel only" context until we really 3516 * need our own context for user-space mappings in 3517 * pmap_enter_user(). [ s/context/mmu A table/ ] 3518 */ 3519 void 3520 _pmap_switch(pmap_t pmap) 3521 { 3522 u_long rootpa; 3523 3524 /* 3525 * Only do reload/flush if we have to. 3526 * Note that if the old and new process 3527 * were BOTH using the "null" context, 3528 * then this will NOT flush the TLB. 3529 */ 3530 rootpa = pmap->pm_a_phys; 3531 if (kernel_crp.rp_addr != rootpa) { 3532 DPRINT(("pmap_activate(%p)\n", pmap)); 3533 kernel_crp.rp_addr = rootpa; 3534 loadcrp(&kernel_crp); 3535 TBIAU(); 3536 } 3537 } 3538 3539 /* 3540 * Exported version of pmap_activate(). This is called from the 3541 * machine-independent VM code when a process is given a new pmap. 3542 * If (p == curlwp) do like cpu_switch would do; otherwise just 3543 * take this as notification that the process has a new pmap. 3544 */ 3545 void 3546 pmap_activate(struct lwp *l) 3547 { 3548 3549 if (l->l_proc == curproc) { 3550 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap); 3551 } 3552 } 3553 3554 /* 3555 * pmap_deactivate INTERFACE 3556 ** 3557 * This is called to deactivate the specified process's address space. 3558 */ 3559 void 3560 pmap_deactivate(struct lwp *l) 3561 { 3562 3563 /* Nothing to do. */ 3564 } 3565 3566 /* 3567 * Fill in the sun3x-specific part of the kernel core header 3568 * for dumpsys(). (See machdep.c for the rest.) 3569 */ 3570 void 3571 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh) 3572 { 3573 u_long spa, len; 3574 int i; 3575 3576 sh->pg_frame = MMU_SHORT_PTE_BASEADDR; 3577 sh->pg_valid = MMU_DT_PAGE; 3578 sh->contig_end = virtual_contig_end; 3579 sh->kernCbase = (u_long)kernCbase; 3580 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3581 spa = avail_mem[i].pmem_start; 3582 spa = m68k_trunc_page(spa); 3583 len = avail_mem[i].pmem_end - spa; 3584 len = m68k_round_page(len); 3585 sh->ram_segs[i].start = spa; 3586 sh->ram_segs[i].size = len; 3587 } 3588 } 3589 3590 3591 /* pmap_virtual_space INTERFACE 3592 ** 3593 * Return the current available range of virtual addresses in the 3594 * arguments provided. Only really called once. 3595 */ 3596 void 3597 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend) 3598 { 3599 3600 *vstart = virtual_avail; 3601 *vend = virtual_end; 3602 } 3603 3604 /* 3605 * Provide memory to the VM system. 3606 * 3607 * Assume avail_start is always in the 3608 * first segment as pmap_bootstrap does. 3609 */ 3610 static void 3611 pmap_page_upload(void) 3612 { 3613 paddr_t a, b; /* memory range */ 3614 int i; 3615 3616 /* Supply the memory in segments. */ 3617 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3618 a = atop(avail_mem[i].pmem_start); 3619 b = atop(avail_mem[i].pmem_end); 3620 if (i == 0) 3621 a = atop(avail_start); 3622 if (avail_mem[i].pmem_end > avail_end) 3623 b = atop(avail_end); 3624 3625 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT); 3626 3627 if (avail_mem[i].pmem_next == NULL) 3628 break; 3629 } 3630 } 3631 3632 /* pmap_count INTERFACE 3633 ** 3634 * Return the number of resident (valid) pages in the given pmap. 3635 * 3636 * Note: If this function is handed the kernel map, it will report 3637 * that it has no mappings. Hopefully the VM system won't ask for kernel 3638 * map statistics. 3639 */ 3640 segsz_t 3641 pmap_count(pmap_t pmap, int type) 3642 { 3643 u_int count; 3644 int a_idx, b_idx; 3645 a_tmgr_t *a_tbl; 3646 b_tmgr_t *b_tbl; 3647 c_tmgr_t *c_tbl; 3648 3649 /* 3650 * If the pmap does not have its own A table manager, it has no 3651 * valid entries. 3652 */ 3653 if (pmap->pm_a_tmgr == NULL) 3654 return 0; 3655 3656 a_tbl = pmap->pm_a_tmgr; 3657 3658 count = 0; 3659 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) { 3660 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 3661 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw)); 3662 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) { 3663 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 3664 c_tbl = mmuC2tmgr( 3665 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]))); 3666 if (type == 0) 3667 /* 3668 * A resident entry count has been requested. 3669 */ 3670 count += c_tbl->ct_ecnt; 3671 else 3672 /* 3673 * A wired entry count has been requested. 3674 */ 3675 count += c_tbl->ct_wcnt; 3676 } 3677 } 3678 } 3679 } 3680 3681 return count; 3682 } 3683 3684 /************************ SUN3 COMPATIBILITY ROUTINES ******************** 3685 * The following routines are only used by DDB for tricky kernel text * 3686 * text operations in db_memrw.c. They are provided for sun3 * 3687 * compatibility. * 3688 *************************************************************************/ 3689 /* get_pte INTERNAL 3690 ** 3691 * Return the page descriptor the describes the kernel mapping 3692 * of the given virtual address. 3693 */ 3694 extern u_long ptest_addr(u_long); /* XXX: locore.s */ 3695 u_int 3696 get_pte(vaddr_t va) 3697 { 3698 u_long pte_pa; 3699 mmu_short_pte_t *pte; 3700 3701 /* Get the physical address of the PTE */ 3702 pte_pa = ptest_addr(va & ~PGOFSET); 3703 3704 /* Convert to a virtual address... */ 3705 pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa); 3706 3707 /* Make sure it is in our level-C tables... */ 3708 if ((pte < kernCbase) || 3709 (pte >= &mmuCbase[NUM_USER_PTES])) 3710 return 0; 3711 3712 /* ... and just return its contents. */ 3713 return (pte->attr.raw); 3714 } 3715 3716 3717 /* set_pte INTERNAL 3718 ** 3719 * Set the page descriptor that describes the kernel mapping 3720 * of the given virtual address. 3721 */ 3722 void 3723 set_pte(vaddr_t va, u_int pte) 3724 { 3725 u_long idx; 3726 3727 if (va < KERNBASE3X) 3728 return; 3729 3730 idx = (unsigned long) m68k_btop(va - KERNBASE3X); 3731 kernCbase[idx].attr.raw = pte; 3732 TBIS(va); 3733 } 3734 3735 /* 3736 * Routine: pmap_procwr 3737 * 3738 * Function: 3739 * Synchronize caches corresponding to [addr, addr+len) in p. 3740 */ 3741 void 3742 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 3743 { 3744 3745 (void)cachectl1(0x80000004, va, len, p); 3746 } 3747 3748 3749 #ifdef PMAP_DEBUG 3750 /************************** DEBUGGING ROUTINES ************************** 3751 * The following routines are meant to be an aid to debugging the pmap * 3752 * system. They are callable from the DDB command line and should be * 3753 * prepared to be handed unstable or incomplete states of the system. * 3754 ************************************************************************/ 3755 3756 /* pv_list 3757 ** 3758 * List all pages found on the pv list for the given physical page. 3759 * To avoid endless loops, the listing will stop at the end of the list 3760 * or after 'n' entries - whichever comes first. 3761 */ 3762 void 3763 pv_list(paddr_t pa, int n) 3764 { 3765 int idx; 3766 vaddr_t va; 3767 pv_t *pv; 3768 c_tmgr_t *c_tbl; 3769 pmap_t pmap; 3770 3771 pv = pa2pv(pa); 3772 idx = pv->pv_idx; 3773 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) { 3774 va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 3775 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n", 3776 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl); 3777 } 3778 } 3779 #endif /* PMAP_DEBUG */ 3780 3781 #ifdef NOT_YET 3782 /* and maybe not ever */ 3783 /************************** LOW-LEVEL ROUTINES ************************** 3784 * These routines will eventually be re-written into assembly and placed* 3785 * in locore.s. They are here now as stubs so that the pmap module can * 3786 * be linked as a standalone user program for testing. * 3787 ************************************************************************/ 3788 /* flush_atc_crp INTERNAL 3789 ** 3790 * Flush all page descriptors derived from the given CPU Root Pointer 3791 * (CRP), or 'A' table as it is known here, from the 68851's automatic 3792 * cache. 3793 */ 3794 void 3795 flush_atc_crp(int a_tbl) 3796 { 3797 mmu_long_rp_t rp; 3798 3799 /* Create a temporary root table pointer that points to the 3800 * given A table. 3801 */ 3802 rp.attr.raw = ~MMU_LONG_RP_LU; 3803 rp.addr.raw = (unsigned int) a_tbl; 3804 3805 mmu_pflushr(&rp); 3806 /* mmu_pflushr: 3807 * movel sp(4)@,a0 3808 * pflushr a0@ 3809 * rts 3810 */ 3811 } 3812 #endif /* NOT_YET */ 3813