xref: /netbsd-src/sys/arch/sun3/sun3x/pmap.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: pmap.c,v 1.98 2007/10/17 19:57:47 garbled Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a process called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.98 2007/10/17 19:57:47 garbled Exp $");
116 
117 #include "opt_ddb.h"
118 #include "opt_pmap_debug.h"
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/proc.h>
123 #include <sys/malloc.h>
124 #include <sys/pool.h>
125 #include <sys/user.h>
126 #include <sys/queue.h>
127 #include <sys/kcore.h>
128 
129 #include <uvm/uvm.h>
130 
131 #include <machine/cpu.h>
132 #include <machine/kcore.h>
133 #include <machine/mon.h>
134 #include <machine/pmap.h>
135 #include <machine/pte.h>
136 #include <machine/vmparam.h>
137 #include <m68k/cacheops.h>
138 
139 #include <sun3/sun3/cache.h>
140 #include <sun3/sun3/machdep.h>
141 
142 #include "pmap_pvt.h"
143 
144 /* XXX - What headers declare these? */
145 extern struct pcb *curpcb;
146 extern int physmem;
147 
148 /* Defined in locore.s */
149 extern char kernel_text[];
150 
151 /* Defined by the linker */
152 extern char etext[], edata[], end[];
153 extern char *esym;	/* DDB */
154 
155 /*************************** DEBUGGING DEFINITIONS ***********************
156  * Macros, preprocessor defines and variables used in debugging can make *
157  * code hard to read.  Anything used exclusively for debugging purposes  *
158  * is defined here to avoid having such mess scattered around the file.  *
159  *************************************************************************/
160 #ifdef	PMAP_DEBUG
161 /*
162  * To aid the debugging process, macros should be expanded into smaller steps
163  * that accomplish the same goal, yet provide convenient places for placing
164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
165  * 'INLINE' keyword is defined to an empty string.  This way, any function
166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
167  * a separate function, which is much easier to debug.
168  */
169 #define	INLINE	/* nothing */
170 
171 /*
172  * It is sometimes convenient to watch the activity of a particular table
173  * in the system.  The following variables are used for that purpose.
174  */
175 a_tmgr_t *pmap_watch_atbl = 0;
176 b_tmgr_t *pmap_watch_btbl = 0;
177 c_tmgr_t *pmap_watch_ctbl = 0;
178 
179 int pmap_debug = 0;
180 #define DPRINT(args) if (pmap_debug) printf args
181 
182 #else	/********** Stuff below is defined if NOT debugging **************/
183 
184 #define	INLINE	inline
185 #define DPRINT(args)  /* nada */
186 
187 #endif	/* PMAP_DEBUG */
188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
189 
190 /*** Management Structure - Memory Layout
191  * For every MMU table in the sun3x pmap system there must be a way to
192  * manage it; we must know which process is using it, what other tables
193  * depend on it, and whether or not it contains any locked pages.  This
194  * is solved by the creation of 'table management'  or 'tmgr'
195  * structures.  One for each MMU table in the system.
196  *
197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
198  *
199  *      towards lower memory
200  * kernAbase -> +-------------------------------------------------------+
201  *              | Kernel     MMU A level table                          |
202  * kernBbase -> +-------------------------------------------------------+
203  *              | Kernel     MMU B level tables                         |
204  * kernCbase -> +-------------------------------------------------------+
205  *              |                                                       |
206  *              | Kernel     MMU C level tables                         |
207  *              |                                                       |
208  * mmuCbase  -> +-------------------------------------------------------+
209  *              | User       MMU C level tables                         |
210  * mmuAbase  -> +-------------------------------------------------------+
211  *              |                                                       |
212  *              | User       MMU A level tables                         |
213  *              |                                                       |
214  * mmuBbase  -> +-------------------------------------------------------+
215  *              | User       MMU B level tables                         |
216  * tmgrAbase -> +-------------------------------------------------------+
217  *              |  TMGR A level table structures                        |
218  * tmgrBbase -> +-------------------------------------------------------+
219  *              |  TMGR B level table structures                        |
220  * tmgrCbase -> +-------------------------------------------------------+
221  *              |  TMGR C level table structures                        |
222  * pvbase    -> +-------------------------------------------------------+
223  *              |  Physical to Virtual mapping table (list heads)       |
224  * pvebase   -> +-------------------------------------------------------+
225  *              |  Physical to Virtual mapping table (list elements)    |
226  *              |                                                       |
227  *              +-------------------------------------------------------+
228  *      towards higher memory
229  *
230  * For every A table in the MMU A area, there will be a corresponding
231  * a_tmgr structure in the TMGR A area.  The same will be true for
232  * the B and C tables.  This arrangement will make it easy to find the
233  * controling tmgr structure for any table in the system by use of
234  * (relatively) simple macros.
235  */
236 
237 /*
238  * Global variables for storing the base addresses for the areas
239  * labeled above.
240  */
241 static vaddr_t  	kernAphys;
242 static mmu_long_dte_t	*kernAbase;
243 static mmu_short_dte_t	*kernBbase;
244 static mmu_short_pte_t	*kernCbase;
245 static mmu_short_pte_t	*mmuCbase;
246 static mmu_short_dte_t	*mmuBbase;
247 static mmu_long_dte_t	*mmuAbase;
248 static a_tmgr_t		*Atmgrbase;
249 static b_tmgr_t		*Btmgrbase;
250 static c_tmgr_t		*Ctmgrbase;
251 static pv_t 		*pvbase;
252 static pv_elem_t	*pvebase;
253 struct pmap 		kernel_pmap;
254 
255 /*
256  * This holds the CRP currently loaded into the MMU.
257  */
258 struct mmu_rootptr kernel_crp;
259 
260 /*
261  * Just all around global variables.
262  */
263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
266 
267 
268 /*
269  * Flags used to mark the safety/availability of certain operations or
270  * resources.
271  */
272 /* Safe to use pmap_bootstrap_alloc(). */
273 static bool bootstrap_alloc_enabled = false;
274 /* Temporary virtual pages are in use */
275 int tmp_vpages_inuse;
276 
277 /*
278  * XXX:  For now, retain the traditional variables that were
279  * used in the old pmap/vm interface (without NONCONTIG).
280  */
281 /* Kernel virtual address space available: */
282 vaddr_t	virtual_avail, virtual_end;
283 /* Physical address space available: */
284 paddr_t	avail_start, avail_end;
285 
286 /* This keep track of the end of the contiguously mapped range. */
287 vaddr_t virtual_contig_end;
288 
289 /* Physical address used by pmap_next_page() */
290 paddr_t avail_next;
291 
292 /* These are used by pmap_copy_page(), etc. */
293 vaddr_t tmp_vpages[2];
294 
295 /* memory pool for pmap structures */
296 struct pool	pmap_pmap_pool;
297 
298 /*
299  * The 3/80 is the only member of the sun3x family that has non-contiguous
300  * physical memory.  Memory is divided into 4 banks which are physically
301  * locatable on the system board.  Although the size of these banks varies
302  * with the size of memory they contain, their base addresses are
303  * permenently fixed.  The following structure, which describes these
304  * banks, is initialized by pmap_bootstrap() after it reads from a similar
305  * structure provided by the ROM Monitor.
306  *
307  * For the other machines in the sun3x architecture which do have contiguous
308  * RAM, this list will have only one entry, which will describe the entire
309  * range of available memory.
310  */
311 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
312 u_int total_phys_mem;
313 
314 /*************************************************************************/
315 
316 /*
317  * XXX - Should "tune" these based on statistics.
318  *
319  * My first guess about the relative numbers of these needed is
320  * based on the fact that a "typical" process will have several
321  * pages mapped at low virtual addresses (text, data, bss), then
322  * some mapped shared libraries, and then some stack pages mapped
323  * near the high end of the VA space.  Each process can use only
324  * one A table, and most will use only two B tables (maybe three)
325  * and probably about four C tables.  Therefore, the first guess
326  * at the relative numbers of these needed is 1:2:4 -gwr
327  *
328  * The number of C tables needed is closely related to the amount
329  * of physical memory available plus a certain amount attributable
330  * to the use of double mappings.  With a few simulation statistics
331  * we can find a reasonably good estimation of this unknown value.
332  * Armed with that and the above ratios, we have a good idea of what
333  * is needed at each level. -j
334  *
335  * Note: It is not physical memory memory size, but the total mapped
336  * virtual space required by the combined working sets of all the
337  * currently _runnable_ processes.  (Sleeping ones don't count.)
338  * The amount of physical memory should be irrelevant. -gwr
339  */
340 #ifdef	FIXED_NTABLES
341 #define NUM_A_TABLES	16
342 #define NUM_B_TABLES	32
343 #define NUM_C_TABLES	64
344 #else
345 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
346 #endif	/* FIXED_NTABLES */
347 
348 /*
349  * This determines our total virtual mapping capacity.
350  * Yes, it is a FIXED value so we can pre-allocate.
351  */
352 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
353 
354 /*
355  * The size of the Kernel Virtual Address Space (KVAS)
356  * for purposes of MMU table allocation is -KERNBASE
357  * (length from KERNBASE to 0xFFFFffff)
358  */
359 #define	KVAS_SIZE		(-KERNBASE)
360 
361 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
362 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
363 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
364 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
365 
366 /*************************** MISCELANEOUS MACROS *************************/
367 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
368 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
369 #define pmap_add_ref(pmap) ++pmap->pm_refcount
370 #define pmap_del_ref(pmap) --pmap->pm_refcount
371 #define pmap_refcount(pmap) pmap->pm_refcount
372 
373 void *pmap_bootstrap_alloc(int);
374 
375 static INLINE void *mmu_ptov(paddr_t);
376 static INLINE paddr_t mmu_vtop(void *);
377 
378 #if	0
379 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
380 #endif /* 0 */
381 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
382 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
383 
384 static INLINE pv_t *pa2pv(paddr_t);
385 static INLINE int   pteidx(mmu_short_pte_t *);
386 static INLINE pmap_t current_pmap(void);
387 
388 /*
389  * We can always convert between virtual and physical addresses
390  * for anything in the range [KERNBASE ... avail_start] because
391  * that range is GUARANTEED to be mapped linearly.
392  * We rely heavily upon this feature!
393  */
394 static INLINE void *
395 mmu_ptov(paddr_t pa)
396 {
397 	vaddr_t va;
398 
399 	va = (pa + KERNBASE);
400 #ifdef	PMAP_DEBUG
401 	if ((va < KERNBASE) || (va >= virtual_contig_end))
402 		panic("mmu_ptov");
403 #endif
404 	return (void *)va;
405 }
406 
407 static INLINE paddr_t
408 mmu_vtop(void *vva)
409 {
410 	vaddr_t va;
411 
412 	va = (vaddr_t)vva;
413 #ifdef	PMAP_DEBUG
414 	if ((va < KERNBASE) || (va >= virtual_contig_end))
415 		panic("mmu_vtop");
416 #endif
417 	return va - KERNBASE;
418 }
419 
420 /*
421  * These macros map MMU tables to their corresponding manager structures.
422  * They are needed quite often because many of the pointers in the pmap
423  * system reference MMU tables and not the structures that control them.
424  * There needs to be a way to find one when given the other and these
425  * macros do so by taking advantage of the memory layout described above.
426  * Here's a quick step through the first macro, mmuA2tmgr():
427  *
428  * 1) find the offset of the given MMU A table from the base of its table
429  *    pool (table - mmuAbase).
430  * 2) convert this offset into a table index by dividing it by the
431  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
432  * 3) use this index to select the corresponding 'A' table manager
433  *    structure from the 'A' table manager pool (Atmgrbase[index]).
434  */
435 /*  This function is not currently used. */
436 #if	0
437 static INLINE a_tmgr_t *
438 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
439 {
440 	int idx;
441 
442 	/* Which table is this in? */
443 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
444 #ifdef	PMAP_DEBUG
445 	if ((idx < 0) || (idx >= NUM_A_TABLES))
446 		panic("mmuA2tmgr");
447 #endif
448 	return &Atmgrbase[idx];
449 }
450 #endif	/* 0 */
451 
452 static INLINE b_tmgr_t *
453 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
454 {
455 	int idx;
456 
457 	/* Which table is this in? */
458 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
459 #ifdef	PMAP_DEBUG
460 	if ((idx < 0) || (idx >= NUM_B_TABLES))
461 		panic("mmuB2tmgr");
462 #endif
463 	return &Btmgrbase[idx];
464 }
465 
466 /* mmuC2tmgr			INTERNAL
467  **
468  * Given a pte known to belong to a C table, return the address of
469  * that table's management structure.
470  */
471 static INLINE c_tmgr_t *
472 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
473 {
474 	int idx;
475 
476 	/* Which table is this in? */
477 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
478 #ifdef	PMAP_DEBUG
479 	if ((idx < 0) || (idx >= NUM_C_TABLES))
480 		panic("mmuC2tmgr");
481 #endif
482 	return &Ctmgrbase[idx];
483 }
484 
485 /* This is now a function call below.
486  * #define pa2pv(pa) \
487  *	(&pvbase[(unsigned long)\
488  *		m68k_btop(pa)\
489  *	])
490  */
491 
492 /* pa2pv			INTERNAL
493  **
494  * Return the pv_list_head element which manages the given physical
495  * address.
496  */
497 static INLINE pv_t *
498 pa2pv(paddr_t pa)
499 {
500 	struct pmap_physmem_struct *bank;
501 	int idx;
502 
503 	bank = &avail_mem[0];
504 	while (pa >= bank->pmem_end)
505 		bank = bank->pmem_next;
506 
507 	pa -= bank->pmem_start;
508 	idx = bank->pmem_pvbase + m68k_btop(pa);
509 #ifdef	PMAP_DEBUG
510 	if ((idx < 0) || (idx >= physmem))
511 		panic("pa2pv");
512 #endif
513 	return &pvbase[idx];
514 }
515 
516 /* pteidx			INTERNAL
517  **
518  * Return the index of the given PTE within the entire fixed table of
519  * PTEs.
520  */
521 static INLINE int
522 pteidx(mmu_short_pte_t *pte)
523 {
524 
525 	return pte - kernCbase;
526 }
527 
528 /*
529  * This just offers a place to put some debugging checks,
530  * and reduces the number of places "curlwp" appears...
531  */
532 static INLINE pmap_t
533 current_pmap(void)
534 {
535 	struct vmspace *vm;
536 	struct vm_map *map;
537 	pmap_t	pmap;
538 
539 	vm = curproc->p_vmspace;
540 	map = &vm->vm_map;
541 	pmap = vm_map_pmap(map);
542 
543 	return pmap;
544 }
545 
546 
547 /*************************** FUNCTION DEFINITIONS ************************
548  * These appear here merely for the compiler to enforce type checking on *
549  * all function calls.                                                   *
550  *************************************************************************/
551 
552 /*
553  * Internal functions
554  */
555 a_tmgr_t *get_a_table(void);
556 b_tmgr_t *get_b_table(void);
557 c_tmgr_t *get_c_table(void);
558 int free_a_table(a_tmgr_t *, bool);
559 int free_b_table(b_tmgr_t *, bool);
560 int free_c_table(c_tmgr_t *, bool);
561 
562 void pmap_bootstrap_aalign(int);
563 void pmap_alloc_usermmu(void);
564 void pmap_alloc_usertmgr(void);
565 void pmap_alloc_pv(void);
566 void pmap_init_a_tables(void);
567 void pmap_init_b_tables(void);
568 void pmap_init_c_tables(void);
569 void pmap_init_pv(void);
570 void pmap_clear_pv(paddr_t, int);
571 static INLINE bool is_managed(paddr_t);
572 
573 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
574 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
575 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
576 void pmap_remove_pte(mmu_short_pte_t *);
577 
578 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
579 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
580 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
581 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
582 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
583 static INLINE int pmap_dereference(pmap_t);
584 
585 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
586     mmu_short_pte_t **, int *, int *, int *);
587 void pmap_bootstrap_copyprom(void);
588 void pmap_takeover_mmu(void);
589 void pmap_bootstrap_setprom(void);
590 static void pmap_page_upload(void);
591 
592 #ifdef PMAP_DEBUG
593 /* Debugging function definitions */
594 void  pv_list(paddr_t, int);
595 #endif /* PMAP_DEBUG */
596 
597 /** Interface functions
598  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
599  **   defined.
600  **   The new UVM doesn't require them so now INTERNAL.
601  **/
602 static INLINE void pmap_pinit(pmap_t);
603 static INLINE void pmap_release(pmap_t);
604 
605 /********************************** CODE ********************************
606  * Functions that are called from other parts of the kernel are labeled *
607  * as 'INTERFACE' functions.  Functions that are only called from       *
608  * within the pmap module are labeled as 'INTERNAL' functions.          *
609  * Functions that are internal, but are not (currently) used at all are *
610  * labeled 'INTERNAL_X'.                                                *
611  ************************************************************************/
612 
613 /* pmap_bootstrap			INTERNAL
614  **
615  * Initializes the pmap system.  Called at boot time from
616  * locore2.c:_vm_init()
617  *
618  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
619  *           system implement pmap_steal_memory() is redundant.
620  *           Don't release this code without removing one or the other!
621  */
622 void
623 pmap_bootstrap(vaddr_t nextva)
624 {
625 	struct physmemory *membank;
626 	struct pmap_physmem_struct *pmap_membank;
627 	vaddr_t va, eva;
628 	paddr_t pa;
629 	int b, c, i, j;	/* running table counts */
630 	int size, resvmem;
631 
632 	/*
633 	 * This function is called by __bootstrap after it has
634 	 * determined the type of machine and made the appropriate
635 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
636 	 * by that.)  It allocates and sets up enough of the pmap system
637 	 * to manage the kernel's address space.
638 	 */
639 
640 	/*
641 	 * Determine the range of kernel virtual and physical
642 	 * space available. Note that we ABSOLUTELY DEPEND on
643 	 * the fact that the first bank of memory (4MB) is
644 	 * mapped linearly to KERNBASE (which we guaranteed in
645 	 * the first instructions of locore.s).
646 	 * That is plenty for our bootstrap work.
647 	 */
648 	virtual_avail = m68k_round_page(nextva);
649 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
650 	virtual_end = VM_MAX_KERNEL_ADDRESS;
651 	/* Don't need avail_start til later. */
652 
653 	/* We may now call pmap_bootstrap_alloc(). */
654 	bootstrap_alloc_enabled = true;
655 
656 	/*
657 	 * This is a somewhat unwrapped loop to deal with
658 	 * copying the PROM's 'phsymem' banks into the pmap's
659 	 * banks.  The following is always assumed:
660 	 * 1. There is always at least one bank of memory.
661 	 * 2. There is always a last bank of memory, and its
662 	 *    pmem_next member must be set to NULL.
663 	 */
664 	membank = romVectorPtr->v_physmemory;
665 	pmap_membank = avail_mem;
666 	total_phys_mem = 0;
667 
668 	for (;;) { /* break on !membank */
669 		pmap_membank->pmem_start = membank->address;
670 		pmap_membank->pmem_end = membank->address + membank->size;
671 		total_phys_mem += membank->size;
672 		membank = membank->next;
673 		if (!membank)
674 			break;
675 		/* This silly syntax arises because pmap_membank
676 		 * is really a pre-allocated array, but it is put into
677 		 * use as a linked list.
678 		 */
679 		pmap_membank->pmem_next = pmap_membank + 1;
680 		pmap_membank = pmap_membank->pmem_next;
681 	}
682 	/* This is the last element. */
683 	pmap_membank->pmem_next = NULL;
684 
685 	/*
686 	 * Note: total_phys_mem, physmem represent
687 	 * actual physical memory, including that
688 	 * reserved for the PROM monitor.
689 	 */
690 	physmem = btoc(total_phys_mem);
691 
692 	/*
693 	 * Avail_end is set to the first byte of physical memory
694 	 * after the end of the last bank.  We use this only to
695 	 * determine if a physical address is "managed" memory.
696 	 * This address range should be reduced to prevent the
697 	 * physical pages needed by the PROM monitor from being used
698 	 * in the VM system.
699 	 */
700 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
701 	resvmem = m68k_round_page(resvmem);
702 	avail_end = pmap_membank->pmem_end - resvmem;
703 
704 	/*
705 	 * First allocate enough kernel MMU tables to map all
706 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
707 	 * Note: All must be aligned on 256 byte boundaries.
708 	 * Start with the level-A table (one of those).
709 	 */
710 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
711 	kernAbase = pmap_bootstrap_alloc(size);
712 	memset(kernAbase, 0, size);
713 
714 	/* Now the level-B kernel tables... */
715 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
716 	kernBbase = pmap_bootstrap_alloc(size);
717 	memset(kernBbase, 0, size);
718 
719 	/* Now the level-C kernel tables... */
720 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
721 	kernCbase = pmap_bootstrap_alloc(size);
722 	memset(kernCbase, 0, size);
723 	/*
724 	 * Note: In order for the PV system to work correctly, the kernel
725 	 * and user-level C tables must be allocated contiguously.
726 	 * Nothing should be allocated between here and the allocation of
727 	 * mmuCbase below.  XXX: Should do this as one allocation, and
728 	 * then compute a pointer for mmuCbase instead of this...
729 	 *
730 	 * Allocate user MMU tables.
731 	 * These must be contiguous with the preceding.
732 	 */
733 
734 #ifndef	FIXED_NTABLES
735 	/*
736 	 * The number of user-level C tables that should be allocated is
737 	 * related to the size of physical memory.  In general, there should
738 	 * be enough tables to map four times the amount of available RAM.
739 	 * The extra amount is needed because some table space is wasted by
740 	 * fragmentation.
741 	 */
742 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
743 	NUM_B_TABLES = NUM_C_TABLES / 2;
744 	NUM_A_TABLES = NUM_B_TABLES / 2;
745 #endif	/* !FIXED_NTABLES */
746 
747 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
748 	mmuCbase = pmap_bootstrap_alloc(size);
749 
750 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
751 	mmuBbase = pmap_bootstrap_alloc(size);
752 
753 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
754 	mmuAbase = pmap_bootstrap_alloc(size);
755 
756 	/*
757 	 * Fill in the never-changing part of the kernel tables.
758 	 * For simplicity, the kernel's mappings will be editable as a
759 	 * flat array of page table entries at kernCbase.  The
760 	 * higher level 'A' and 'B' tables must be initialized to point
761 	 * to this lower one.
762 	 */
763 	b = c = 0;
764 
765 	/*
766 	 * Invalidate all mappings below KERNBASE in the A table.
767 	 * This area has already been zeroed out, but it is good
768 	 * practice to explicitly show that we are interpreting
769 	 * it as a list of A table descriptors.
770 	 */
771 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
772 		kernAbase[i].addr.raw = 0;
773 	}
774 
775 	/*
776 	 * Set up the kernel A and B tables so that they will reference the
777 	 * correct spots in the contiguous table of PTEs allocated for the
778 	 * kernel's virtual memory space.
779 	 */
780 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
781 		kernAbase[i].attr.raw =
782 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
783 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
784 
785 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
786 			kernBbase[b + j].attr.raw =
787 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
788 			c += MMU_C_TBL_SIZE;
789 		}
790 		b += MMU_B_TBL_SIZE;
791 	}
792 
793 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
794 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
795 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
796 
797 	/*
798 	 * We are now done with pmap_bootstrap_alloc().  Round up
799 	 * `virtual_avail' to the nearest page, and set the flag
800 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
801 	 */
802 	pmap_bootstrap_aalign(PAGE_SIZE);
803 	bootstrap_alloc_enabled = false;
804 
805 	/*
806 	 * Now that we are done with pmap_bootstrap_alloc(), we
807 	 * must save the virtual and physical addresses of the
808 	 * end of the linearly mapped range, which are stored in
809 	 * virtual_contig_end and avail_start, respectively.
810 	 * These variables will never change after this point.
811 	 */
812 	virtual_contig_end = virtual_avail;
813 	avail_start = virtual_avail - KERNBASE;
814 
815 	/*
816 	 * `avail_next' is a running pointer used by pmap_next_page() to
817 	 * keep track of the next available physical page to be handed
818 	 * to the VM system during its initialization, in which it
819 	 * asks for physical pages, one at a time.
820 	 */
821 	avail_next = avail_start;
822 
823 	/*
824 	 * Now allocate some virtual addresses, but not the physical pages
825 	 * behind them.  Note that virtual_avail is already page-aligned.
826 	 *
827 	 * tmp_vpages[] is an array of two virtual pages used for temporary
828 	 * kernel mappings in the pmap module to facilitate various physical
829 	 * address-oritented operations.
830 	 */
831 	tmp_vpages[0] = virtual_avail;
832 	virtual_avail += PAGE_SIZE;
833 	tmp_vpages[1] = virtual_avail;
834 	virtual_avail += PAGE_SIZE;
835 
836 	/** Initialize the PV system **/
837 	pmap_init_pv();
838 
839 	/*
840 	 * Fill in the kernel_pmap structure and kernel_crp.
841 	 */
842 	kernAphys = mmu_vtop(kernAbase);
843 	kernel_pmap.pm_a_tmgr = NULL;
844 	kernel_pmap.pm_a_phys = kernAphys;
845 	kernel_pmap.pm_refcount = 1; /* always in use */
846 	simple_lock_init(&kernel_pmap.pm_lock);
847 
848 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
849 	kernel_crp.rp_addr = kernAphys;
850 
851 	/*
852 	 * Now pmap_enter_kernel() may be used safely and will be
853 	 * the main interface used hereafter to modify the kernel's
854 	 * virtual address space.  Note that since we are still running
855 	 * under the PROM's address table, none of these table modifications
856 	 * actually take effect until pmap_takeover_mmu() is called.
857 	 *
858 	 * Note: Our tables do NOT have the PROM linear mappings!
859 	 * Only the mappings created here exist in our tables, so
860 	 * remember to map anything we expect to use.
861 	 */
862 	va = (vaddr_t)KERNBASE;
863 	pa = 0;
864 
865 	/*
866 	 * The first page of the kernel virtual address space is the msgbuf
867 	 * page.  The page attributes (data, non-cached) are set here, while
868 	 * the address is assigned to this global pointer in cpu_startup().
869 	 * It is non-cached, mostly due to paranoia.
870 	 */
871 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
872 	va += PAGE_SIZE;
873 	pa += PAGE_SIZE;
874 
875 	/* Next page is used as the temporary stack. */
876 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
877 	va += PAGE_SIZE;
878 	pa += PAGE_SIZE;
879 
880 	/*
881 	 * Map all of the kernel's text segment as read-only and cacheable.
882 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
883 	 * of kernel text and the first bytes of kernel data will often be
884 	 * sharing the same page.  Therefore, the last page of kernel text
885 	 * has to be mapped as read/write, to accommodate the data.
886 	 */
887 	eva = m68k_trunc_page((vaddr_t)etext);
888 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
889 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
890 
891 	/*
892 	 * Map all of the kernel's data as read/write and cacheable.
893 	 * This includes: data, BSS, symbols, and everything in the
894 	 * contiguous memory used by pmap_bootstrap_alloc()
895 	 */
896 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
897 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
898 
899 	/*
900 	 * At this point we are almost ready to take over the MMU.  But first
901 	 * we must save the PROM's address space in our map, as we call its
902 	 * routines and make references to its data later in the kernel.
903 	 */
904 	pmap_bootstrap_copyprom();
905 	pmap_takeover_mmu();
906 	pmap_bootstrap_setprom();
907 
908 	/* Notify the VM system of our page size. */
909 	uvmexp.pagesize = PAGE_SIZE;
910 	uvm_setpagesize();
911 
912 	pmap_page_upload();
913 }
914 
915 
916 /* pmap_alloc_usermmu			INTERNAL
917  **
918  * Called from pmap_bootstrap() to allocate MMU tables that will
919  * eventually be used for user mappings.
920  */
921 void
922 pmap_alloc_usermmu(void)
923 {
924 
925 	/* XXX: Moved into caller. */
926 }
927 
928 /* pmap_alloc_pv			INTERNAL
929  **
930  * Called from pmap_bootstrap() to allocate the physical
931  * to virtual mapping list.  Each physical page of memory
932  * in the system has a corresponding element in this list.
933  */
934 void
935 pmap_alloc_pv(void)
936 {
937 	int	i;
938 	unsigned int	total_mem;
939 
940 	/*
941 	 * Allocate a pv_head structure for every page of physical
942 	 * memory that will be managed by the system.  Since memory on
943 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
944 	 * count by subtraction of the lowest available address from the
945 	 * highest, but rather we have to step through each memory
946 	 * bank and add the number of pages in each to the total.
947 	 *
948 	 * At this time we also initialize the offset of each bank's
949 	 * starting pv_head within the pv_head list so that the physical
950 	 * memory state routines (pmap_is_referenced(),
951 	 * pmap_is_modified(), et al.) can quickly find coresponding
952 	 * pv_heads in spite of the non-contiguity.
953 	 */
954 	total_mem = 0;
955 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
956 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
957 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
958 		if (avail_mem[i].pmem_next == NULL)
959 			break;
960 	}
961 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
962 	    m68k_btop(total_phys_mem));
963 }
964 
965 /* pmap_alloc_usertmgr			INTERNAL
966  **
967  * Called from pmap_bootstrap() to allocate the structures which
968  * facilitate management of user MMU tables.  Each user MMU table
969  * in the system has one such structure associated with it.
970  */
971 void
972 pmap_alloc_usertmgr(void)
973 {
974 	/* Allocate user MMU table managers */
975 	/* It would be a lot simpler to just make these BSS, but */
976 	/* we may want to change their size at boot time... -j */
977 	Atmgrbase =
978 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
979 	Btmgrbase =
980 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
981 	Ctmgrbase =
982 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
983 
984 	/*
985 	 * Allocate PV list elements for the physical to virtual
986 	 * mapping system.
987 	 */
988 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
989 	    (NUM_USER_PTES + NUM_KERN_PTES));
990 }
991 
992 /* pmap_bootstrap_copyprom()			INTERNAL
993  **
994  * Copy the PROM mappings into our own tables.  Note, we
995  * can use physical addresses until __bootstrap returns.
996  */
997 void
998 pmap_bootstrap_copyprom(void)
999 {
1000 	struct sunromvec *romp;
1001 	int *mon_ctbl;
1002 	mmu_short_pte_t *kpte;
1003 	int i, len;
1004 
1005 	romp = romVectorPtr;
1006 
1007 	/*
1008 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1009 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1010 	 */
1011 	mon_ctbl = *romp->monptaddr;
1012 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
1013 	kpte = &kernCbase[i];
1014 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1015 
1016 	for (i = 0; i < len; i++) {
1017 		kpte[i].attr.raw = mon_ctbl[i];
1018 	}
1019 
1020 	/*
1021 	 * Copy the mappings at MON_DVMA_BASE (to the end).
1022 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1023 	 * Actually, we only want the last page, which the
1024 	 * PROM has set up for use by the "ie" driver.
1025 	 * (The i82686 needs its SCP there.)
1026 	 * If we copy all the mappings, pmap_enter_kernel
1027 	 * may complain about finding valid PTEs that are
1028 	 * not recorded in our PV lists...
1029 	 */
1030 	mon_ctbl = *romp->shadowpteaddr;
1031 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1032 	kpte = &kernCbase[i];
1033 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1034 	for (i = (len - 1); i < len; i++) {
1035 		kpte[i].attr.raw = mon_ctbl[i];
1036 	}
1037 }
1038 
1039 /* pmap_takeover_mmu			INTERNAL
1040  **
1041  * Called from pmap_bootstrap() after it has copied enough of the
1042  * PROM mappings into the kernel map so that we can use our own
1043  * MMU table.
1044  */
1045 void
1046 pmap_takeover_mmu(void)
1047 {
1048 
1049 	loadcrp(&kernel_crp);
1050 }
1051 
1052 /* pmap_bootstrap_setprom()			INTERNAL
1053  **
1054  * Set the PROM mappings so it can see kernel space.
1055  * Note that physical addresses are used here, which
1056  * we can get away with because this runs with the
1057  * low 1GB set for transparent translation.
1058  */
1059 void
1060 pmap_bootstrap_setprom(void)
1061 {
1062 	mmu_long_dte_t *mon_dte;
1063 	extern struct mmu_rootptr mon_crp;
1064 	int i;
1065 
1066 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1067 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1068 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1069 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1070 	}
1071 }
1072 
1073 
1074 /* pmap_init			INTERFACE
1075  **
1076  * Called at the end of vm_init() to set up the pmap system to go
1077  * into full time operation.  All initialization of kernel_pmap
1078  * should be already done by now, so this should just do things
1079  * needed for user-level pmaps to work.
1080  */
1081 void
1082 pmap_init(void)
1083 {
1084 
1085 	/** Initialize the manager pools **/
1086 	TAILQ_INIT(&a_pool);
1087 	TAILQ_INIT(&b_pool);
1088 	TAILQ_INIT(&c_pool);
1089 
1090 	/**************************************************************
1091 	 * Initialize all tmgr structures and MMU tables they manage. *
1092 	 **************************************************************/
1093 	/** Initialize A tables **/
1094 	pmap_init_a_tables();
1095 	/** Initialize B tables **/
1096 	pmap_init_b_tables();
1097 	/** Initialize C tables **/
1098 	pmap_init_c_tables();
1099 
1100 	/** Initialize the pmap pools **/
1101 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1102 	    &pool_allocator_nointr, IPL_NONE);
1103 }
1104 
1105 /* pmap_init_a_tables()			INTERNAL
1106  **
1107  * Initializes all A managers, their MMU A tables, and inserts
1108  * them into the A manager pool for use by the system.
1109  */
1110 void
1111 pmap_init_a_tables(void)
1112 {
1113 	int i;
1114 	a_tmgr_t *a_tbl;
1115 
1116 	for (i = 0; i < NUM_A_TABLES; i++) {
1117 		/* Select the next available A manager from the pool */
1118 		a_tbl = &Atmgrbase[i];
1119 
1120 		/*
1121 		 * Clear its parent entry.  Set its wired and valid
1122 		 * entry count to zero.
1123 		 */
1124 		a_tbl->at_parent = NULL;
1125 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1126 
1127 		/* Assign it the next available MMU A table from the pool */
1128 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1129 
1130 		/*
1131 		 * Initialize the MMU A table with the table in the `proc0',
1132 		 * or kernel, mapping.  This ensures that every process has
1133 		 * the kernel mapped in the top part of its address space.
1134 		 */
1135 		memcpy(a_tbl->at_dtbl, kernAbase,
1136 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1137 
1138 		/*
1139 		 * Finally, insert the manager into the A pool,
1140 		 * making it ready to be used by the system.
1141 		 */
1142 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1143     }
1144 }
1145 
1146 /* pmap_init_b_tables()			INTERNAL
1147  **
1148  * Initializes all B table managers, their MMU B tables, and
1149  * inserts them into the B manager pool for use by the system.
1150  */
1151 void
1152 pmap_init_b_tables(void)
1153 {
1154 	int i, j;
1155 	b_tmgr_t *b_tbl;
1156 
1157 	for (i = 0; i < NUM_B_TABLES; i++) {
1158 		/* Select the next available B manager from the pool */
1159 		b_tbl = &Btmgrbase[i];
1160 
1161 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1162 		b_tbl->bt_pidx = 0;		/* parent index,      */
1163 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1164 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1165 
1166 		/* Assign it the next available MMU B table from the pool */
1167 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1168 
1169 		/* Invalidate every descriptor in the table */
1170 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
1171 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1172 
1173 		/* Insert the manager into the B pool */
1174 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1175 	}
1176 }
1177 
1178 /* pmap_init_c_tables()			INTERNAL
1179  **
1180  * Initializes all C table managers, their MMU C tables, and
1181  * inserts them into the C manager pool for use by the system.
1182  */
1183 void
1184 pmap_init_c_tables(void)
1185 {
1186 	int i, j;
1187 	c_tmgr_t *c_tbl;
1188 
1189 	for (i = 0; i < NUM_C_TABLES; i++) {
1190 		/* Select the next available C manager from the pool */
1191 		c_tbl = &Ctmgrbase[i];
1192 
1193 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1194 		c_tbl->ct_pidx = 0;		/* parent index,      */
1195 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1196 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1197 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1198 		c_tbl->ct_va = 0;		/* base of managed range */
1199 
1200 		/* Assign it the next available MMU C table from the pool */
1201 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1202 
1203 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
1204 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1205 
1206 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1207 	}
1208 }
1209 
1210 /* pmap_init_pv()			INTERNAL
1211  **
1212  * Initializes the Physical to Virtual mapping system.
1213  */
1214 void
1215 pmap_init_pv(void)
1216 {
1217 	int i;
1218 
1219 	/* Initialize every PV head. */
1220 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1221 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1222 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1223 	}
1224 }
1225 
1226 /* is_managed				INTERNAL
1227  **
1228  * Determine if the given physical address is managed by the PV system.
1229  * Note that this logic assumes that no one will ask for the status of
1230  * addresses which lie in-between the memory banks on the 3/80.  If they
1231  * do so, it will falsely report that it is managed.
1232  *
1233  * Note: A "managed" address is one that was reported to the VM system as
1234  * a "usable page" during system startup.  As such, the VM system expects the
1235  * pmap module to keep an accurate track of the useage of those pages.
1236  * Any page not given to the VM system at startup does not exist (as far as
1237  * the VM system is concerned) and is therefore "unmanaged."  Examples are
1238  * those pages which belong to the ROM monitor and the memory allocated before
1239  * the VM system was started.
1240  */
1241 static INLINE bool
1242 is_managed(paddr_t pa)
1243 {
1244 	if (pa >= avail_start && pa < avail_end)
1245 		return true;
1246 	else
1247 		return false;
1248 }
1249 
1250 /* get_a_table			INTERNAL
1251  **
1252  * Retrieve and return a level A table for use in a user map.
1253  */
1254 a_tmgr_t *
1255 get_a_table(void)
1256 {
1257 	a_tmgr_t *tbl;
1258 	pmap_t pmap;
1259 
1260 	/* Get the top A table in the pool */
1261 	tbl = TAILQ_FIRST(&a_pool);
1262 	if (tbl == NULL) {
1263 		/*
1264 		 * XXX - Instead of panicking here and in other get_x_table
1265 		 * functions, we do have the option of sleeping on the head of
1266 		 * the table pool.  Any function which updates the table pool
1267 		 * would then issue a wakeup() on the head, thus waking up any
1268 		 * processes waiting for a table.
1269 		 *
1270 		 * Actually, the place to sleep would be when some process
1271 		 * asks for a "wired" mapping that would run us short of
1272 		 * mapping resources.  This design DEPENDS on always having
1273 		 * some mapping resources in the pool for stealing, so we
1274 		 * must make sure we NEVER let the pool become empty. -gwr
1275 		 */
1276 		panic("get_a_table: out of A tables.");
1277 	}
1278 
1279 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1280 	/*
1281 	 * If the table has a non-null parent pointer then it is in use.
1282 	 * Forcibly abduct it from its parent and clear its entries.
1283 	 * No re-entrancy worries here.  This table would not be in the
1284 	 * table pool unless it was available for use.
1285 	 *
1286 	 * Note that the second argument to free_a_table() is false.  This
1287 	 * indicates that the table should not be relinked into the A table
1288 	 * pool.  That is a job for the function that called us.
1289 	 */
1290 	if (tbl->at_parent) {
1291 		KASSERT(tbl->at_wcnt == 0);
1292 		pmap = tbl->at_parent;
1293 		free_a_table(tbl, false);
1294 		pmap->pm_a_tmgr = NULL;
1295 		pmap->pm_a_phys = kernAphys;
1296 	}
1297 	return tbl;
1298 }
1299 
1300 /* get_b_table			INTERNAL
1301  **
1302  * Return a level B table for use.
1303  */
1304 b_tmgr_t *
1305 get_b_table(void)
1306 {
1307 	b_tmgr_t *tbl;
1308 
1309 	/* See 'get_a_table' for comments. */
1310 	tbl = TAILQ_FIRST(&b_pool);
1311 	if (tbl == NULL)
1312 		panic("get_b_table: out of B tables.");
1313 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1314 	if (tbl->bt_parent) {
1315 		KASSERT(tbl->bt_wcnt == 0);
1316 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1317 		tbl->bt_parent->at_ecnt--;
1318 		free_b_table(tbl, false);
1319 	}
1320 	return tbl;
1321 }
1322 
1323 /* get_c_table			INTERNAL
1324  **
1325  * Return a level C table for use.
1326  */
1327 c_tmgr_t *
1328 get_c_table(void)
1329 {
1330 	c_tmgr_t *tbl;
1331 
1332 	/* See 'get_a_table' for comments */
1333 	tbl = TAILQ_FIRST(&c_pool);
1334 	if (tbl == NULL)
1335 		panic("get_c_table: out of C tables.");
1336 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1337 	if (tbl->ct_parent) {
1338 		KASSERT(tbl->ct_wcnt == 0);
1339 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1340 		tbl->ct_parent->bt_ecnt--;
1341 		free_c_table(tbl, false);
1342 	}
1343 	return tbl;
1344 }
1345 
1346 /*
1347  * The following 'free_table' and 'steal_table' functions are called to
1348  * detach tables from their current obligations (parents and children) and
1349  * prepare them for reuse in another mapping.
1350  *
1351  * Free_table is used when the calling function will handle the fate
1352  * of the parent table, such as returning it to the free pool when it has
1353  * no valid entries.  Functions that do not want to handle this should
1354  * call steal_table, in which the parent table's descriptors and entry
1355  * count are automatically modified when this table is removed.
1356  */
1357 
1358 /* free_a_table			INTERNAL
1359  **
1360  * Unmaps the given A table and all child tables from their current
1361  * mappings.  Returns the number of pages that were invalidated.
1362  * If 'relink' is true, the function will return the table to the head
1363  * of the available table pool.
1364  *
1365  * Cache note: The MC68851 will automatically flush all
1366  * descriptors derived from a given A table from its
1367  * Automatic Translation Cache (ATC) if we issue a
1368  * 'PFLUSHR' instruction with the base address of the
1369  * table.  This function should do, and does so.
1370  * Note note: We are using an MC68030 - there is no
1371  * PFLUSHR.
1372  */
1373 int
1374 free_a_table(a_tmgr_t *a_tbl, bool relink)
1375 {
1376 	int i, removed_cnt;
1377 	mmu_long_dte_t	*dte;
1378 	mmu_short_dte_t *dtbl;
1379 	b_tmgr_t	*b_tbl;
1380 	uint8_t at_wired, bt_wired;
1381 
1382 	/*
1383 	 * Flush the ATC cache of all cached descriptors derived
1384 	 * from this table.
1385 	 * Sun3x does not use 68851's cached table feature
1386 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1387 	 */
1388 
1389 	/*
1390 	 * Remove any pending cache flushes that were designated
1391 	 * for the pmap this A table belongs to.
1392 	 * a_tbl->parent->atc_flushq[0] = 0;
1393 	 * Not implemented in sun3x.
1394 	 */
1395 
1396 	/*
1397 	 * All A tables in the system should retain a map for the
1398 	 * kernel. If the table contains any valid descriptors
1399 	 * (other than those for the kernel area), invalidate them all,
1400 	 * stopping short of the kernel's entries.
1401 	 */
1402 	removed_cnt = 0;
1403 	at_wired = a_tbl->at_wcnt;
1404 	if (a_tbl->at_ecnt) {
1405 		dte = a_tbl->at_dtbl;
1406 		for (i = 0; i < MMU_TIA(KERNBASE); i++) {
1407 			/*
1408 			 * If a table entry points to a valid B table, free
1409 			 * it and its children.
1410 			 */
1411 			if (MMU_VALID_DT(dte[i])) {
1412 				/*
1413 				 * The following block does several things,
1414 				 * from innermost expression to the
1415 				 * outermost:
1416 				 * 1) It extracts the base (cc 1996)
1417 				 *    address of the B table pointed
1418 				 *    to in the A table entry dte[i].
1419 				 * 2) It converts this base address into
1420 				 *    the virtual address it can be
1421 				 *    accessed with. (all MMU tables point
1422 				 *    to physical addresses.)
1423 				 * 3) It finds the corresponding manager
1424 				 *    structure which manages this MMU table.
1425 				 * 4) It frees the manager structure.
1426 				 *    (This frees the MMU table and all
1427 				 *    child tables. See 'free_b_table' for
1428 				 *    details.)
1429 				 */
1430 				dtbl = mmu_ptov(dte[i].addr.raw);
1431 				b_tbl = mmuB2tmgr(dtbl);
1432 				bt_wired = b_tbl->bt_wcnt;
1433 				removed_cnt += free_b_table(b_tbl, true);
1434 				if (bt_wired)
1435 					a_tbl->at_wcnt--;
1436 				dte[i].attr.raw = MMU_DT_INVALID;
1437 			}
1438 		}
1439 		a_tbl->at_ecnt = 0;
1440 	}
1441 	KASSERT(a_tbl->at_wcnt == 0);
1442 
1443 	if (relink) {
1444 		a_tbl->at_parent = NULL;
1445 		if (!at_wired)
1446 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1447 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1448 	}
1449 	return removed_cnt;
1450 }
1451 
1452 /* free_b_table			INTERNAL
1453  **
1454  * Unmaps the given B table and all its children from their current
1455  * mappings.  Returns the number of pages that were invalidated.
1456  * (For comments, see 'free_a_table()').
1457  */
1458 int
1459 free_b_table(b_tmgr_t *b_tbl, bool relink)
1460 {
1461 	int i, removed_cnt;
1462 	mmu_short_dte_t *dte;
1463 	mmu_short_pte_t	*dtbl;
1464 	c_tmgr_t	*c_tbl;
1465 	uint8_t bt_wired, ct_wired;
1466 
1467 	removed_cnt = 0;
1468 	bt_wired = b_tbl->bt_wcnt;
1469 	if (b_tbl->bt_ecnt) {
1470 		dte = b_tbl->bt_dtbl;
1471 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1472 			if (MMU_VALID_DT(dte[i])) {
1473 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1474 				c_tbl = mmuC2tmgr(dtbl);
1475 				ct_wired = c_tbl->ct_wcnt;
1476 				removed_cnt += free_c_table(c_tbl, true);
1477 				if (ct_wired)
1478 					b_tbl->bt_wcnt--;
1479 				dte[i].attr.raw = MMU_DT_INVALID;
1480 			}
1481 		}
1482 		b_tbl->bt_ecnt = 0;
1483 	}
1484 	KASSERT(b_tbl->bt_wcnt == 0);
1485 
1486 	if (relink) {
1487 		b_tbl->bt_parent = NULL;
1488 		if (!bt_wired)
1489 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1490 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1491 	}
1492 	return removed_cnt;
1493 }
1494 
1495 /* free_c_table			INTERNAL
1496  **
1497  * Unmaps the given C table from use and returns it to the pool for
1498  * re-use.  Returns the number of pages that were invalidated.
1499  *
1500  * This function preserves any physical page modification information
1501  * contained in the page descriptors within the C table by calling
1502  * 'pmap_remove_pte().'
1503  */
1504 int
1505 free_c_table(c_tmgr_t *c_tbl, bool relink)
1506 {
1507 	mmu_short_pte_t *c_pte;
1508 	int i, removed_cnt;
1509 	uint8_t ct_wired;
1510 
1511 	removed_cnt = 0;
1512 	ct_wired = c_tbl->ct_wcnt;
1513 	if (c_tbl->ct_ecnt) {
1514 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1515 			c_pte = &c_tbl->ct_dtbl[i];
1516 			if (MMU_VALID_DT(*c_pte)) {
1517 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1518 					c_tbl->ct_wcnt--;
1519 				pmap_remove_pte(c_pte);
1520 				removed_cnt++;
1521 			}
1522 		}
1523 		c_tbl->ct_ecnt = 0;
1524 	}
1525 	KASSERT(c_tbl->ct_wcnt == 0);
1526 
1527 	if (relink) {
1528 		c_tbl->ct_parent = NULL;
1529 		if (!ct_wired)
1530 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1531 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1532 	}
1533 	return removed_cnt;
1534 }
1535 
1536 
1537 /* pmap_remove_pte			INTERNAL
1538  **
1539  * Unmap the given pte and preserve any page modification
1540  * information by transfering it to the pv head of the
1541  * physical page it maps to.  This function does not update
1542  * any reference counts because it is assumed that the calling
1543  * function will do so.
1544  */
1545 void
1546 pmap_remove_pte(mmu_short_pte_t *pte)
1547 {
1548 	u_short     pv_idx, targ_idx;
1549 	paddr_t     pa;
1550 	pv_t       *pv;
1551 
1552 	pa = MMU_PTE_PA(*pte);
1553 	if (is_managed(pa)) {
1554 		pv = pa2pv(pa);
1555 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1556 
1557 		/*
1558 		 * If the PTE being removed is the first (or only) PTE in
1559 		 * the list of PTEs currently mapped to this page, remove the
1560 		 * PTE by changing the index found on the PV head.  Otherwise
1561 		 * a linear search through the list will have to be executed
1562 		 * in order to find the PVE which points to the PTE being
1563 		 * removed, so that it may be modified to point to its new
1564 		 * neighbor.
1565 		 */
1566 
1567 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1568 		if (pv_idx == targ_idx) {
1569 			pv->pv_idx = pvebase[targ_idx].pve_next;
1570 		} else {
1571 
1572 			/*
1573 			 * Find the PV element pointing to the target
1574 			 * element.  Note: may have pv_idx==PVE_EOL
1575 			 */
1576 
1577 			for (;;) {
1578 				if (pv_idx == PVE_EOL) {
1579 					goto pv_not_found;
1580 				}
1581 				if (pvebase[pv_idx].pve_next == targ_idx)
1582 					break;
1583 				pv_idx = pvebase[pv_idx].pve_next;
1584 			}
1585 
1586 			/*
1587 			 * At this point, pv_idx is the index of the PV
1588 			 * element just before the target element in the list.
1589 			 * Unlink the target.
1590 			 */
1591 
1592 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1593 		}
1594 
1595 		/*
1596 		 * Save the mod/ref bits of the pte by simply
1597 		 * ORing the entire pte onto the pv_flags member
1598 		 * of the pv structure.
1599 		 * There is no need to use a separate bit pattern
1600 		 * for usage information on the pv head than that
1601 		 * which is used on the MMU ptes.
1602 		 */
1603 
1604  pv_not_found:
1605 		pv->pv_flags |= (u_short) pte->attr.raw;
1606 	}
1607 	pte->attr.raw = MMU_DT_INVALID;
1608 }
1609 
1610 /* pmap_stroll			INTERNAL
1611  **
1612  * Retrieve the addresses of all table managers involved in the mapping of
1613  * the given virtual address.  If the table walk completed successfully,
1614  * return true.  If it was only partially successful, return false.
1615  * The table walk performed by this function is important to many other
1616  * functions in this module.
1617  *
1618  * Note: This function ought to be easier to read.
1619  */
1620 bool
1621 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1622     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1623     int *pte_idx)
1624 {
1625 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1626 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1627 
1628 	if (pmap == pmap_kernel())
1629 		return false;
1630 
1631 	/* Does the given pmap have its own A table? */
1632 	*a_tbl = pmap->pm_a_tmgr;
1633 	if (*a_tbl == NULL)
1634 		return false; /* No.  Return unknown. */
1635 	/* Does the A table have a valid B table
1636 	 * under the corresponding table entry?
1637 	 */
1638 	*a_idx = MMU_TIA(va);
1639 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1640 	if (!MMU_VALID_DT(*a_dte))
1641 		return false; /* No. Return unknown. */
1642 	/* Yes. Extract B table from the A table. */
1643 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1644 	/*
1645 	 * Does the B table have a valid C table
1646 	 * under the corresponding table entry?
1647 	 */
1648 	*b_idx = MMU_TIB(va);
1649 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1650 	if (!MMU_VALID_DT(*b_dte))
1651 		return false; /* No. Return unknown. */
1652 	/* Yes. Extract C table from the B table. */
1653 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1654 	*pte_idx = MMU_TIC(va);
1655 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1656 
1657 	return true;
1658 }
1659 
1660 /* pmap_enter			INTERFACE
1661  **
1662  * Called by the kernel to map a virtual address
1663  * to a physical address in the given process map.
1664  *
1665  * Note: this function should apply an exclusive lock
1666  * on the pmap system for its duration.  (it certainly
1667  * would save my hair!!)
1668  * This function ought to be easier to read.
1669  */
1670 int
1671 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1672 {
1673 	bool insert, managed; /* Marks the need for PV insertion.*/
1674 	u_short nidx;            /* PV list index                     */
1675 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1676 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1677 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1678 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1679 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1680 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1681 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1682 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1683 	pv_t      *pv;           /* pv list head                      */
1684 	bool wired;         /* is the mapping to be wired?       */
1685 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1686 
1687 	if (pmap == pmap_kernel()) {
1688 		pmap_enter_kernel(va, pa, prot);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * Determine if the mapping should be wired.
1694 	 */
1695 	wired = ((flags & PMAP_WIRED) != 0);
1696 
1697 	/*
1698 	 * NOTE1:
1699 	 *
1700 	 * On November 13, 1999, someone changed the pmap_enter() API such
1701 	 * that it now accepts a 'flags' argument.  This new argument
1702 	 * contains bit-flags for the architecture-independent (UVM) system to
1703 	 * use in signalling certain mapping requirements to the architecture-
1704 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1705 	 * one of the flags within it.
1706 	 *
1707 	 * In addition to flags signaled by the architecture-independent
1708 	 * system, parts of the architecture-dependent section of the sun3x
1709 	 * kernel pass their own flags in the lower, unused bits of the
1710 	 * physical address supplied to this function.  These flags are
1711 	 * extracted and stored in the temporary variable 'mapflags'.
1712 	 *
1713 	 * Extract sun3x specific flags from the physical address.
1714 	 */
1715 	mapflags = (pa & ~MMU_PAGE_MASK);
1716 	pa &= MMU_PAGE_MASK;
1717 
1718 	/*
1719 	 * Determine if the physical address being mapped is on-board RAM.
1720 	 * Any other area of the address space is likely to belong to a
1721 	 * device and hence it would be disasterous to cache its contents.
1722 	 */
1723 	if ((managed = is_managed(pa)) == false)
1724 		mapflags |= PMAP_NC;
1725 
1726 	/*
1727 	 * For user mappings we walk along the MMU tables of the given
1728 	 * pmap, reaching a PTE which describes the virtual page being
1729 	 * mapped or changed.  If any level of the walk ends in an invalid
1730 	 * entry, a table must be allocated and the entry must be updated
1731 	 * to point to it.
1732 	 * There is a bit of confusion as to whether this code must be
1733 	 * re-entrant.  For now we will assume it is.  To support
1734 	 * re-entrancy we must unlink tables from the table pool before
1735 	 * we assume we may use them.  Tables are re-linked into the pool
1736 	 * when we are finished with them at the end of the function.
1737 	 * But I don't feel like doing that until we have proof that this
1738 	 * needs to be re-entrant.
1739 	 * 'llevel' records which tables need to be relinked.
1740 	 */
1741 	llevel = NONE;
1742 
1743 	/*
1744 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1745 	 * A table, allocate a new one from the available pool.
1746 	 */
1747 
1748 	a_tbl = pmap->pm_a_tmgr;
1749 	if (a_tbl == NULL) {
1750 		/*
1751 		 * This pmap does not currently have an A table.  Allocate
1752 		 * a new one.
1753 		 */
1754 		a_tbl = get_a_table();
1755 		a_tbl->at_parent = pmap;
1756 
1757 		/*
1758 		 * Assign this new A table to the pmap, and calculate its
1759 		 * physical address so that loadcrp() can be used to make
1760 		 * the table active.
1761 		 */
1762 		pmap->pm_a_tmgr = a_tbl;
1763 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1764 
1765 		/*
1766 		 * If the process receiving a new A table is the current
1767 		 * process, we are responsible for setting the MMU so that
1768 		 * it becomes the current address space.  This only adds
1769 		 * new mappings, so no need to flush anything.
1770 		 */
1771 		if (pmap == current_pmap()) {
1772 			kernel_crp.rp_addr = pmap->pm_a_phys;
1773 			loadcrp(&kernel_crp);
1774 		}
1775 
1776 		if (!wired)
1777 			llevel = NEWA;
1778 	} else {
1779 		/*
1780 		 * Use the A table already allocated for this pmap.
1781 		 * Unlink it from the A table pool if necessary.
1782 		 */
1783 		if (wired && !a_tbl->at_wcnt)
1784 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1785 	}
1786 
1787 	/*
1788 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1789 	 * allocate one.
1790 	 */
1791 
1792 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1793 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1794 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1795 		/* The descriptor is valid.  Use the B table it points to. */
1796 		/*************************************
1797 		 *               a_idx               *
1798 		 *                 v                 *
1799 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1800 		 *          | | | | | | | | | | | |  *
1801 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1802 		 *                 |                 *
1803 		 *                 \- b_tbl -> +-+-  *
1804 		 *                             | |   *
1805 		 *                             +-+-  *
1806 		 *************************************/
1807 		b_dte = mmu_ptov(a_dte->addr.raw);
1808 		b_tbl = mmuB2tmgr(b_dte);
1809 
1810 		/*
1811 		 * If the requested mapping must be wired, but this table
1812 		 * being used to map it is not, the table must be removed
1813 		 * from the available pool and its wired entry count
1814 		 * incremented.
1815 		 */
1816 		if (wired && !b_tbl->bt_wcnt) {
1817 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1818 			a_tbl->at_wcnt++;
1819 		}
1820 	} else {
1821 		/* The descriptor is invalid.  Allocate a new B table. */
1822 		b_tbl = get_b_table();
1823 
1824 		/* Point the parent A table descriptor to this new B table. */
1825 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1826 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1827 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1828 
1829 		/* Create the necessary back references to the parent table */
1830 		b_tbl->bt_parent = a_tbl;
1831 		b_tbl->bt_pidx = a_idx;
1832 
1833 		/*
1834 		 * If this table is to be wired, make sure the parent A table
1835 		 * wired count is updated to reflect that it has another wired
1836 		 * entry.
1837 		 */
1838 		if (wired)
1839 			a_tbl->at_wcnt++;
1840 		else if (llevel == NONE)
1841 			llevel = NEWB;
1842 	}
1843 
1844 	/*
1845 	 * Step 3 - Walk into the C table, if there is no valid C table,
1846 	 * allocate one.
1847 	 */
1848 
1849 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1850 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1851 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1852 		/* The descriptor is valid.  Use the C table it points to. */
1853 		/**************************************
1854 		 *               c_idx                *
1855 		 * |                v                 *
1856 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1857 		 *             | | | | | | | | | | |  *
1858 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1859 		 *                  |                 *
1860 		 *                  \- c_tbl -> +-+-- *
1861 		 *                              | | | *
1862 		 *                              +-+-- *
1863 		 **************************************/
1864 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1865 		c_tbl = mmuC2tmgr(c_pte);
1866 
1867 		/* If mapping is wired and table is not */
1868 		if (wired && !c_tbl->ct_wcnt) {
1869 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1870 			b_tbl->bt_wcnt++;
1871 		}
1872 	} else {
1873 		/* The descriptor is invalid.  Allocate a new C table. */
1874 		c_tbl = get_c_table();
1875 
1876 		/* Point the parent B table descriptor to this new C table. */
1877 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1878 		b_dte->attr.raw |= MMU_DT_SHORT;
1879 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1880 
1881 		/* Create the necessary back references to the parent table */
1882 		c_tbl->ct_parent = b_tbl;
1883 		c_tbl->ct_pidx = b_idx;
1884 		/*
1885 		 * Store the pmap and base virtual managed address for faster
1886 		 * retrieval in the PV functions.
1887 		 */
1888 		c_tbl->ct_pmap = pmap;
1889 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1890 
1891 		/*
1892 		 * If this table is to be wired, make sure the parent B table
1893 		 * wired count is updated to reflect that it has another wired
1894 		 * entry.
1895 		 */
1896 		if (wired)
1897 			b_tbl->bt_wcnt++;
1898 		else if (llevel == NONE)
1899 			llevel = NEWC;
1900 	}
1901 
1902 	/*
1903 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1904 	 * slot of the C table, describing the PA to which the VA is mapped.
1905 	 */
1906 
1907 	pte_idx = MMU_TIC(va);
1908 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1909 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1910 		/*
1911 		 * The PTE is currently valid.  This particular call
1912 		 * is just a synonym for one (or more) of the following
1913 		 * operations:
1914 		 *     change protection of a page
1915 		 *     change wiring status of a page
1916 		 *     remove the mapping of a page
1917 		 */
1918 
1919 		/* First check if this is a wiring operation. */
1920 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1921 			/*
1922 			 * The existing mapping is wired, so adjust wired
1923 			 * entry count here. If new mapping is still wired,
1924 			 * wired entry count will be incremented again later.
1925 			 */
1926 			c_tbl->ct_wcnt--;
1927 			if (!wired) {
1928 				/*
1929 				 * The mapping of this PTE is being changed
1930 				 * from wired to unwired.
1931 				 * Adjust wired entry counts in each table and
1932 				 * set llevel flag to put unwired tables back
1933 				 * into the active pool.
1934 				 */
1935 				if (c_tbl->ct_wcnt == 0) {
1936 					llevel = NEWC;
1937 					if (--b_tbl->bt_wcnt == 0) {
1938 						llevel = NEWB;
1939 						if (--a_tbl->at_wcnt == 0) {
1940 							llevel = NEWA;
1941 						}
1942 					}
1943 				}
1944 			}
1945 		}
1946 
1947 		/* Is the new address the same as the old? */
1948 		if (MMU_PTE_PA(*c_pte) == pa) {
1949 			/*
1950 			 * Yes, mark that it does not need to be reinserted
1951 			 * into the PV list.
1952 			 */
1953 			insert = false;
1954 
1955 			/*
1956 			 * Clear all but the modified, referenced and wired
1957 			 * bits on the PTE.
1958 			 */
1959 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1960 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1961 		} else {
1962 			/* No, remove the old entry */
1963 			pmap_remove_pte(c_pte);
1964 			insert = true;
1965 		}
1966 
1967 		/*
1968 		 * TLB flush is only necessary if modifying current map.
1969 		 * However, in pmap_enter(), the pmap almost always IS
1970 		 * the current pmap, so don't even bother to check.
1971 		 */
1972 		TBIS(va);
1973 	} else {
1974 		/*
1975 		 * The PTE is invalid.  Increment the valid entry count in
1976 		 * the C table manager to reflect the addition of a new entry.
1977 		 */
1978 		c_tbl->ct_ecnt++;
1979 
1980 		/* XXX - temporarily make sure the PTE is cleared. */
1981 		c_pte->attr.raw = 0;
1982 
1983 		/* It will also need to be inserted into the PV list. */
1984 		insert = true;
1985 	}
1986 
1987 	/*
1988 	 * If page is changing from unwired to wired status, set an unused bit
1989 	 * within the PTE to indicate that it is wired.  Also increment the
1990 	 * wired entry count in the C table manager.
1991 	 */
1992 	if (wired) {
1993 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1994 		c_tbl->ct_wcnt++;
1995 	}
1996 
1997 	/*
1998 	 * Map the page, being careful to preserve modify/reference/wired
1999 	 * bits.  At this point it is assumed that the PTE either has no bits
2000 	 * set, or if there are set bits, they are only modified, reference or
2001 	 * wired bits.  If not, the following statement will cause erratic
2002 	 * behavior.
2003 	 */
2004 #ifdef	PMAP_DEBUG
2005 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2006 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2007 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2008 		Debugger();
2009 	}
2010 #endif
2011 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2012 
2013 	/*
2014 	 * If the mapping should be read-only, set the write protect
2015 	 * bit in the PTE.
2016 	 */
2017 	if (!(prot & VM_PROT_WRITE))
2018 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2019 
2020 	/*
2021 	 * Mark the PTE as used and/or modified as specified by the flags arg.
2022 	 */
2023 	if (flags & VM_PROT_ALL) {
2024 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2025 		if (flags & VM_PROT_WRITE) {
2026 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
2027 		}
2028 	}
2029 
2030 	/*
2031 	 * If the mapping should be cache inhibited (indicated by the flag
2032 	 * bits found on the lower order of the physical address.)
2033 	 * mark the PTE as a cache inhibited page.
2034 	 */
2035 	if (mapflags & PMAP_NC)
2036 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2037 
2038 	/*
2039 	 * If the physical address being mapped is managed by the PV
2040 	 * system then link the pte into the list of pages mapped to that
2041 	 * address.
2042 	 */
2043 	if (insert && managed) {
2044 		pv = pa2pv(pa);
2045 		nidx = pteidx(c_pte);
2046 
2047 		pvebase[nidx].pve_next = pv->pv_idx;
2048 		pv->pv_idx = nidx;
2049 	}
2050 
2051 	/* Move any allocated or unwired tables back into the active pool. */
2052 
2053 	switch (llevel) {
2054 		case NEWA:
2055 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2056 			/* FALLTHROUGH */
2057 		case NEWB:
2058 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2059 			/* FALLTHROUGH */
2060 		case NEWC:
2061 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2062 			/* FALLTHROUGH */
2063 		default:
2064 			break;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 /* pmap_enter_kernel			INTERNAL
2071  **
2072  * Map the given virtual address to the given physical address within the
2073  * kernel address space.  This function exists because the kernel map does
2074  * not do dynamic table allocation.  It consists of a contiguous array of ptes
2075  * and can be edited directly without the need to walk through any tables.
2076  *
2077  * XXX: "Danger, Will Robinson!"
2078  * Note that the kernel should never take a fault on any page
2079  * between [ KERNBASE .. virtual_avail ] and this is checked in
2080  * trap.c for kernel-mode MMU faults.  This means that mappings
2081  * created in that range must be implicily wired. -gwr
2082  */
2083 void
2084 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2085 {
2086 	bool       was_valid, insert;
2087 	u_short         pte_idx;
2088 	int             flags;
2089 	mmu_short_pte_t *pte;
2090 	pv_t            *pv;
2091 	paddr_t     old_pa;
2092 
2093 	flags = (pa & ~MMU_PAGE_MASK);
2094 	pa &= MMU_PAGE_MASK;
2095 
2096 	if (is_managed(pa))
2097 		insert = true;
2098 	else
2099 		insert = false;
2100 
2101 	/*
2102 	 * Calculate the index of the PTE being modified.
2103 	 */
2104 	pte_idx = (u_long)m68k_btop(va - KERNBASE);
2105 
2106 	/* This array is traditionally named "Sysmap" */
2107 	pte = &kernCbase[pte_idx];
2108 
2109 	if (MMU_VALID_DT(*pte)) {
2110 		was_valid = true;
2111 		/*
2112 		 * If the PTE already maps a different
2113 		 * physical address, umap and pv_unlink.
2114 		 */
2115 		old_pa = MMU_PTE_PA(*pte);
2116 		if (pa != old_pa)
2117 			pmap_remove_pte(pte);
2118 		else {
2119 		    /*
2120 		     * Old PA and new PA are the same.  No need to
2121 		     * relink the mapping within the PV list.
2122 		     */
2123 		     insert = false;
2124 
2125 		    /*
2126 		     * Save any mod/ref bits on the PTE.
2127 		     */
2128 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2129 		}
2130 	} else {
2131 		pte->attr.raw = MMU_DT_INVALID;
2132 		was_valid = false;
2133 	}
2134 
2135 	/*
2136 	 * Map the page.  Being careful to preserve modified/referenced bits
2137 	 * on the PTE.
2138 	 */
2139 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2140 
2141 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2142 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2143 	if (flags & PMAP_NC)
2144 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2145 	if (was_valid)
2146 		TBIS(va);
2147 
2148 	/*
2149 	 * Insert the PTE into the PV system, if need be.
2150 	 */
2151 	if (insert) {
2152 		pv = pa2pv(pa);
2153 		pvebase[pte_idx].pve_next = pv->pv_idx;
2154 		pv->pv_idx = pte_idx;
2155 	}
2156 }
2157 
2158 void
2159 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2160 {
2161 	mmu_short_pte_t	*pte;
2162 
2163 	/* This array is traditionally named "Sysmap" */
2164 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2165 
2166 	KASSERT(!MMU_VALID_DT(*pte));
2167 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2168 	if (!(prot & VM_PROT_WRITE))
2169 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2170 }
2171 
2172 void
2173 pmap_kremove(vaddr_t va, vsize_t len)
2174 {
2175 	int idx, eidx;
2176 
2177 #ifdef	PMAP_DEBUG
2178 	if ((va & PGOFSET) || (len & PGOFSET))
2179 		panic("pmap_kremove: alignment");
2180 #endif
2181 
2182 	idx  = m68k_btop(va - KERNBASE);
2183 	eidx = m68k_btop(va + len - KERNBASE);
2184 
2185 	while (idx < eidx) {
2186 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2187 		TBIS(va);
2188 		va += PAGE_SIZE;
2189 	}
2190 }
2191 
2192 /* pmap_map			INTERNAL
2193  **
2194  * Map a contiguous range of physical memory into a contiguous range of
2195  * the kernel virtual address space.
2196  *
2197  * Used for device mappings and early mapping of the kernel text/data/bss.
2198  * Returns the first virtual address beyond the end of the range.
2199  */
2200 vaddr_t
2201 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2202 {
2203 	int sz;
2204 
2205 	sz = endpa - pa;
2206 	do {
2207 		pmap_enter_kernel(va, pa, prot);
2208 		va += PAGE_SIZE;
2209 		pa += PAGE_SIZE;
2210 		sz -= PAGE_SIZE;
2211 	} while (sz > 0);
2212 	pmap_update(pmap_kernel());
2213 	return va;
2214 }
2215 
2216 /* pmap_protect_kernel			INTERNAL
2217  **
2218  * Apply the given protection code to a kernel address range.
2219  */
2220 static INLINE void
2221 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2222 {
2223 	vaddr_t va;
2224 	mmu_short_pte_t *pte;
2225 
2226 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2227 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2228 		if (MMU_VALID_DT(*pte)) {
2229 		    switch (prot) {
2230 		        case VM_PROT_ALL:
2231 		            break;
2232 		        case VM_PROT_EXECUTE:
2233 		        case VM_PROT_READ:
2234 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2235 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2236 		            break;
2237 		        case VM_PROT_NONE:
2238 		            /* this is an alias for 'pmap_remove_kernel' */
2239 		            pmap_remove_pte(pte);
2240 		            break;
2241 		        default:
2242 		            break;
2243 		    }
2244 		    /*
2245 		     * since this is the kernel, immediately flush any cached
2246 		     * descriptors for this address.
2247 		     */
2248 		    TBIS(va);
2249 		}
2250 	}
2251 }
2252 
2253 /* pmap_protect			INTERFACE
2254  **
2255  * Apply the given protection to the given virtual address range within
2256  * the given map.
2257  *
2258  * It is ok for the protection applied to be stronger than what is
2259  * specified.  We use this to our advantage when the given map has no
2260  * mapping for the virtual address.  By skipping a page when this
2261  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2262  * and therefore do not need to map the page just to apply a protection
2263  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2264  *
2265  * XXX - This function could be speeded up by using pmap_stroll() for inital
2266  *       setup, and then manual scrolling in the for() loop.
2267  */
2268 void
2269 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2270 {
2271 	bool iscurpmap;
2272 	int a_idx, b_idx, c_idx;
2273 	a_tmgr_t *a_tbl;
2274 	b_tmgr_t *b_tbl;
2275 	c_tmgr_t *c_tbl;
2276 	mmu_short_pte_t *pte;
2277 
2278 	if (pmap == pmap_kernel()) {
2279 		pmap_protect_kernel(startva, endva, prot);
2280 		return;
2281 	}
2282 
2283 	/*
2284 	 * In this particular pmap implementation, there are only three
2285 	 * types of memory protection: 'all' (read/write/execute),
2286 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2287 	 * It is not possible for us to treat 'executable' as a separate
2288 	 * protection type.  Therefore, protection requests that seek to
2289 	 * remove execute permission while retaining read or write, and those
2290 	 * that make little sense (write-only for example) are ignored.
2291 	 */
2292 	switch (prot) {
2293 		case VM_PROT_NONE:
2294 			/*
2295 			 * A request to apply the protection code of
2296 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2297 			 */
2298 			pmap_remove(pmap, startva, endva);
2299 			return;
2300 		case	VM_PROT_EXECUTE:
2301 		case	VM_PROT_READ:
2302 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2303 			/* continue */
2304 			break;
2305 		case	VM_PROT_WRITE:
2306 		case	VM_PROT_WRITE|VM_PROT_READ:
2307 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2308 		case	VM_PROT_ALL:
2309 			/* None of these should happen in a sane system. */
2310 			return;
2311 	}
2312 
2313 	/*
2314 	 * If the pmap has no A table, it has no mappings and therefore
2315 	 * there is nothing to protect.
2316 	 */
2317 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2318 		return;
2319 
2320 	a_idx = MMU_TIA(startva);
2321 	b_idx = MMU_TIB(startva);
2322 	c_idx = MMU_TIC(startva);
2323 	b_tbl = NULL;
2324 	c_tbl = NULL;
2325 
2326 	iscurpmap = (pmap == current_pmap());
2327 	while (startva < endva) {
2328 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2329 		  if (b_tbl == NULL) {
2330 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2331 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2332 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2333 		  }
2334 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2335 		    if (c_tbl == NULL) {
2336 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2337 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2338 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2339 		    }
2340 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2341 		      pte = &c_tbl->ct_dtbl[c_idx];
2342 		      /* make the mapping read-only */
2343 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2344 		      /*
2345 		       * If we just modified the current address space,
2346 		       * flush any translations for the modified page from
2347 		       * the translation cache and any data from it in the
2348 		       * data cache.
2349 		       */
2350 		      if (iscurpmap)
2351 		          TBIS(startva);
2352 		    }
2353 		    startva += PAGE_SIZE;
2354 
2355 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2356 		      c_tbl = NULL;
2357 		      c_idx = 0;
2358 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2359 		        b_tbl = NULL;
2360 		        b_idx = 0;
2361 		      }
2362 		    }
2363 		  } else { /* C table wasn't valid */
2364 		    c_tbl = NULL;
2365 		    c_idx = 0;
2366 		    startva += MMU_TIB_RANGE;
2367 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2368 		      b_tbl = NULL;
2369 		      b_idx = 0;
2370 		    }
2371 		  } /* C table */
2372 		} else { /* B table wasn't valid */
2373 		  b_tbl = NULL;
2374 		  b_idx = 0;
2375 		  startva += MMU_TIA_RANGE;
2376 		  a_idx++;
2377 		} /* B table */
2378 	}
2379 }
2380 
2381 /* pmap_unwire				INTERFACE
2382  **
2383  * Clear the wired attribute of the specified page.
2384  *
2385  * This function is called from vm_fault.c to unwire
2386  * a mapping.
2387  */
2388 void
2389 pmap_unwire(pmap_t pmap, vaddr_t va)
2390 {
2391 	int a_idx, b_idx, c_idx;
2392 	a_tmgr_t *a_tbl;
2393 	b_tmgr_t *b_tbl;
2394 	c_tmgr_t *c_tbl;
2395 	mmu_short_pte_t *pte;
2396 
2397 	/* Kernel mappings always remain wired. */
2398 	if (pmap == pmap_kernel())
2399 		return;
2400 
2401 	/*
2402 	 * Walk through the tables.  If the walk terminates without
2403 	 * a valid PTE then the address wasn't wired in the first place.
2404 	 * Return immediately.
2405 	 */
2406 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2407 		&b_idx, &c_idx) == false)
2408 		return;
2409 
2410 
2411 	/* Is the PTE wired?  If not, return. */
2412 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2413 		return;
2414 
2415 	/* Remove the wiring bit. */
2416 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2417 
2418 	/*
2419 	 * Decrement the wired entry count in the C table.
2420 	 * If it reaches zero the following things happen:
2421 	 * 1. The table no longer has any wired entries and is considered
2422 	 *    unwired.
2423 	 * 2. It is placed on the available queue.
2424 	 * 3. The parent table's wired entry count is decremented.
2425 	 * 4. If it reaches zero, this process repeats at step 1 and
2426 	 *    stops at after reaching the A table.
2427 	 */
2428 	if (--c_tbl->ct_wcnt == 0) {
2429 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2430 		if (--b_tbl->bt_wcnt == 0) {
2431 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2432 			if (--a_tbl->at_wcnt == 0) {
2433 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2434 			}
2435 		}
2436 	}
2437 }
2438 
2439 /* pmap_copy				INTERFACE
2440  **
2441  * Copy the mappings of a range of addresses in one pmap, into
2442  * the destination address of another.
2443  *
2444  * This routine is advisory.  Should we one day decide that MMU tables
2445  * may be shared by more than one pmap, this function should be used to
2446  * link them together.  Until that day however, we do nothing.
2447  */
2448 void
2449 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2450 {
2451 
2452 	/* not implemented. */
2453 }
2454 
2455 /* pmap_copy_page			INTERFACE
2456  **
2457  * Copy the contents of one physical page into another.
2458  *
2459  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2460  * to map the two specified physical pages into the kernel address space.
2461  *
2462  * Note: We could use the transparent translation registers to make the
2463  * mappings.  If we do so, be sure to disable interrupts before using them.
2464  */
2465 void
2466 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2467 {
2468 	vaddr_t srcva, dstva;
2469 	int s;
2470 
2471 	srcva = tmp_vpages[0];
2472 	dstva = tmp_vpages[1];
2473 
2474 	s = splvm();
2475 #ifdef DIAGNOSTIC
2476 	if (tmp_vpages_inuse++)
2477 		panic("pmap_copy_page: temporary vpages are in use.");
2478 #endif
2479 
2480 	/* Map pages as non-cacheable to avoid cache polution? */
2481 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2482 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2483 
2484 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2485 	copypage((char *)srcva, (char *)dstva);
2486 
2487 	pmap_kremove(srcva, PAGE_SIZE);
2488 	pmap_kremove(dstva, PAGE_SIZE);
2489 
2490 #ifdef DIAGNOSTIC
2491 	--tmp_vpages_inuse;
2492 #endif
2493 	splx(s);
2494 }
2495 
2496 /* pmap_zero_page			INTERFACE
2497  **
2498  * Zero the contents of the specified physical page.
2499  *
2500  * Uses one of the virtual pages allocated in pmap_boostrap()
2501  * to map the specified page into the kernel address space.
2502  */
2503 void
2504 pmap_zero_page(paddr_t dstpa)
2505 {
2506 	vaddr_t dstva;
2507 	int s;
2508 
2509 	dstva = tmp_vpages[1];
2510 	s = splvm();
2511 #ifdef DIAGNOSTIC
2512 	if (tmp_vpages_inuse++)
2513 		panic("pmap_zero_page: temporary vpages are in use.");
2514 #endif
2515 
2516 	/* The comments in pmap_copy_page() above apply here also. */
2517 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2518 
2519 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2520 	zeropage((char *)dstva);
2521 
2522 	pmap_kremove(dstva, PAGE_SIZE);
2523 #ifdef DIAGNOSTIC
2524 	--tmp_vpages_inuse;
2525 #endif
2526 	splx(s);
2527 }
2528 
2529 /* pmap_collect			INTERFACE
2530  **
2531  * Called from the VM system when we are about to swap out
2532  * the process using this pmap.  This should give up any
2533  * resources held here, including all its MMU tables.
2534  */
2535 void
2536 pmap_collect(pmap_t pmap)
2537 {
2538 
2539 	/* XXX - todo... */
2540 }
2541 
2542 /* pmap_pinit			INTERNAL
2543  **
2544  * Initialize a pmap structure.
2545  */
2546 static INLINE void
2547 pmap_pinit(pmap_t pmap)
2548 {
2549 
2550 	memset(pmap, 0, sizeof(struct pmap));
2551 	pmap->pm_a_tmgr = NULL;
2552 	pmap->pm_a_phys = kernAphys;
2553 	pmap->pm_refcount = 1;
2554 	simple_lock_init(&pmap->pm_lock);
2555 }
2556 
2557 /* pmap_create			INTERFACE
2558  **
2559  * Create and return a pmap structure.
2560  */
2561 pmap_t
2562 pmap_create(void)
2563 {
2564 	pmap_t	pmap;
2565 
2566 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2567 	pmap_pinit(pmap);
2568 	return pmap;
2569 }
2570 
2571 /* pmap_release				INTERNAL
2572  **
2573  * Release any resources held by the given pmap.
2574  *
2575  * This is the reverse analog to pmap_pinit.  It does not
2576  * necessarily mean for the pmap structure to be deallocated,
2577  * as in pmap_destroy.
2578  */
2579 static INLINE void
2580 pmap_release(pmap_t pmap)
2581 {
2582 
2583 	/*
2584 	 * As long as the pmap contains no mappings,
2585 	 * which always should be the case whenever
2586 	 * this function is called, there really should
2587 	 * be nothing to do.
2588 	 */
2589 #ifdef	PMAP_DEBUG
2590 	if (pmap == pmap_kernel())
2591 		panic("pmap_release: kernel pmap");
2592 #endif
2593 	/*
2594 	 * XXX - If this pmap has an A table, give it back.
2595 	 * The pmap SHOULD be empty by now, and pmap_remove
2596 	 * should have already given back the A table...
2597 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2598 	 * at this point, which means some mapping was not
2599 	 * removed when it should have been. -gwr
2600 	 */
2601 	if (pmap->pm_a_tmgr != NULL) {
2602 		/* First make sure we are not using it! */
2603 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2604 			kernel_crp.rp_addr = kernAphys;
2605 			loadcrp(&kernel_crp);
2606 		}
2607 #ifdef	PMAP_DEBUG /* XXX - todo! */
2608 		/* XXX - Now complain... */
2609 		printf("pmap_release: still have table\n");
2610 		Debugger();
2611 #endif
2612 		free_a_table(pmap->pm_a_tmgr, true);
2613 		pmap->pm_a_tmgr = NULL;
2614 		pmap->pm_a_phys = kernAphys;
2615 	}
2616 }
2617 
2618 /* pmap_reference			INTERFACE
2619  **
2620  * Increment the reference count of a pmap.
2621  */
2622 void
2623 pmap_reference(pmap_t pmap)
2624 {
2625 	pmap_lock(pmap);
2626 	pmap_add_ref(pmap);
2627 	pmap_unlock(pmap);
2628 }
2629 
2630 /* pmap_dereference			INTERNAL
2631  **
2632  * Decrease the reference count on the given pmap
2633  * by one and return the current count.
2634  */
2635 static INLINE int
2636 pmap_dereference(pmap_t pmap)
2637 {
2638 	int rtn;
2639 
2640 	pmap_lock(pmap);
2641 	rtn = pmap_del_ref(pmap);
2642 	pmap_unlock(pmap);
2643 
2644 	return rtn;
2645 }
2646 
2647 /* pmap_destroy			INTERFACE
2648  **
2649  * Decrement a pmap's reference count and delete
2650  * the pmap if it becomes zero.  Will be called
2651  * only after all mappings have been removed.
2652  */
2653 void
2654 pmap_destroy(pmap_t pmap)
2655 {
2656 
2657 	if (pmap_dereference(pmap) == 0) {
2658 		pmap_release(pmap);
2659 		pool_put(&pmap_pmap_pool, pmap);
2660 	}
2661 }
2662 
2663 /* pmap_is_referenced			INTERFACE
2664  **
2665  * Determine if the given physical page has been
2666  * referenced (read from [or written to.])
2667  */
2668 bool
2669 pmap_is_referenced(struct vm_page *pg)
2670 {
2671 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2672 	pv_t      *pv;
2673 	int       idx;
2674 
2675 	/*
2676 	 * Check the flags on the pv head.  If they are set,
2677 	 * return immediately.  Otherwise a search must be done.
2678 	 */
2679 
2680 	pv = pa2pv(pa);
2681 	if (pv->pv_flags & PV_FLAGS_USED)
2682 		return true;
2683 
2684 	/*
2685 	 * Search through all pv elements pointing
2686 	 * to this page and query their reference bits
2687 	 */
2688 
2689 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2690 		if (MMU_PTE_USED(kernCbase[idx])) {
2691 			return true;
2692 		}
2693 	}
2694 	return false;
2695 }
2696 
2697 /* pmap_is_modified			INTERFACE
2698  **
2699  * Determine if the given physical page has been
2700  * modified (written to.)
2701  */
2702 bool
2703 pmap_is_modified(struct vm_page *pg)
2704 {
2705 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2706 	pv_t      *pv;
2707 	int       idx;
2708 
2709 	/* see comments in pmap_is_referenced() */
2710 	pv = pa2pv(pa);
2711 	if (pv->pv_flags & PV_FLAGS_MDFY)
2712 		return true;
2713 
2714 	for (idx = pv->pv_idx;
2715 		 idx != PVE_EOL;
2716 		 idx = pvebase[idx].pve_next) {
2717 
2718 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2719 			return true;
2720 		}
2721 	}
2722 
2723 	return false;
2724 }
2725 
2726 /* pmap_page_protect			INTERFACE
2727  **
2728  * Applies the given protection to all mappings to the given
2729  * physical page.
2730  */
2731 void
2732 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2733 {
2734 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2735 	pv_t      *pv;
2736 	int       idx;
2737 	vaddr_t va;
2738 	struct mmu_short_pte_struct *pte;
2739 	c_tmgr_t  *c_tbl;
2740 	pmap_t    pmap, curpmap;
2741 
2742 	curpmap = current_pmap();
2743 	pv = pa2pv(pa);
2744 
2745 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2746 		pte = &kernCbase[idx];
2747 		switch (prot) {
2748 			case VM_PROT_ALL:
2749 				/* do nothing */
2750 				break;
2751 			case VM_PROT_EXECUTE:
2752 			case VM_PROT_READ:
2753 			case VM_PROT_READ|VM_PROT_EXECUTE:
2754 				/*
2755 				 * Determine the virtual address mapped by
2756 				 * the PTE and flush ATC entries if necessary.
2757 				 */
2758 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2759 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2760 				if (pmap == curpmap || pmap == pmap_kernel())
2761 					TBIS(va);
2762 				break;
2763 			case VM_PROT_NONE:
2764 				/* Save the mod/ref bits. */
2765 				pv->pv_flags |= pte->attr.raw;
2766 				/* Invalidate the PTE. */
2767 				pte->attr.raw = MMU_DT_INVALID;
2768 
2769 				/*
2770 				 * Update table counts.  And flush ATC entries
2771 				 * if necessary.
2772 				 */
2773 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2774 
2775 				/*
2776 				 * If the PTE belongs to the kernel map,
2777 				 * be sure to flush the page it maps.
2778 				 */
2779 				if (pmap == pmap_kernel()) {
2780 					TBIS(va);
2781 				} else {
2782 					/*
2783 					 * The PTE belongs to a user map.
2784 					 * update the entry count in the C
2785 					 * table to which it belongs and flush
2786 					 * the ATC if the mapping belongs to
2787 					 * the current pmap.
2788 					 */
2789 					c_tbl->ct_ecnt--;
2790 					if (pmap == curpmap)
2791 						TBIS(va);
2792 				}
2793 				break;
2794 			default:
2795 				break;
2796 		}
2797 	}
2798 
2799 	/*
2800 	 * If the protection code indicates that all mappings to the page
2801 	 * be removed, truncate the PV list to zero entries.
2802 	 */
2803 	if (prot == VM_PROT_NONE)
2804 		pv->pv_idx = PVE_EOL;
2805 }
2806 
2807 /* pmap_get_pteinfo		INTERNAL
2808  **
2809  * Called internally to find the pmap and virtual address within that
2810  * map to which the pte at the given index maps.  Also includes the PTE's C
2811  * table manager.
2812  *
2813  * Returns the pmap in the argument provided, and the virtual address
2814  * by return value.
2815  */
2816 vaddr_t
2817 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2818 {
2819 	vaddr_t     va = 0;
2820 
2821 	/*
2822 	 * Determine if the PTE is a kernel PTE or a user PTE.
2823 	 */
2824 	if (idx >= NUM_KERN_PTES) {
2825 		/*
2826 		 * The PTE belongs to a user mapping.
2827 		 */
2828 		/* XXX: Would like an inline for this to validate idx... */
2829 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2830 
2831 		*pmap = (*tbl)->ct_pmap;
2832 		/*
2833 		 * To find the va to which the PTE maps, we first take
2834 		 * the table's base virtual address mapping which is stored
2835 		 * in ct_va.  We then increment this address by a page for
2836 		 * every slot skipped until we reach the PTE.
2837 		 */
2838 		va = (*tbl)->ct_va;
2839 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2840 	} else {
2841 		/*
2842 		 * The PTE belongs to the kernel map.
2843 		 */
2844 		*pmap = pmap_kernel();
2845 
2846 		va = m68k_ptob(idx);
2847 		va += KERNBASE;
2848 	}
2849 
2850 	return va;
2851 }
2852 
2853 /* pmap_clear_modify			INTERFACE
2854  **
2855  * Clear the modification bit on the page at the specified
2856  * physical address.
2857  *
2858  */
2859 bool
2860 pmap_clear_modify(struct vm_page *pg)
2861 {
2862 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2863 	bool rv;
2864 
2865 	rv = pmap_is_modified(pg);
2866 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2867 	return rv;
2868 }
2869 
2870 /* pmap_clear_reference			INTERFACE
2871  **
2872  * Clear the referenced bit on the page at the specified
2873  * physical address.
2874  */
2875 bool
2876 pmap_clear_reference(struct vm_page *pg)
2877 {
2878 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2879 	bool rv;
2880 
2881 	rv = pmap_is_referenced(pg);
2882 	pmap_clear_pv(pa, PV_FLAGS_USED);
2883 	return rv;
2884 }
2885 
2886 /* pmap_clear_pv			INTERNAL
2887  **
2888  * Clears the specified flag from the specified physical address.
2889  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2890  *
2891  * Flag is one of:
2892  *   PV_FLAGS_MDFY - Page modified bit.
2893  *   PV_FLAGS_USED - Page used (referenced) bit.
2894  *
2895  * This routine must not only clear the flag on the pv list
2896  * head.  It must also clear the bit on every pte in the pv
2897  * list associated with the address.
2898  */
2899 void
2900 pmap_clear_pv(paddr_t pa, int flag)
2901 {
2902 	pv_t      *pv;
2903 	int       idx;
2904 	vaddr_t   va;
2905 	pmap_t          pmap;
2906 	mmu_short_pte_t *pte;
2907 	c_tmgr_t        *c_tbl;
2908 
2909 	pv = pa2pv(pa);
2910 	pv->pv_flags &= ~(flag);
2911 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2912 		pte = &kernCbase[idx];
2913 		pte->attr.raw &= ~(flag);
2914 
2915 		/*
2916 		 * The MC68030 MMU will not set the modified or
2917 		 * referenced bits on any MMU tables for which it has
2918 		 * a cached descriptor with its modify bit set.  To insure
2919 		 * that it will modify these bits on the PTE during the next
2920 		 * time it is written to or read from, we must flush it from
2921 		 * the ATC.
2922 		 *
2923 		 * Ordinarily it is only necessary to flush the descriptor
2924 		 * if it is used in the current address space.  But since I
2925 		 * am not sure that there will always be a notion of
2926 		 * 'the current address space' when this function is called,
2927 		 * I will skip the test and always flush the address.  It
2928 		 * does no harm.
2929 		 */
2930 
2931 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2932 		TBIS(va);
2933 	}
2934 }
2935 
2936 /* pmap_extract_kernel		INTERNAL
2937  **
2938  * Extract a translation from the kernel address space.
2939  */
2940 static INLINE bool
2941 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2942 {
2943 	mmu_short_pte_t *pte;
2944 
2945 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
2946 	if (!MMU_VALID_DT(*pte))
2947 		return false;
2948 	if (pap != NULL)
2949 		*pap = MMU_PTE_PA(*pte);
2950 	return true;
2951 }
2952 
2953 /* pmap_extract			INTERFACE
2954  **
2955  * Return the physical address mapped by the virtual address
2956  * in the specified pmap.
2957  *
2958  * Note: this function should also apply an exclusive lock
2959  * on the pmap system during its duration.
2960  */
2961 bool
2962 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2963 {
2964 	int a_idx, b_idx, pte_idx;
2965 	a_tmgr_t	*a_tbl;
2966 	b_tmgr_t	*b_tbl;
2967 	c_tmgr_t	*c_tbl;
2968 	mmu_short_pte_t	*c_pte;
2969 
2970 	if (pmap == pmap_kernel())
2971 		return pmap_extract_kernel(va, pap);
2972 
2973 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2974 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
2975 		return false;
2976 
2977 	if (!MMU_VALID_DT(*c_pte))
2978 		return false;
2979 
2980 	if (pap != NULL)
2981 		*pap = MMU_PTE_PA(*c_pte);
2982 	return true;
2983 }
2984 
2985 /* pmap_remove_kernel		INTERNAL
2986  **
2987  * Remove the mapping of a range of virtual addresses from the kernel map.
2988  * The arguments are already page-aligned.
2989  */
2990 static INLINE void
2991 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2992 {
2993 	int idx, eidx;
2994 
2995 #ifdef	PMAP_DEBUG
2996 	if ((sva & PGOFSET) || (eva & PGOFSET))
2997 		panic("pmap_remove_kernel: alignment");
2998 #endif
2999 
3000 	idx  = m68k_btop(sva - KERNBASE);
3001 	eidx = m68k_btop(eva - KERNBASE);
3002 
3003 	while (idx < eidx) {
3004 		pmap_remove_pte(&kernCbase[idx++]);
3005 		TBIS(sva);
3006 		sva += PAGE_SIZE;
3007 	}
3008 }
3009 
3010 /* pmap_remove			INTERFACE
3011  **
3012  * Remove the mapping of a range of virtual addresses from the given pmap.
3013  *
3014  */
3015 void
3016 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
3017 {
3018 
3019 	if (pmap == pmap_kernel()) {
3020 		pmap_remove_kernel(sva, eva);
3021 		return;
3022 	}
3023 
3024 	/*
3025 	 * If the pmap doesn't have an A table of its own, it has no mappings
3026 	 * that can be removed.
3027 	 */
3028 	if (pmap->pm_a_tmgr == NULL)
3029 		return;
3030 
3031 	/*
3032 	 * Remove the specified range from the pmap.  If the function
3033 	 * returns true, the operation removed all the valid mappings
3034 	 * in the pmap and freed its A table.  If this happened to the
3035 	 * currently loaded pmap, the MMU root pointer must be reloaded
3036 	 * with the default 'kernel' map.
3037 	 */
3038 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3039 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3040 			kernel_crp.rp_addr = kernAphys;
3041 			loadcrp(&kernel_crp);
3042 			/* will do TLB flush below */
3043 		}
3044 		pmap->pm_a_tmgr = NULL;
3045 		pmap->pm_a_phys = kernAphys;
3046 	}
3047 
3048 	/*
3049 	 * If we just modified the current address space,
3050 	 * make sure to flush the MMU cache.
3051 	 *
3052 	 * XXX - this could be an unecessarily large flush.
3053 	 * XXX - Could decide, based on the size of the VA range
3054 	 * to be removed, whether to flush "by pages" or "all".
3055 	 */
3056 	if (pmap == current_pmap())
3057 		TBIAU();
3058 }
3059 
3060 /* pmap_remove_a			INTERNAL
3061  **
3062  * This is function number one in a set of three that removes a range
3063  * of memory in the most efficient manner by removing the highest possible
3064  * tables from the memory space.  This particular function attempts to remove
3065  * as many B tables as it can, delegating the remaining fragmented ranges to
3066  * pmap_remove_b().
3067  *
3068  * If the removal operation results in an empty A table, the function returns
3069  * true.
3070  *
3071  * It's ugly but will do for now.
3072  */
3073 bool
3074 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3075 {
3076 	bool empty;
3077 	int idx;
3078 	vaddr_t nstart, nend;
3079 	b_tmgr_t *b_tbl;
3080 	mmu_long_dte_t  *a_dte;
3081 	mmu_short_dte_t *b_dte;
3082 	uint8_t at_wired, bt_wired;
3083 
3084 	/*
3085 	 * The following code works with what I call a 'granularity
3086 	 * reduction algorithim'.  A range of addresses will always have
3087 	 * the following properties, which are classified according to
3088 	 * how the range relates to the size of the current granularity
3089 	 * - an A table entry:
3090 	 *
3091 	 *            1 2       3 4
3092 	 * -+---+---+---+---+---+---+---+-
3093 	 * -+---+---+---+---+---+---+---+-
3094 	 *
3095 	 * A range will always start on a granularity boundary, illustrated
3096 	 * by '+' signs in the table above, or it will start at some point
3097 	 * inbetween a granularity boundary, as illustrated by point 1.
3098 	 * The first step in removing a range of addresses is to remove the
3099 	 * range between 1 and 2, the nearest granularity boundary.  This
3100 	 * job is handled by the section of code governed by the
3101 	 * 'if (start < nstart)' statement.
3102 	 *
3103 	 * A range will always encompass zero or more intergral granules,
3104 	 * illustrated by points 2 and 3.  Integral granules are easy to
3105 	 * remove.  The removal of these granules is the second step, and
3106 	 * is handled by the code block 'if (nstart < nend)'.
3107 	 *
3108 	 * Lastly, a range will always end on a granularity boundary,
3109 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3110 	 * 4.  The last step involves removing this range and is handled by
3111 	 * the code block 'if (nend < end)'.
3112 	 */
3113 	nstart = MMU_ROUND_UP_A(sva);
3114 	nend = MMU_ROUND_A(eva);
3115 
3116 	at_wired = a_tbl->at_wcnt;
3117 
3118 	if (sva < nstart) {
3119 		/*
3120 		 * This block is executed if the range starts between
3121 		 * a granularity boundary.
3122 		 *
3123 		 * First find the DTE which is responsible for mapping
3124 		 * the start of the range.
3125 		 */
3126 		idx = MMU_TIA(sva);
3127 		a_dte = &a_tbl->at_dtbl[idx];
3128 
3129 		/*
3130 		 * If the DTE is valid then delegate the removal of the sub
3131 		 * range to pmap_remove_b(), which can remove addresses at
3132 		 * a finer granularity.
3133 		 */
3134 		if (MMU_VALID_DT(*a_dte)) {
3135 			b_dte = mmu_ptov(a_dte->addr.raw);
3136 			b_tbl = mmuB2tmgr(b_dte);
3137 			bt_wired = b_tbl->bt_wcnt;
3138 
3139 			/*
3140 			 * The sub range to be removed starts at the start
3141 			 * of the full range we were asked to remove, and ends
3142 			 * at the greater of:
3143 			 * 1. The end of the full range, -or-
3144 			 * 2. The end of the full range, rounded down to the
3145 			 *    nearest granularity boundary.
3146 			 */
3147 			if (eva < nstart)
3148 				empty = pmap_remove_b(b_tbl, sva, eva);
3149 			else
3150 				empty = pmap_remove_b(b_tbl, sva, nstart);
3151 
3152 			/*
3153 			 * If the child table no longer has wired entries,
3154 			 * decrement wired entry count.
3155 			 */
3156 			if (bt_wired && b_tbl->bt_wcnt == 0)
3157 				a_tbl->at_wcnt--;
3158 
3159 			/*
3160 			 * If the removal resulted in an empty B table,
3161 			 * invalidate the DTE that points to it and decrement
3162 			 * the valid entry count of the A table.
3163 			 */
3164 			if (empty) {
3165 				a_dte->attr.raw = MMU_DT_INVALID;
3166 				a_tbl->at_ecnt--;
3167 			}
3168 		}
3169 		/*
3170 		 * If the DTE is invalid, the address range is already non-
3171 		 * existent and can simply be skipped.
3172 		 */
3173 	}
3174 	if (nstart < nend) {
3175 		/*
3176 		 * This block is executed if the range spans a whole number
3177 		 * multiple of granules (A table entries.)
3178 		 *
3179 		 * First find the DTE which is responsible for mapping
3180 		 * the start of the first granule involved.
3181 		 */
3182 		idx = MMU_TIA(nstart);
3183 		a_dte = &a_tbl->at_dtbl[idx];
3184 
3185 		/*
3186 		 * Remove entire sub-granules (B tables) one at a time,
3187 		 * until reaching the end of the range.
3188 		 */
3189 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3190 			if (MMU_VALID_DT(*a_dte)) {
3191 				/*
3192 				 * Find the B table manager for the
3193 				 * entry and free it.
3194 				 */
3195 				b_dte = mmu_ptov(a_dte->addr.raw);
3196 				b_tbl = mmuB2tmgr(b_dte);
3197 				bt_wired = b_tbl->bt_wcnt;
3198 
3199 				free_b_table(b_tbl, true);
3200 
3201 				/*
3202 				 * All child entries has been removed.
3203 				 * If there were any wired entries in it,
3204 				 * decrement wired entry count.
3205 				 */
3206 				if (bt_wired)
3207 					a_tbl->at_wcnt--;
3208 
3209 				/*
3210 				 * Invalidate the DTE that points to the
3211 				 * B table and decrement the valid entry
3212 				 * count of the A table.
3213 				 */
3214 				a_dte->attr.raw = MMU_DT_INVALID;
3215 				a_tbl->at_ecnt--;
3216 			}
3217 	}
3218 	if (nend < eva) {
3219 		/*
3220 		 * This block is executed if the range ends beyond a
3221 		 * granularity boundary.
3222 		 *
3223 		 * First find the DTE which is responsible for mapping
3224 		 * the start of the nearest (rounded down) granularity
3225 		 * boundary.
3226 		 */
3227 		idx = MMU_TIA(nend);
3228 		a_dte = &a_tbl->at_dtbl[idx];
3229 
3230 		/*
3231 		 * If the DTE is valid then delegate the removal of the sub
3232 		 * range to pmap_remove_b(), which can remove addresses at
3233 		 * a finer granularity.
3234 		 */
3235 		if (MMU_VALID_DT(*a_dte)) {
3236 			/*
3237 			 * Find the B table manager for the entry
3238 			 * and hand it to pmap_remove_b() along with
3239 			 * the sub range.
3240 			 */
3241 			b_dte = mmu_ptov(a_dte->addr.raw);
3242 			b_tbl = mmuB2tmgr(b_dte);
3243 			bt_wired = b_tbl->bt_wcnt;
3244 
3245 			empty = pmap_remove_b(b_tbl, nend, eva);
3246 
3247 			/*
3248 			 * If the child table no longer has wired entries,
3249 			 * decrement wired entry count.
3250 			 */
3251 			if (bt_wired && b_tbl->bt_wcnt == 0)
3252 				a_tbl->at_wcnt--;
3253 			/*
3254 			 * If the removal resulted in an empty B table,
3255 			 * invalidate the DTE that points to it and decrement
3256 			 * the valid entry count of the A table.
3257 			 */
3258 			if (empty) {
3259 				a_dte->attr.raw = MMU_DT_INVALID;
3260 				a_tbl->at_ecnt--;
3261 			}
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * If there are no more entries in the A table, release it
3267 	 * back to the available pool and return true.
3268 	 */
3269 	if (a_tbl->at_ecnt == 0) {
3270 		KASSERT(a_tbl->at_wcnt == 0);
3271 		a_tbl->at_parent = NULL;
3272 		if (!at_wired)
3273 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3274 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3275 		empty = true;
3276 	} else {
3277 		/*
3278 		 * If the table doesn't have wired entries any longer
3279 		 * but still has unwired entries, put it back into
3280 		 * the available queue.
3281 		 */
3282 		if (at_wired && a_tbl->at_wcnt == 0)
3283 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3284 		empty = false;
3285 	}
3286 
3287 	return empty;
3288 }
3289 
3290 /* pmap_remove_b			INTERNAL
3291  **
3292  * Remove a range of addresses from an address space, trying to remove entire
3293  * C tables if possible.
3294  *
3295  * If the operation results in an empty B table, the function returns true.
3296  */
3297 bool
3298 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3299 {
3300 	bool empty;
3301 	int idx;
3302 	vaddr_t nstart, nend, rstart;
3303 	c_tmgr_t *c_tbl;
3304 	mmu_short_dte_t  *b_dte;
3305 	mmu_short_pte_t  *c_dte;
3306 	uint8_t bt_wired, ct_wired;
3307 
3308 	nstart = MMU_ROUND_UP_B(sva);
3309 	nend = MMU_ROUND_B(eva);
3310 
3311 	bt_wired = b_tbl->bt_wcnt;
3312 
3313 	if (sva < nstart) {
3314 		idx = MMU_TIB(sva);
3315 		b_dte = &b_tbl->bt_dtbl[idx];
3316 		if (MMU_VALID_DT(*b_dte)) {
3317 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3318 			c_tbl = mmuC2tmgr(c_dte);
3319 			ct_wired = c_tbl->ct_wcnt;
3320 
3321 			if (eva < nstart)
3322 				empty = pmap_remove_c(c_tbl, sva, eva);
3323 			else
3324 				empty = pmap_remove_c(c_tbl, sva, nstart);
3325 
3326 			/*
3327 			 * If the child table no longer has wired entries,
3328 			 * decrement wired entry count.
3329 			 */
3330 			if (ct_wired && c_tbl->ct_wcnt == 0)
3331 				b_tbl->bt_wcnt--;
3332 
3333 			if (empty) {
3334 				b_dte->attr.raw = MMU_DT_INVALID;
3335 				b_tbl->bt_ecnt--;
3336 			}
3337 		}
3338 	}
3339 	if (nstart < nend) {
3340 		idx = MMU_TIB(nstart);
3341 		b_dte = &b_tbl->bt_dtbl[idx];
3342 		rstart = nstart;
3343 		while (rstart < nend) {
3344 			if (MMU_VALID_DT(*b_dte)) {
3345 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3346 				c_tbl = mmuC2tmgr(c_dte);
3347 				ct_wired = c_tbl->ct_wcnt;
3348 
3349 				free_c_table(c_tbl, true);
3350 
3351 				/*
3352 				 * All child entries has been removed.
3353 				 * If there were any wired entries in it,
3354 				 * decrement wired entry count.
3355 				 */
3356 				if (ct_wired)
3357 					b_tbl->bt_wcnt--;
3358 
3359 				b_dte->attr.raw = MMU_DT_INVALID;
3360 				b_tbl->bt_ecnt--;
3361 			}
3362 			b_dte++;
3363 			rstart += MMU_TIB_RANGE;
3364 		}
3365 	}
3366 	if (nend < eva) {
3367 		idx = MMU_TIB(nend);
3368 		b_dte = &b_tbl->bt_dtbl[idx];
3369 		if (MMU_VALID_DT(*b_dte)) {
3370 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3371 			c_tbl = mmuC2tmgr(c_dte);
3372 			ct_wired = c_tbl->ct_wcnt;
3373 			empty = pmap_remove_c(c_tbl, nend, eva);
3374 
3375 			/*
3376 			 * If the child table no longer has wired entries,
3377 			 * decrement wired entry count.
3378 			 */
3379 			if (ct_wired && c_tbl->ct_wcnt == 0)
3380 				b_tbl->bt_wcnt--;
3381 
3382 			if (empty) {
3383 				b_dte->attr.raw = MMU_DT_INVALID;
3384 				b_tbl->bt_ecnt--;
3385 			}
3386 		}
3387 	}
3388 
3389 	if (b_tbl->bt_ecnt == 0) {
3390 		KASSERT(b_tbl->bt_wcnt == 0);
3391 		b_tbl->bt_parent = NULL;
3392 		if (!bt_wired)
3393 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3394 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3395 		empty = true;
3396 	} else {
3397 		/*
3398 		 * If the table doesn't have wired entries any longer
3399 		 * but still has unwired entries, put it back into
3400 		 * the available queue.
3401 		 */
3402 		if (bt_wired && b_tbl->bt_wcnt == 0)
3403 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3404 
3405 		empty = false;
3406 	}
3407 
3408 	return empty;
3409 }
3410 
3411 /* pmap_remove_c			INTERNAL
3412  **
3413  * Remove a range of addresses from the given C table.
3414  */
3415 bool
3416 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3417 {
3418 	bool empty;
3419 	int idx;
3420 	mmu_short_pte_t *c_pte;
3421 	uint8_t ct_wired;
3422 
3423 	ct_wired = c_tbl->ct_wcnt;
3424 
3425 	idx = MMU_TIC(sva);
3426 	c_pte = &c_tbl->ct_dtbl[idx];
3427 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3428 		if (MMU_VALID_DT(*c_pte)) {
3429 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3430 				c_tbl->ct_wcnt--;
3431 			pmap_remove_pte(c_pte);
3432 			c_tbl->ct_ecnt--;
3433 		}
3434 	}
3435 
3436 	if (c_tbl->ct_ecnt == 0) {
3437 		KASSERT(c_tbl->ct_wcnt == 0);
3438 		c_tbl->ct_parent = NULL;
3439 		if (!ct_wired)
3440 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3441 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3442 		empty = true;
3443 	} else {
3444 		/*
3445 		 * If the table doesn't have wired entries any longer
3446 		 * but still has unwired entries, put it back into
3447 		 * the available queue.
3448 		 */
3449 		if (ct_wired && c_tbl->ct_wcnt == 0)
3450 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3451 		empty = false;
3452 	}
3453 
3454 	return empty;
3455 }
3456 
3457 /* pmap_bootstrap_alloc			INTERNAL
3458  **
3459  * Used internally for memory allocation at startup when malloc is not
3460  * available.  This code will fail once it crosses the first memory
3461  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3462  * will be in charge of allocation.
3463  */
3464 void *
3465 pmap_bootstrap_alloc(int size)
3466 {
3467 	void *rtn;
3468 
3469 #ifdef	PMAP_DEBUG
3470 	if (bootstrap_alloc_enabled == false) {
3471 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3472 		sunmon_abort();
3473 	}
3474 #endif
3475 
3476 	rtn = (void *) virtual_avail;
3477 	virtual_avail += size;
3478 
3479 #ifdef	PMAP_DEBUG
3480 	if (virtual_avail > virtual_contig_end) {
3481 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3482 		sunmon_abort();
3483 	}
3484 #endif
3485 
3486 	return rtn;
3487 }
3488 
3489 /* pmap_bootstap_aalign			INTERNAL
3490  **
3491  * Used to insure that the next call to pmap_bootstrap_alloc() will
3492  * return a chunk of memory aligned to the specified size.
3493  *
3494  * Note: This function will only support alignment sizes that are powers
3495  * of two.
3496  */
3497 void
3498 pmap_bootstrap_aalign(int size)
3499 {
3500 	int off;
3501 
3502 	off = virtual_avail & (size - 1);
3503 	if (off) {
3504 		(void)pmap_bootstrap_alloc(size - off);
3505 	}
3506 }
3507 
3508 /* pmap_pa_exists
3509  **
3510  * Used by the /dev/mem driver to see if a given PA is memory
3511  * that can be mapped.  (The PA is not in a hole.)
3512  */
3513 int
3514 pmap_pa_exists(paddr_t pa)
3515 {
3516 	int i;
3517 
3518 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3519 		if ((pa >= avail_mem[i].pmem_start) &&
3520 			(pa <  avail_mem[i].pmem_end))
3521 			return 1;
3522 		if (avail_mem[i].pmem_next == NULL)
3523 			break;
3524 	}
3525 	return 0;
3526 }
3527 
3528 /* Called only from locore.s and pmap.c */
3529 void	_pmap_switch(pmap_t pmap);
3530 
3531 /*
3532  * _pmap_switch			INTERNAL
3533  *
3534  * This is called by locore.s:cpu_switch() when it is
3535  * switching to a new process.  Load new translations.
3536  * Note: done in-line by locore.s unless PMAP_DEBUG
3537  *
3538  * Note that we do NOT allocate a context here, but
3539  * share the "kernel only" context until we really
3540  * need our own context for user-space mappings in
3541  * pmap_enter_user().  [ s/context/mmu A table/ ]
3542  */
3543 void
3544 _pmap_switch(pmap_t pmap)
3545 {
3546 	u_long rootpa;
3547 
3548 	/*
3549 	 * Only do reload/flush if we have to.
3550 	 * Note that if the old and new process
3551 	 * were BOTH using the "null" context,
3552 	 * then this will NOT flush the TLB.
3553 	 */
3554 	rootpa = pmap->pm_a_phys;
3555 	if (kernel_crp.rp_addr != rootpa) {
3556 		DPRINT(("pmap_activate(%p)\n", pmap));
3557 		kernel_crp.rp_addr = rootpa;
3558 		loadcrp(&kernel_crp);
3559 		TBIAU();
3560 	}
3561 }
3562 
3563 /*
3564  * Exported version of pmap_activate().  This is called from the
3565  * machine-independent VM code when a process is given a new pmap.
3566  * If (p == curlwp) do like cpu_switch would do; otherwise just
3567  * take this as notification that the process has a new pmap.
3568  */
3569 void
3570 pmap_activate(struct lwp *l)
3571 {
3572 
3573 	if (l->l_proc == curproc) {
3574 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3575 	}
3576 }
3577 
3578 /*
3579  * pmap_deactivate			INTERFACE
3580  **
3581  * This is called to deactivate the specified process's address space.
3582  */
3583 void
3584 pmap_deactivate(struct lwp *l)
3585 {
3586 
3587 	/* Nothing to do. */
3588 }
3589 
3590 /*
3591  * Fill in the sun3x-specific part of the kernel core header
3592  * for dumpsys().  (See machdep.c for the rest.)
3593  */
3594 void
3595 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3596 {
3597 	u_long spa, len;
3598 	int i;
3599 
3600 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3601 	sh->pg_valid = MMU_DT_PAGE;
3602 	sh->contig_end = virtual_contig_end;
3603 	sh->kernCbase = (u_long)kernCbase;
3604 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3605 		spa = avail_mem[i].pmem_start;
3606 		spa = m68k_trunc_page(spa);
3607 		len = avail_mem[i].pmem_end - spa;
3608 		len = m68k_round_page(len);
3609 		sh->ram_segs[i].start = spa;
3610 		sh->ram_segs[i].size  = len;
3611 	}
3612 }
3613 
3614 
3615 /* pmap_virtual_space			INTERFACE
3616  **
3617  * Return the current available range of virtual addresses in the
3618  * arguuments provided.  Only really called once.
3619  */
3620 void
3621 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3622 {
3623 
3624 	*vstart = virtual_avail;
3625 	*vend = virtual_end;
3626 }
3627 
3628 /*
3629  * Provide memory to the VM system.
3630  *
3631  * Assume avail_start is always in the
3632  * first segment as pmap_bootstrap does.
3633  */
3634 static void
3635 pmap_page_upload(void)
3636 {
3637 	paddr_t	a, b;	/* memory range */
3638 	int i;
3639 
3640 	/* Supply the memory in segments. */
3641 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3642 		a = atop(avail_mem[i].pmem_start);
3643 		b = atop(avail_mem[i].pmem_end);
3644 		if (i == 0)
3645 			a = atop(avail_start);
3646 		if (avail_mem[i].pmem_end > avail_end)
3647 			b = atop(avail_end);
3648 
3649 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3650 
3651 		if (avail_mem[i].pmem_next == NULL)
3652 			break;
3653 	}
3654 }
3655 
3656 /* pmap_count			INTERFACE
3657  **
3658  * Return the number of resident (valid) pages in the given pmap.
3659  *
3660  * Note:  If this function is handed the kernel map, it will report
3661  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3662  * map statistics.
3663  */
3664 segsz_t
3665 pmap_count(pmap_t pmap, int type)
3666 {
3667 	u_int     count;
3668 	int       a_idx, b_idx;
3669 	a_tmgr_t *a_tbl;
3670 	b_tmgr_t *b_tbl;
3671 	c_tmgr_t *c_tbl;
3672 
3673 	/*
3674 	 * If the pmap does not have its own A table manager, it has no
3675 	 * valid entires.
3676 	 */
3677 	if (pmap->pm_a_tmgr == NULL)
3678 		return 0;
3679 
3680 	a_tbl = pmap->pm_a_tmgr;
3681 
3682 	count = 0;
3683 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3684 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3685 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3686 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3687 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3688 	                c_tbl = mmuC2tmgr(
3689 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3690 	                if (type == 0)
3691 	                    /*
3692 	                     * A resident entry count has been requested.
3693 	                     */
3694 	                    count += c_tbl->ct_ecnt;
3695 	                else
3696 	                    /*
3697 	                     * A wired entry count has been requested.
3698 	                     */
3699 	                    count += c_tbl->ct_wcnt;
3700 	            }
3701 	        }
3702 	    }
3703 	}
3704 
3705 	return count;
3706 }
3707 
3708 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3709  * The following routines are only used by DDB for tricky kernel text    *
3710  * text operations in db_memrw.c.  They are provided for sun3            *
3711  * compatibility.                                                        *
3712  *************************************************************************/
3713 /* get_pte			INTERNAL
3714  **
3715  * Return the page descriptor the describes the kernel mapping
3716  * of the given virtual address.
3717  */
3718 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
3719 u_int
3720 get_pte(vaddr_t va)
3721 {
3722 	u_long pte_pa;
3723 	mmu_short_pte_t *pte;
3724 
3725 	/* Get the physical address of the PTE */
3726 	pte_pa = ptest_addr(va & ~PGOFSET);
3727 
3728 	/* Convert to a virtual address... */
3729 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3730 
3731 	/* Make sure it is in our level-C tables... */
3732 	if ((pte < kernCbase) ||
3733 		(pte >= &mmuCbase[NUM_USER_PTES]))
3734 		return 0;
3735 
3736 	/* ... and just return its contents. */
3737 	return (pte->attr.raw);
3738 }
3739 
3740 
3741 /* set_pte			INTERNAL
3742  **
3743  * Set the page descriptor that describes the kernel mapping
3744  * of the given virtual address.
3745  */
3746 void
3747 set_pte(vaddr_t va, u_int pte)
3748 {
3749 	u_long idx;
3750 
3751 	if (va < KERNBASE)
3752 		return;
3753 
3754 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3755 	kernCbase[idx].attr.raw = pte;
3756 	TBIS(va);
3757 }
3758 
3759 /*
3760  *	Routine:        pmap_procwr
3761  *
3762  *	Function:
3763  *		Synchronize caches corresponding to [addr, addr+len) in p.
3764  */
3765 void
3766 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3767 {
3768 
3769 	(void)cachectl1(0x80000004, va, len, p);
3770 }
3771 
3772 
3773 #ifdef	PMAP_DEBUG
3774 /************************** DEBUGGING ROUTINES **************************
3775  * The following routines are meant to be an aid to debugging the pmap  *
3776  * system.  They are callable from the DDB command line and should be   *
3777  * prepared to be handed unstable or incomplete states of the system.   *
3778  ************************************************************************/
3779 
3780 /* pv_list
3781  **
3782  * List all pages found on the pv list for the given physical page.
3783  * To avoid endless loops, the listing will stop at the end of the list
3784  * or after 'n' entries - whichever comes first.
3785  */
3786 void
3787 pv_list(paddr_t pa, int n)
3788 {
3789 	int  idx;
3790 	vaddr_t va;
3791 	pv_t *pv;
3792 	c_tmgr_t *c_tbl;
3793 	pmap_t pmap;
3794 
3795 	pv = pa2pv(pa);
3796 	idx = pv->pv_idx;
3797 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3798 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3799 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3800 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3801 	}
3802 }
3803 #endif	/* PMAP_DEBUG */
3804 
3805 #ifdef NOT_YET
3806 /* and maybe not ever */
3807 /************************** LOW-LEVEL ROUTINES **************************
3808  * These routines will eventually be re-written into assembly and placed*
3809  * in locore.s.  They are here now as stubs so that the pmap module can *
3810  * be linked as a standalone user program for testing.                  *
3811  ************************************************************************/
3812 /* flush_atc_crp			INTERNAL
3813  **
3814  * Flush all page descriptors derived from the given CPU Root Pointer
3815  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3816  * cache.
3817  */
3818 void
3819 flush_atc_crp(int a_tbl)
3820 {
3821 	mmu_long_rp_t rp;
3822 
3823 	/* Create a temporary root table pointer that points to the
3824 	 * given A table.
3825 	 */
3826 	rp.attr.raw = ~MMU_LONG_RP_LU;
3827 	rp.addr.raw = (unsigned int) a_tbl;
3828 
3829 	mmu_pflushr(&rp);
3830 	/* mmu_pflushr:
3831 	 * 	movel   sp(4)@,a0
3832 	 * 	pflushr a0@
3833 	 *	rts
3834 	 */
3835 }
3836 #endif /* NOT_YET */
3837