xref: /netbsd-src/sys/arch/sun3/sun3x/pmap.c (revision 2980e352a13e8f0b545a366830c411e7a542ada8)
1 /*	$NetBSD: pmap.c,v 1.99 2008/04/28 20:23:38 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * XXX These comments aren't quite accurate.  Need to change.
34  * The sun3x uses the MC68851 Memory Management Unit, which is built
35  * into the CPU.  The 68851 maps virtual to physical addresses using
36  * a multi-level table lookup, which is stored in the very memory that
37  * it maps.  The number of levels of lookup is configurable from one
38  * to four.  In this implementation, we use three, named 'A' through 'C'.
39  *
40  * The MMU translates virtual addresses into physical addresses by
41  * traversing these tables in a process called a 'table walk'.  The most
42  * significant 7 bits of the Virtual Address ('VA') being translated are
43  * used as an index into the level A table, whose base in physical memory
44  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
45  * address found at that index in the A table is used as the base
46  * address for the next table, the B table.  The next six bits of the VA are
47  * used as an index into the B table, which in turn gives the base address
48  * of the third and final C table.
49  *
50  * The next six bits of the VA are used as an index into the C table to
51  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
52  * to which the remaining 13 bits of the VA are added, producing the
53  * mapped physical address.
54  *
55  * To map the entire memory space in this manner would require 2114296 bytes
56  * of page tables per process - quite expensive.  Instead we will
57  * allocate a fixed but considerably smaller space for the page tables at
58  * the time the VM system is initialized.  When the pmap code is asked by
59  * the kernel to map a VA to a PA, it allocates tables as needed from this
60  * pool.  When there are no more tables in the pool, tables are stolen
61  * from the oldest mapped entries in the tree.  This is only possible
62  * because all memory mappings are stored in the kernel memory map
63  * structures, independent of the pmap structures.  A VA which references
64  * one of these invalidated maps will cause a page fault.  The kernel
65  * will determine that the page fault was caused by a task using a valid
66  * VA, but for some reason (which does not concern it), that address was
67  * not mapped.  It will ask the pmap code to re-map the entry and then
68  * it will resume executing the faulting task.
69  *
70  * In this manner the most efficient use of the page table space is
71  * achieved.  Tasks which do not execute often will have their tables
72  * stolen and reused by tasks which execute more frequently.  The best
73  * size for the page table pool will probably be determined by
74  * experimentation.
75  *
76  * You read all of the comments so far.  Good for you.
77  * Now go play!
78  */
79 
80 /*** A Note About the 68851 Address Translation Cache
81  * The MC68851 has a 64 entry cache, called the Address Translation Cache
82  * or 'ATC'.  This cache stores the most recently used page descriptors
83  * accessed by the MMU when it does translations.  Using a marker called a
84  * 'task alias' the MMU can store the descriptors from 8 different table
85  * spaces concurrently.  The task alias is associated with the base
86  * address of the level A table of that address space.  When an address
87  * space is currently active (the CRP currently points to its A table)
88  * the only cached descriptors that will be obeyed are ones which have a
89  * matching task alias of the current space associated with them.
90  *
91  * Since the cache is always consulted before any table lookups are done,
92  * it is important that it accurately reflect the state of the MMU tables.
93  * Whenever a change has been made to a table that has been loaded into
94  * the MMU, the code must be sure to flush any cached entries that are
95  * affected by the change.  These instances are documented in the code at
96  * various points.
97  */
98 /*** A Note About the Note About the 68851 Address Translation Cache
99  * 4 months into this code I discovered that the sun3x does not have
100  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
101  * the 68030 CPU.
102  * All though it behaves very similarly to the 68851, it only has 1 task
103  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
104  * of the previous note does not apply to the sun3x pmap.
105  */
106 
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.99 2008/04/28 20:23:38 martin Exp $");
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap_debug.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/malloc.h>
117 #include <sys/pool.h>
118 #include <sys/user.h>
119 #include <sys/queue.h>
120 #include <sys/kcore.h>
121 
122 #include <uvm/uvm.h>
123 
124 #include <machine/cpu.h>
125 #include <machine/kcore.h>
126 #include <machine/mon.h>
127 #include <machine/pmap.h>
128 #include <machine/pte.h>
129 #include <machine/vmparam.h>
130 #include <m68k/cacheops.h>
131 
132 #include <sun3/sun3/cache.h>
133 #include <sun3/sun3/machdep.h>
134 
135 #include "pmap_pvt.h"
136 
137 /* XXX - What headers declare these? */
138 extern struct pcb *curpcb;
139 extern int physmem;
140 
141 /* Defined in locore.s */
142 extern char kernel_text[];
143 
144 /* Defined by the linker */
145 extern char etext[], edata[], end[];
146 extern char *esym;	/* DDB */
147 
148 /*************************** DEBUGGING DEFINITIONS ***********************
149  * Macros, preprocessor defines and variables used in debugging can make *
150  * code hard to read.  Anything used exclusively for debugging purposes  *
151  * is defined here to avoid having such mess scattered around the file.  *
152  *************************************************************************/
153 #ifdef	PMAP_DEBUG
154 /*
155  * To aid the debugging process, macros should be expanded into smaller steps
156  * that accomplish the same goal, yet provide convenient places for placing
157  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
158  * 'INLINE' keyword is defined to an empty string.  This way, any function
159  * defined to be a 'static INLINE' will become 'outlined' and compiled as
160  * a separate function, which is much easier to debug.
161  */
162 #define	INLINE	/* nothing */
163 
164 /*
165  * It is sometimes convenient to watch the activity of a particular table
166  * in the system.  The following variables are used for that purpose.
167  */
168 a_tmgr_t *pmap_watch_atbl = 0;
169 b_tmgr_t *pmap_watch_btbl = 0;
170 c_tmgr_t *pmap_watch_ctbl = 0;
171 
172 int pmap_debug = 0;
173 #define DPRINT(args) if (pmap_debug) printf args
174 
175 #else	/********** Stuff below is defined if NOT debugging **************/
176 
177 #define	INLINE	inline
178 #define DPRINT(args)  /* nada */
179 
180 #endif	/* PMAP_DEBUG */
181 /*********************** END OF DEBUGGING DEFINITIONS ********************/
182 
183 /*** Management Structure - Memory Layout
184  * For every MMU table in the sun3x pmap system there must be a way to
185  * manage it; we must know which process is using it, what other tables
186  * depend on it, and whether or not it contains any locked pages.  This
187  * is solved by the creation of 'table management'  or 'tmgr'
188  * structures.  One for each MMU table in the system.
189  *
190  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
191  *
192  *      towards lower memory
193  * kernAbase -> +-------------------------------------------------------+
194  *              | Kernel     MMU A level table                          |
195  * kernBbase -> +-------------------------------------------------------+
196  *              | Kernel     MMU B level tables                         |
197  * kernCbase -> +-------------------------------------------------------+
198  *              |                                                       |
199  *              | Kernel     MMU C level tables                         |
200  *              |                                                       |
201  * mmuCbase  -> +-------------------------------------------------------+
202  *              | User       MMU C level tables                         |
203  * mmuAbase  -> +-------------------------------------------------------+
204  *              |                                                       |
205  *              | User       MMU A level tables                         |
206  *              |                                                       |
207  * mmuBbase  -> +-------------------------------------------------------+
208  *              | User       MMU B level tables                         |
209  * tmgrAbase -> +-------------------------------------------------------+
210  *              |  TMGR A level table structures                        |
211  * tmgrBbase -> +-------------------------------------------------------+
212  *              |  TMGR B level table structures                        |
213  * tmgrCbase -> +-------------------------------------------------------+
214  *              |  TMGR C level table structures                        |
215  * pvbase    -> +-------------------------------------------------------+
216  *              |  Physical to Virtual mapping table (list heads)       |
217  * pvebase   -> +-------------------------------------------------------+
218  *              |  Physical to Virtual mapping table (list elements)    |
219  *              |                                                       |
220  *              +-------------------------------------------------------+
221  *      towards higher memory
222  *
223  * For every A table in the MMU A area, there will be a corresponding
224  * a_tmgr structure in the TMGR A area.  The same will be true for
225  * the B and C tables.  This arrangement will make it easy to find the
226  * controling tmgr structure for any table in the system by use of
227  * (relatively) simple macros.
228  */
229 
230 /*
231  * Global variables for storing the base addresses for the areas
232  * labeled above.
233  */
234 static vaddr_t  	kernAphys;
235 static mmu_long_dte_t	*kernAbase;
236 static mmu_short_dte_t	*kernBbase;
237 static mmu_short_pte_t	*kernCbase;
238 static mmu_short_pte_t	*mmuCbase;
239 static mmu_short_dte_t	*mmuBbase;
240 static mmu_long_dte_t	*mmuAbase;
241 static a_tmgr_t		*Atmgrbase;
242 static b_tmgr_t		*Btmgrbase;
243 static c_tmgr_t		*Ctmgrbase;
244 static pv_t 		*pvbase;
245 static pv_elem_t	*pvebase;
246 struct pmap 		kernel_pmap;
247 
248 /*
249  * This holds the CRP currently loaded into the MMU.
250  */
251 struct mmu_rootptr kernel_crp;
252 
253 /*
254  * Just all around global variables.
255  */
256 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
257 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
258 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
259 
260 
261 /*
262  * Flags used to mark the safety/availability of certain operations or
263  * resources.
264  */
265 /* Safe to use pmap_bootstrap_alloc(). */
266 static bool bootstrap_alloc_enabled = false;
267 /* Temporary virtual pages are in use */
268 int tmp_vpages_inuse;
269 
270 /*
271  * XXX:  For now, retain the traditional variables that were
272  * used in the old pmap/vm interface (without NONCONTIG).
273  */
274 /* Kernel virtual address space available: */
275 vaddr_t	virtual_avail, virtual_end;
276 /* Physical address space available: */
277 paddr_t	avail_start, avail_end;
278 
279 /* This keep track of the end of the contiguously mapped range. */
280 vaddr_t virtual_contig_end;
281 
282 /* Physical address used by pmap_next_page() */
283 paddr_t avail_next;
284 
285 /* These are used by pmap_copy_page(), etc. */
286 vaddr_t tmp_vpages[2];
287 
288 /* memory pool for pmap structures */
289 struct pool	pmap_pmap_pool;
290 
291 /*
292  * The 3/80 is the only member of the sun3x family that has non-contiguous
293  * physical memory.  Memory is divided into 4 banks which are physically
294  * locatable on the system board.  Although the size of these banks varies
295  * with the size of memory they contain, their base addresses are
296  * permenently fixed.  The following structure, which describes these
297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
298  * structure provided by the ROM Monitor.
299  *
300  * For the other machines in the sun3x architecture which do have contiguous
301  * RAM, this list will have only one entry, which will describe the entire
302  * range of available memory.
303  */
304 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
305 u_int total_phys_mem;
306 
307 /*************************************************************************/
308 
309 /*
310  * XXX - Should "tune" these based on statistics.
311  *
312  * My first guess about the relative numbers of these needed is
313  * based on the fact that a "typical" process will have several
314  * pages mapped at low virtual addresses (text, data, bss), then
315  * some mapped shared libraries, and then some stack pages mapped
316  * near the high end of the VA space.  Each process can use only
317  * one A table, and most will use only two B tables (maybe three)
318  * and probably about four C tables.  Therefore, the first guess
319  * at the relative numbers of these needed is 1:2:4 -gwr
320  *
321  * The number of C tables needed is closely related to the amount
322  * of physical memory available plus a certain amount attributable
323  * to the use of double mappings.  With a few simulation statistics
324  * we can find a reasonably good estimation of this unknown value.
325  * Armed with that and the above ratios, we have a good idea of what
326  * is needed at each level. -j
327  *
328  * Note: It is not physical memory memory size, but the total mapped
329  * virtual space required by the combined working sets of all the
330  * currently _runnable_ processes.  (Sleeping ones don't count.)
331  * The amount of physical memory should be irrelevant. -gwr
332  */
333 #ifdef	FIXED_NTABLES
334 #define NUM_A_TABLES	16
335 #define NUM_B_TABLES	32
336 #define NUM_C_TABLES	64
337 #else
338 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
339 #endif	/* FIXED_NTABLES */
340 
341 /*
342  * This determines our total virtual mapping capacity.
343  * Yes, it is a FIXED value so we can pre-allocate.
344  */
345 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
346 
347 /*
348  * The size of the Kernel Virtual Address Space (KVAS)
349  * for purposes of MMU table allocation is -KERNBASE
350  * (length from KERNBASE to 0xFFFFffff)
351  */
352 #define	KVAS_SIZE		(-KERNBASE)
353 
354 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
355 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
356 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
357 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
358 
359 /*************************** MISCELANEOUS MACROS *************************/
360 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
361 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
362 #define pmap_add_ref(pmap) ++pmap->pm_refcount
363 #define pmap_del_ref(pmap) --pmap->pm_refcount
364 #define pmap_refcount(pmap) pmap->pm_refcount
365 
366 void *pmap_bootstrap_alloc(int);
367 
368 static INLINE void *mmu_ptov(paddr_t);
369 static INLINE paddr_t mmu_vtop(void *);
370 
371 #if	0
372 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
373 #endif /* 0 */
374 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
375 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
376 
377 static INLINE pv_t *pa2pv(paddr_t);
378 static INLINE int   pteidx(mmu_short_pte_t *);
379 static INLINE pmap_t current_pmap(void);
380 
381 /*
382  * We can always convert between virtual and physical addresses
383  * for anything in the range [KERNBASE ... avail_start] because
384  * that range is GUARANTEED to be mapped linearly.
385  * We rely heavily upon this feature!
386  */
387 static INLINE void *
388 mmu_ptov(paddr_t pa)
389 {
390 	vaddr_t va;
391 
392 	va = (pa + KERNBASE);
393 #ifdef	PMAP_DEBUG
394 	if ((va < KERNBASE) || (va >= virtual_contig_end))
395 		panic("mmu_ptov");
396 #endif
397 	return (void *)va;
398 }
399 
400 static INLINE paddr_t
401 mmu_vtop(void *vva)
402 {
403 	vaddr_t va;
404 
405 	va = (vaddr_t)vva;
406 #ifdef	PMAP_DEBUG
407 	if ((va < KERNBASE) || (va >= virtual_contig_end))
408 		panic("mmu_vtop");
409 #endif
410 	return va - KERNBASE;
411 }
412 
413 /*
414  * These macros map MMU tables to their corresponding manager structures.
415  * They are needed quite often because many of the pointers in the pmap
416  * system reference MMU tables and not the structures that control them.
417  * There needs to be a way to find one when given the other and these
418  * macros do so by taking advantage of the memory layout described above.
419  * Here's a quick step through the first macro, mmuA2tmgr():
420  *
421  * 1) find the offset of the given MMU A table from the base of its table
422  *    pool (table - mmuAbase).
423  * 2) convert this offset into a table index by dividing it by the
424  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
425  * 3) use this index to select the corresponding 'A' table manager
426  *    structure from the 'A' table manager pool (Atmgrbase[index]).
427  */
428 /*  This function is not currently used. */
429 #if	0
430 static INLINE a_tmgr_t *
431 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
432 {
433 	int idx;
434 
435 	/* Which table is this in? */
436 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
437 #ifdef	PMAP_DEBUG
438 	if ((idx < 0) || (idx >= NUM_A_TABLES))
439 		panic("mmuA2tmgr");
440 #endif
441 	return &Atmgrbase[idx];
442 }
443 #endif	/* 0 */
444 
445 static INLINE b_tmgr_t *
446 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
447 {
448 	int idx;
449 
450 	/* Which table is this in? */
451 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
452 #ifdef	PMAP_DEBUG
453 	if ((idx < 0) || (idx >= NUM_B_TABLES))
454 		panic("mmuB2tmgr");
455 #endif
456 	return &Btmgrbase[idx];
457 }
458 
459 /* mmuC2tmgr			INTERNAL
460  **
461  * Given a pte known to belong to a C table, return the address of
462  * that table's management structure.
463  */
464 static INLINE c_tmgr_t *
465 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
466 {
467 	int idx;
468 
469 	/* Which table is this in? */
470 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
471 #ifdef	PMAP_DEBUG
472 	if ((idx < 0) || (idx >= NUM_C_TABLES))
473 		panic("mmuC2tmgr");
474 #endif
475 	return &Ctmgrbase[idx];
476 }
477 
478 /* This is now a function call below.
479  * #define pa2pv(pa) \
480  *	(&pvbase[(unsigned long)\
481  *		m68k_btop(pa)\
482  *	])
483  */
484 
485 /* pa2pv			INTERNAL
486  **
487  * Return the pv_list_head element which manages the given physical
488  * address.
489  */
490 static INLINE pv_t *
491 pa2pv(paddr_t pa)
492 {
493 	struct pmap_physmem_struct *bank;
494 	int idx;
495 
496 	bank = &avail_mem[0];
497 	while (pa >= bank->pmem_end)
498 		bank = bank->pmem_next;
499 
500 	pa -= bank->pmem_start;
501 	idx = bank->pmem_pvbase + m68k_btop(pa);
502 #ifdef	PMAP_DEBUG
503 	if ((idx < 0) || (idx >= physmem))
504 		panic("pa2pv");
505 #endif
506 	return &pvbase[idx];
507 }
508 
509 /* pteidx			INTERNAL
510  **
511  * Return the index of the given PTE within the entire fixed table of
512  * PTEs.
513  */
514 static INLINE int
515 pteidx(mmu_short_pte_t *pte)
516 {
517 
518 	return pte - kernCbase;
519 }
520 
521 /*
522  * This just offers a place to put some debugging checks,
523  * and reduces the number of places "curlwp" appears...
524  */
525 static INLINE pmap_t
526 current_pmap(void)
527 {
528 	struct vmspace *vm;
529 	struct vm_map *map;
530 	pmap_t	pmap;
531 
532 	vm = curproc->p_vmspace;
533 	map = &vm->vm_map;
534 	pmap = vm_map_pmap(map);
535 
536 	return pmap;
537 }
538 
539 
540 /*************************** FUNCTION DEFINITIONS ************************
541  * These appear here merely for the compiler to enforce type checking on *
542  * all function calls.                                                   *
543  *************************************************************************/
544 
545 /*
546  * Internal functions
547  */
548 a_tmgr_t *get_a_table(void);
549 b_tmgr_t *get_b_table(void);
550 c_tmgr_t *get_c_table(void);
551 int free_a_table(a_tmgr_t *, bool);
552 int free_b_table(b_tmgr_t *, bool);
553 int free_c_table(c_tmgr_t *, bool);
554 
555 void pmap_bootstrap_aalign(int);
556 void pmap_alloc_usermmu(void);
557 void pmap_alloc_usertmgr(void);
558 void pmap_alloc_pv(void);
559 void pmap_init_a_tables(void);
560 void pmap_init_b_tables(void);
561 void pmap_init_c_tables(void);
562 void pmap_init_pv(void);
563 void pmap_clear_pv(paddr_t, int);
564 static INLINE bool is_managed(paddr_t);
565 
566 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
567 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
568 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
569 void pmap_remove_pte(mmu_short_pte_t *);
570 
571 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
572 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
573 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
574 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
575 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
576 static INLINE int pmap_dereference(pmap_t);
577 
578 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
579     mmu_short_pte_t **, int *, int *, int *);
580 void pmap_bootstrap_copyprom(void);
581 void pmap_takeover_mmu(void);
582 void pmap_bootstrap_setprom(void);
583 static void pmap_page_upload(void);
584 
585 #ifdef PMAP_DEBUG
586 /* Debugging function definitions */
587 void  pv_list(paddr_t, int);
588 #endif /* PMAP_DEBUG */
589 
590 /** Interface functions
591  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
592  **   defined.
593  **   The new UVM doesn't require them so now INTERNAL.
594  **/
595 static INLINE void pmap_pinit(pmap_t);
596 static INLINE void pmap_release(pmap_t);
597 
598 /********************************** CODE ********************************
599  * Functions that are called from other parts of the kernel are labeled *
600  * as 'INTERFACE' functions.  Functions that are only called from       *
601  * within the pmap module are labeled as 'INTERNAL' functions.          *
602  * Functions that are internal, but are not (currently) used at all are *
603  * labeled 'INTERNAL_X'.                                                *
604  ************************************************************************/
605 
606 /* pmap_bootstrap			INTERNAL
607  **
608  * Initializes the pmap system.  Called at boot time from
609  * locore2.c:_vm_init()
610  *
611  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
612  *           system implement pmap_steal_memory() is redundant.
613  *           Don't release this code without removing one or the other!
614  */
615 void
616 pmap_bootstrap(vaddr_t nextva)
617 {
618 	struct physmemory *membank;
619 	struct pmap_physmem_struct *pmap_membank;
620 	vaddr_t va, eva;
621 	paddr_t pa;
622 	int b, c, i, j;	/* running table counts */
623 	int size, resvmem;
624 
625 	/*
626 	 * This function is called by __bootstrap after it has
627 	 * determined the type of machine and made the appropriate
628 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
629 	 * by that.)  It allocates and sets up enough of the pmap system
630 	 * to manage the kernel's address space.
631 	 */
632 
633 	/*
634 	 * Determine the range of kernel virtual and physical
635 	 * space available. Note that we ABSOLUTELY DEPEND on
636 	 * the fact that the first bank of memory (4MB) is
637 	 * mapped linearly to KERNBASE (which we guaranteed in
638 	 * the first instructions of locore.s).
639 	 * That is plenty for our bootstrap work.
640 	 */
641 	virtual_avail = m68k_round_page(nextva);
642 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
643 	virtual_end = VM_MAX_KERNEL_ADDRESS;
644 	/* Don't need avail_start til later. */
645 
646 	/* We may now call pmap_bootstrap_alloc(). */
647 	bootstrap_alloc_enabled = true;
648 
649 	/*
650 	 * This is a somewhat unwrapped loop to deal with
651 	 * copying the PROM's 'phsymem' banks into the pmap's
652 	 * banks.  The following is always assumed:
653 	 * 1. There is always at least one bank of memory.
654 	 * 2. There is always a last bank of memory, and its
655 	 *    pmem_next member must be set to NULL.
656 	 */
657 	membank = romVectorPtr->v_physmemory;
658 	pmap_membank = avail_mem;
659 	total_phys_mem = 0;
660 
661 	for (;;) { /* break on !membank */
662 		pmap_membank->pmem_start = membank->address;
663 		pmap_membank->pmem_end = membank->address + membank->size;
664 		total_phys_mem += membank->size;
665 		membank = membank->next;
666 		if (!membank)
667 			break;
668 		/* This silly syntax arises because pmap_membank
669 		 * is really a pre-allocated array, but it is put into
670 		 * use as a linked list.
671 		 */
672 		pmap_membank->pmem_next = pmap_membank + 1;
673 		pmap_membank = pmap_membank->pmem_next;
674 	}
675 	/* This is the last element. */
676 	pmap_membank->pmem_next = NULL;
677 
678 	/*
679 	 * Note: total_phys_mem, physmem represent
680 	 * actual physical memory, including that
681 	 * reserved for the PROM monitor.
682 	 */
683 	physmem = btoc(total_phys_mem);
684 
685 	/*
686 	 * Avail_end is set to the first byte of physical memory
687 	 * after the end of the last bank.  We use this only to
688 	 * determine if a physical address is "managed" memory.
689 	 * This address range should be reduced to prevent the
690 	 * physical pages needed by the PROM monitor from being used
691 	 * in the VM system.
692 	 */
693 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
694 	resvmem = m68k_round_page(resvmem);
695 	avail_end = pmap_membank->pmem_end - resvmem;
696 
697 	/*
698 	 * First allocate enough kernel MMU tables to map all
699 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
700 	 * Note: All must be aligned on 256 byte boundaries.
701 	 * Start with the level-A table (one of those).
702 	 */
703 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
704 	kernAbase = pmap_bootstrap_alloc(size);
705 	memset(kernAbase, 0, size);
706 
707 	/* Now the level-B kernel tables... */
708 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
709 	kernBbase = pmap_bootstrap_alloc(size);
710 	memset(kernBbase, 0, size);
711 
712 	/* Now the level-C kernel tables... */
713 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
714 	kernCbase = pmap_bootstrap_alloc(size);
715 	memset(kernCbase, 0, size);
716 	/*
717 	 * Note: In order for the PV system to work correctly, the kernel
718 	 * and user-level C tables must be allocated contiguously.
719 	 * Nothing should be allocated between here and the allocation of
720 	 * mmuCbase below.  XXX: Should do this as one allocation, and
721 	 * then compute a pointer for mmuCbase instead of this...
722 	 *
723 	 * Allocate user MMU tables.
724 	 * These must be contiguous with the preceding.
725 	 */
726 
727 #ifndef	FIXED_NTABLES
728 	/*
729 	 * The number of user-level C tables that should be allocated is
730 	 * related to the size of physical memory.  In general, there should
731 	 * be enough tables to map four times the amount of available RAM.
732 	 * The extra amount is needed because some table space is wasted by
733 	 * fragmentation.
734 	 */
735 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
736 	NUM_B_TABLES = NUM_C_TABLES / 2;
737 	NUM_A_TABLES = NUM_B_TABLES / 2;
738 #endif	/* !FIXED_NTABLES */
739 
740 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
741 	mmuCbase = pmap_bootstrap_alloc(size);
742 
743 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
744 	mmuBbase = pmap_bootstrap_alloc(size);
745 
746 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
747 	mmuAbase = pmap_bootstrap_alloc(size);
748 
749 	/*
750 	 * Fill in the never-changing part of the kernel tables.
751 	 * For simplicity, the kernel's mappings will be editable as a
752 	 * flat array of page table entries at kernCbase.  The
753 	 * higher level 'A' and 'B' tables must be initialized to point
754 	 * to this lower one.
755 	 */
756 	b = c = 0;
757 
758 	/*
759 	 * Invalidate all mappings below KERNBASE in the A table.
760 	 * This area has already been zeroed out, but it is good
761 	 * practice to explicitly show that we are interpreting
762 	 * it as a list of A table descriptors.
763 	 */
764 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
765 		kernAbase[i].addr.raw = 0;
766 	}
767 
768 	/*
769 	 * Set up the kernel A and B tables so that they will reference the
770 	 * correct spots in the contiguous table of PTEs allocated for the
771 	 * kernel's virtual memory space.
772 	 */
773 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
774 		kernAbase[i].attr.raw =
775 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
776 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
777 
778 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
779 			kernBbase[b + j].attr.raw =
780 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
781 			c += MMU_C_TBL_SIZE;
782 		}
783 		b += MMU_B_TBL_SIZE;
784 	}
785 
786 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
787 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
788 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
789 
790 	/*
791 	 * We are now done with pmap_bootstrap_alloc().  Round up
792 	 * `virtual_avail' to the nearest page, and set the flag
793 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
794 	 */
795 	pmap_bootstrap_aalign(PAGE_SIZE);
796 	bootstrap_alloc_enabled = false;
797 
798 	/*
799 	 * Now that we are done with pmap_bootstrap_alloc(), we
800 	 * must save the virtual and physical addresses of the
801 	 * end of the linearly mapped range, which are stored in
802 	 * virtual_contig_end and avail_start, respectively.
803 	 * These variables will never change after this point.
804 	 */
805 	virtual_contig_end = virtual_avail;
806 	avail_start = virtual_avail - KERNBASE;
807 
808 	/*
809 	 * `avail_next' is a running pointer used by pmap_next_page() to
810 	 * keep track of the next available physical page to be handed
811 	 * to the VM system during its initialization, in which it
812 	 * asks for physical pages, one at a time.
813 	 */
814 	avail_next = avail_start;
815 
816 	/*
817 	 * Now allocate some virtual addresses, but not the physical pages
818 	 * behind them.  Note that virtual_avail is already page-aligned.
819 	 *
820 	 * tmp_vpages[] is an array of two virtual pages used for temporary
821 	 * kernel mappings in the pmap module to facilitate various physical
822 	 * address-oritented operations.
823 	 */
824 	tmp_vpages[0] = virtual_avail;
825 	virtual_avail += PAGE_SIZE;
826 	tmp_vpages[1] = virtual_avail;
827 	virtual_avail += PAGE_SIZE;
828 
829 	/** Initialize the PV system **/
830 	pmap_init_pv();
831 
832 	/*
833 	 * Fill in the kernel_pmap structure and kernel_crp.
834 	 */
835 	kernAphys = mmu_vtop(kernAbase);
836 	kernel_pmap.pm_a_tmgr = NULL;
837 	kernel_pmap.pm_a_phys = kernAphys;
838 	kernel_pmap.pm_refcount = 1; /* always in use */
839 	simple_lock_init(&kernel_pmap.pm_lock);
840 
841 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
842 	kernel_crp.rp_addr = kernAphys;
843 
844 	/*
845 	 * Now pmap_enter_kernel() may be used safely and will be
846 	 * the main interface used hereafter to modify the kernel's
847 	 * virtual address space.  Note that since we are still running
848 	 * under the PROM's address table, none of these table modifications
849 	 * actually take effect until pmap_takeover_mmu() is called.
850 	 *
851 	 * Note: Our tables do NOT have the PROM linear mappings!
852 	 * Only the mappings created here exist in our tables, so
853 	 * remember to map anything we expect to use.
854 	 */
855 	va = (vaddr_t)KERNBASE;
856 	pa = 0;
857 
858 	/*
859 	 * The first page of the kernel virtual address space is the msgbuf
860 	 * page.  The page attributes (data, non-cached) are set here, while
861 	 * the address is assigned to this global pointer in cpu_startup().
862 	 * It is non-cached, mostly due to paranoia.
863 	 */
864 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
865 	va += PAGE_SIZE;
866 	pa += PAGE_SIZE;
867 
868 	/* Next page is used as the temporary stack. */
869 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
870 	va += PAGE_SIZE;
871 	pa += PAGE_SIZE;
872 
873 	/*
874 	 * Map all of the kernel's text segment as read-only and cacheable.
875 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
876 	 * of kernel text and the first bytes of kernel data will often be
877 	 * sharing the same page.  Therefore, the last page of kernel text
878 	 * has to be mapped as read/write, to accommodate the data.
879 	 */
880 	eva = m68k_trunc_page((vaddr_t)etext);
881 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
882 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
883 
884 	/*
885 	 * Map all of the kernel's data as read/write and cacheable.
886 	 * This includes: data, BSS, symbols, and everything in the
887 	 * contiguous memory used by pmap_bootstrap_alloc()
888 	 */
889 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
890 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
891 
892 	/*
893 	 * At this point we are almost ready to take over the MMU.  But first
894 	 * we must save the PROM's address space in our map, as we call its
895 	 * routines and make references to its data later in the kernel.
896 	 */
897 	pmap_bootstrap_copyprom();
898 	pmap_takeover_mmu();
899 	pmap_bootstrap_setprom();
900 
901 	/* Notify the VM system of our page size. */
902 	uvmexp.pagesize = PAGE_SIZE;
903 	uvm_setpagesize();
904 
905 	pmap_page_upload();
906 }
907 
908 
909 /* pmap_alloc_usermmu			INTERNAL
910  **
911  * Called from pmap_bootstrap() to allocate MMU tables that will
912  * eventually be used for user mappings.
913  */
914 void
915 pmap_alloc_usermmu(void)
916 {
917 
918 	/* XXX: Moved into caller. */
919 }
920 
921 /* pmap_alloc_pv			INTERNAL
922  **
923  * Called from pmap_bootstrap() to allocate the physical
924  * to virtual mapping list.  Each physical page of memory
925  * in the system has a corresponding element in this list.
926  */
927 void
928 pmap_alloc_pv(void)
929 {
930 	int	i;
931 	unsigned int	total_mem;
932 
933 	/*
934 	 * Allocate a pv_head structure for every page of physical
935 	 * memory that will be managed by the system.  Since memory on
936 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
937 	 * count by subtraction of the lowest available address from the
938 	 * highest, but rather we have to step through each memory
939 	 * bank and add the number of pages in each to the total.
940 	 *
941 	 * At this time we also initialize the offset of each bank's
942 	 * starting pv_head within the pv_head list so that the physical
943 	 * memory state routines (pmap_is_referenced(),
944 	 * pmap_is_modified(), et al.) can quickly find coresponding
945 	 * pv_heads in spite of the non-contiguity.
946 	 */
947 	total_mem = 0;
948 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
949 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
950 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
951 		if (avail_mem[i].pmem_next == NULL)
952 			break;
953 	}
954 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
955 	    m68k_btop(total_phys_mem));
956 }
957 
958 /* pmap_alloc_usertmgr			INTERNAL
959  **
960  * Called from pmap_bootstrap() to allocate the structures which
961  * facilitate management of user MMU tables.  Each user MMU table
962  * in the system has one such structure associated with it.
963  */
964 void
965 pmap_alloc_usertmgr(void)
966 {
967 	/* Allocate user MMU table managers */
968 	/* It would be a lot simpler to just make these BSS, but */
969 	/* we may want to change their size at boot time... -j */
970 	Atmgrbase =
971 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
972 	Btmgrbase =
973 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
974 	Ctmgrbase =
975 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
976 
977 	/*
978 	 * Allocate PV list elements for the physical to virtual
979 	 * mapping system.
980 	 */
981 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
982 	    (NUM_USER_PTES + NUM_KERN_PTES));
983 }
984 
985 /* pmap_bootstrap_copyprom()			INTERNAL
986  **
987  * Copy the PROM mappings into our own tables.  Note, we
988  * can use physical addresses until __bootstrap returns.
989  */
990 void
991 pmap_bootstrap_copyprom(void)
992 {
993 	struct sunromvec *romp;
994 	int *mon_ctbl;
995 	mmu_short_pte_t *kpte;
996 	int i, len;
997 
998 	romp = romVectorPtr;
999 
1000 	/*
1001 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1002 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1003 	 */
1004 	mon_ctbl = *romp->monptaddr;
1005 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
1006 	kpte = &kernCbase[i];
1007 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1008 
1009 	for (i = 0; i < len; i++) {
1010 		kpte[i].attr.raw = mon_ctbl[i];
1011 	}
1012 
1013 	/*
1014 	 * Copy the mappings at MON_DVMA_BASE (to the end).
1015 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1016 	 * Actually, we only want the last page, which the
1017 	 * PROM has set up for use by the "ie" driver.
1018 	 * (The i82686 needs its SCP there.)
1019 	 * If we copy all the mappings, pmap_enter_kernel
1020 	 * may complain about finding valid PTEs that are
1021 	 * not recorded in our PV lists...
1022 	 */
1023 	mon_ctbl = *romp->shadowpteaddr;
1024 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1025 	kpte = &kernCbase[i];
1026 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1027 	for (i = (len - 1); i < len; i++) {
1028 		kpte[i].attr.raw = mon_ctbl[i];
1029 	}
1030 }
1031 
1032 /* pmap_takeover_mmu			INTERNAL
1033  **
1034  * Called from pmap_bootstrap() after it has copied enough of the
1035  * PROM mappings into the kernel map so that we can use our own
1036  * MMU table.
1037  */
1038 void
1039 pmap_takeover_mmu(void)
1040 {
1041 
1042 	loadcrp(&kernel_crp);
1043 }
1044 
1045 /* pmap_bootstrap_setprom()			INTERNAL
1046  **
1047  * Set the PROM mappings so it can see kernel space.
1048  * Note that physical addresses are used here, which
1049  * we can get away with because this runs with the
1050  * low 1GB set for transparent translation.
1051  */
1052 void
1053 pmap_bootstrap_setprom(void)
1054 {
1055 	mmu_long_dte_t *mon_dte;
1056 	extern struct mmu_rootptr mon_crp;
1057 	int i;
1058 
1059 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1060 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1061 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1062 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1063 	}
1064 }
1065 
1066 
1067 /* pmap_init			INTERFACE
1068  **
1069  * Called at the end of vm_init() to set up the pmap system to go
1070  * into full time operation.  All initialization of kernel_pmap
1071  * should be already done by now, so this should just do things
1072  * needed for user-level pmaps to work.
1073  */
1074 void
1075 pmap_init(void)
1076 {
1077 
1078 	/** Initialize the manager pools **/
1079 	TAILQ_INIT(&a_pool);
1080 	TAILQ_INIT(&b_pool);
1081 	TAILQ_INIT(&c_pool);
1082 
1083 	/**************************************************************
1084 	 * Initialize all tmgr structures and MMU tables they manage. *
1085 	 **************************************************************/
1086 	/** Initialize A tables **/
1087 	pmap_init_a_tables();
1088 	/** Initialize B tables **/
1089 	pmap_init_b_tables();
1090 	/** Initialize C tables **/
1091 	pmap_init_c_tables();
1092 
1093 	/** Initialize the pmap pools **/
1094 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1095 	    &pool_allocator_nointr, IPL_NONE);
1096 }
1097 
1098 /* pmap_init_a_tables()			INTERNAL
1099  **
1100  * Initializes all A managers, their MMU A tables, and inserts
1101  * them into the A manager pool for use by the system.
1102  */
1103 void
1104 pmap_init_a_tables(void)
1105 {
1106 	int i;
1107 	a_tmgr_t *a_tbl;
1108 
1109 	for (i = 0; i < NUM_A_TABLES; i++) {
1110 		/* Select the next available A manager from the pool */
1111 		a_tbl = &Atmgrbase[i];
1112 
1113 		/*
1114 		 * Clear its parent entry.  Set its wired and valid
1115 		 * entry count to zero.
1116 		 */
1117 		a_tbl->at_parent = NULL;
1118 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1119 
1120 		/* Assign it the next available MMU A table from the pool */
1121 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1122 
1123 		/*
1124 		 * Initialize the MMU A table with the table in the `proc0',
1125 		 * or kernel, mapping.  This ensures that every process has
1126 		 * the kernel mapped in the top part of its address space.
1127 		 */
1128 		memcpy(a_tbl->at_dtbl, kernAbase,
1129 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1130 
1131 		/*
1132 		 * Finally, insert the manager into the A pool,
1133 		 * making it ready to be used by the system.
1134 		 */
1135 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1136     }
1137 }
1138 
1139 /* pmap_init_b_tables()			INTERNAL
1140  **
1141  * Initializes all B table managers, their MMU B tables, and
1142  * inserts them into the B manager pool for use by the system.
1143  */
1144 void
1145 pmap_init_b_tables(void)
1146 {
1147 	int i, j;
1148 	b_tmgr_t *b_tbl;
1149 
1150 	for (i = 0; i < NUM_B_TABLES; i++) {
1151 		/* Select the next available B manager from the pool */
1152 		b_tbl = &Btmgrbase[i];
1153 
1154 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1155 		b_tbl->bt_pidx = 0;		/* parent index,      */
1156 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1157 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1158 
1159 		/* Assign it the next available MMU B table from the pool */
1160 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1161 
1162 		/* Invalidate every descriptor in the table */
1163 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
1164 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1165 
1166 		/* Insert the manager into the B pool */
1167 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1168 	}
1169 }
1170 
1171 /* pmap_init_c_tables()			INTERNAL
1172  **
1173  * Initializes all C table managers, their MMU C tables, and
1174  * inserts them into the C manager pool for use by the system.
1175  */
1176 void
1177 pmap_init_c_tables(void)
1178 {
1179 	int i, j;
1180 	c_tmgr_t *c_tbl;
1181 
1182 	for (i = 0; i < NUM_C_TABLES; i++) {
1183 		/* Select the next available C manager from the pool */
1184 		c_tbl = &Ctmgrbase[i];
1185 
1186 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1187 		c_tbl->ct_pidx = 0;		/* parent index,      */
1188 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1189 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1190 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1191 		c_tbl->ct_va = 0;		/* base of managed range */
1192 
1193 		/* Assign it the next available MMU C table from the pool */
1194 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1195 
1196 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
1197 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1198 
1199 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1200 	}
1201 }
1202 
1203 /* pmap_init_pv()			INTERNAL
1204  **
1205  * Initializes the Physical to Virtual mapping system.
1206  */
1207 void
1208 pmap_init_pv(void)
1209 {
1210 	int i;
1211 
1212 	/* Initialize every PV head. */
1213 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1214 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1215 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1216 	}
1217 }
1218 
1219 /* is_managed				INTERNAL
1220  **
1221  * Determine if the given physical address is managed by the PV system.
1222  * Note that this logic assumes that no one will ask for the status of
1223  * addresses which lie in-between the memory banks on the 3/80.  If they
1224  * do so, it will falsely report that it is managed.
1225  *
1226  * Note: A "managed" address is one that was reported to the VM system as
1227  * a "usable page" during system startup.  As such, the VM system expects the
1228  * pmap module to keep an accurate track of the useage of those pages.
1229  * Any page not given to the VM system at startup does not exist (as far as
1230  * the VM system is concerned) and is therefore "unmanaged."  Examples are
1231  * those pages which belong to the ROM monitor and the memory allocated before
1232  * the VM system was started.
1233  */
1234 static INLINE bool
1235 is_managed(paddr_t pa)
1236 {
1237 	if (pa >= avail_start && pa < avail_end)
1238 		return true;
1239 	else
1240 		return false;
1241 }
1242 
1243 /* get_a_table			INTERNAL
1244  **
1245  * Retrieve and return a level A table for use in a user map.
1246  */
1247 a_tmgr_t *
1248 get_a_table(void)
1249 {
1250 	a_tmgr_t *tbl;
1251 	pmap_t pmap;
1252 
1253 	/* Get the top A table in the pool */
1254 	tbl = TAILQ_FIRST(&a_pool);
1255 	if (tbl == NULL) {
1256 		/*
1257 		 * XXX - Instead of panicking here and in other get_x_table
1258 		 * functions, we do have the option of sleeping on the head of
1259 		 * the table pool.  Any function which updates the table pool
1260 		 * would then issue a wakeup() on the head, thus waking up any
1261 		 * processes waiting for a table.
1262 		 *
1263 		 * Actually, the place to sleep would be when some process
1264 		 * asks for a "wired" mapping that would run us short of
1265 		 * mapping resources.  This design DEPENDS on always having
1266 		 * some mapping resources in the pool for stealing, so we
1267 		 * must make sure we NEVER let the pool become empty. -gwr
1268 		 */
1269 		panic("get_a_table: out of A tables.");
1270 	}
1271 
1272 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1273 	/*
1274 	 * If the table has a non-null parent pointer then it is in use.
1275 	 * Forcibly abduct it from its parent and clear its entries.
1276 	 * No re-entrancy worries here.  This table would not be in the
1277 	 * table pool unless it was available for use.
1278 	 *
1279 	 * Note that the second argument to free_a_table() is false.  This
1280 	 * indicates that the table should not be relinked into the A table
1281 	 * pool.  That is a job for the function that called us.
1282 	 */
1283 	if (tbl->at_parent) {
1284 		KASSERT(tbl->at_wcnt == 0);
1285 		pmap = tbl->at_parent;
1286 		free_a_table(tbl, false);
1287 		pmap->pm_a_tmgr = NULL;
1288 		pmap->pm_a_phys = kernAphys;
1289 	}
1290 	return tbl;
1291 }
1292 
1293 /* get_b_table			INTERNAL
1294  **
1295  * Return a level B table for use.
1296  */
1297 b_tmgr_t *
1298 get_b_table(void)
1299 {
1300 	b_tmgr_t *tbl;
1301 
1302 	/* See 'get_a_table' for comments. */
1303 	tbl = TAILQ_FIRST(&b_pool);
1304 	if (tbl == NULL)
1305 		panic("get_b_table: out of B tables.");
1306 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1307 	if (tbl->bt_parent) {
1308 		KASSERT(tbl->bt_wcnt == 0);
1309 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1310 		tbl->bt_parent->at_ecnt--;
1311 		free_b_table(tbl, false);
1312 	}
1313 	return tbl;
1314 }
1315 
1316 /* get_c_table			INTERNAL
1317  **
1318  * Return a level C table for use.
1319  */
1320 c_tmgr_t *
1321 get_c_table(void)
1322 {
1323 	c_tmgr_t *tbl;
1324 
1325 	/* See 'get_a_table' for comments */
1326 	tbl = TAILQ_FIRST(&c_pool);
1327 	if (tbl == NULL)
1328 		panic("get_c_table: out of C tables.");
1329 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1330 	if (tbl->ct_parent) {
1331 		KASSERT(tbl->ct_wcnt == 0);
1332 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1333 		tbl->ct_parent->bt_ecnt--;
1334 		free_c_table(tbl, false);
1335 	}
1336 	return tbl;
1337 }
1338 
1339 /*
1340  * The following 'free_table' and 'steal_table' functions are called to
1341  * detach tables from their current obligations (parents and children) and
1342  * prepare them for reuse in another mapping.
1343  *
1344  * Free_table is used when the calling function will handle the fate
1345  * of the parent table, such as returning it to the free pool when it has
1346  * no valid entries.  Functions that do not want to handle this should
1347  * call steal_table, in which the parent table's descriptors and entry
1348  * count are automatically modified when this table is removed.
1349  */
1350 
1351 /* free_a_table			INTERNAL
1352  **
1353  * Unmaps the given A table and all child tables from their current
1354  * mappings.  Returns the number of pages that were invalidated.
1355  * If 'relink' is true, the function will return the table to the head
1356  * of the available table pool.
1357  *
1358  * Cache note: The MC68851 will automatically flush all
1359  * descriptors derived from a given A table from its
1360  * Automatic Translation Cache (ATC) if we issue a
1361  * 'PFLUSHR' instruction with the base address of the
1362  * table.  This function should do, and does so.
1363  * Note note: We are using an MC68030 - there is no
1364  * PFLUSHR.
1365  */
1366 int
1367 free_a_table(a_tmgr_t *a_tbl, bool relink)
1368 {
1369 	int i, removed_cnt;
1370 	mmu_long_dte_t	*dte;
1371 	mmu_short_dte_t *dtbl;
1372 	b_tmgr_t	*b_tbl;
1373 	uint8_t at_wired, bt_wired;
1374 
1375 	/*
1376 	 * Flush the ATC cache of all cached descriptors derived
1377 	 * from this table.
1378 	 * Sun3x does not use 68851's cached table feature
1379 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1380 	 */
1381 
1382 	/*
1383 	 * Remove any pending cache flushes that were designated
1384 	 * for the pmap this A table belongs to.
1385 	 * a_tbl->parent->atc_flushq[0] = 0;
1386 	 * Not implemented in sun3x.
1387 	 */
1388 
1389 	/*
1390 	 * All A tables in the system should retain a map for the
1391 	 * kernel. If the table contains any valid descriptors
1392 	 * (other than those for the kernel area), invalidate them all,
1393 	 * stopping short of the kernel's entries.
1394 	 */
1395 	removed_cnt = 0;
1396 	at_wired = a_tbl->at_wcnt;
1397 	if (a_tbl->at_ecnt) {
1398 		dte = a_tbl->at_dtbl;
1399 		for (i = 0; i < MMU_TIA(KERNBASE); i++) {
1400 			/*
1401 			 * If a table entry points to a valid B table, free
1402 			 * it and its children.
1403 			 */
1404 			if (MMU_VALID_DT(dte[i])) {
1405 				/*
1406 				 * The following block does several things,
1407 				 * from innermost expression to the
1408 				 * outermost:
1409 				 * 1) It extracts the base (cc 1996)
1410 				 *    address of the B table pointed
1411 				 *    to in the A table entry dte[i].
1412 				 * 2) It converts this base address into
1413 				 *    the virtual address it can be
1414 				 *    accessed with. (all MMU tables point
1415 				 *    to physical addresses.)
1416 				 * 3) It finds the corresponding manager
1417 				 *    structure which manages this MMU table.
1418 				 * 4) It frees the manager structure.
1419 				 *    (This frees the MMU table and all
1420 				 *    child tables. See 'free_b_table' for
1421 				 *    details.)
1422 				 */
1423 				dtbl = mmu_ptov(dte[i].addr.raw);
1424 				b_tbl = mmuB2tmgr(dtbl);
1425 				bt_wired = b_tbl->bt_wcnt;
1426 				removed_cnt += free_b_table(b_tbl, true);
1427 				if (bt_wired)
1428 					a_tbl->at_wcnt--;
1429 				dte[i].attr.raw = MMU_DT_INVALID;
1430 			}
1431 		}
1432 		a_tbl->at_ecnt = 0;
1433 	}
1434 	KASSERT(a_tbl->at_wcnt == 0);
1435 
1436 	if (relink) {
1437 		a_tbl->at_parent = NULL;
1438 		if (!at_wired)
1439 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1440 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1441 	}
1442 	return removed_cnt;
1443 }
1444 
1445 /* free_b_table			INTERNAL
1446  **
1447  * Unmaps the given B table and all its children from their current
1448  * mappings.  Returns the number of pages that were invalidated.
1449  * (For comments, see 'free_a_table()').
1450  */
1451 int
1452 free_b_table(b_tmgr_t *b_tbl, bool relink)
1453 {
1454 	int i, removed_cnt;
1455 	mmu_short_dte_t *dte;
1456 	mmu_short_pte_t	*dtbl;
1457 	c_tmgr_t	*c_tbl;
1458 	uint8_t bt_wired, ct_wired;
1459 
1460 	removed_cnt = 0;
1461 	bt_wired = b_tbl->bt_wcnt;
1462 	if (b_tbl->bt_ecnt) {
1463 		dte = b_tbl->bt_dtbl;
1464 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1465 			if (MMU_VALID_DT(dte[i])) {
1466 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1467 				c_tbl = mmuC2tmgr(dtbl);
1468 				ct_wired = c_tbl->ct_wcnt;
1469 				removed_cnt += free_c_table(c_tbl, true);
1470 				if (ct_wired)
1471 					b_tbl->bt_wcnt--;
1472 				dte[i].attr.raw = MMU_DT_INVALID;
1473 			}
1474 		}
1475 		b_tbl->bt_ecnt = 0;
1476 	}
1477 	KASSERT(b_tbl->bt_wcnt == 0);
1478 
1479 	if (relink) {
1480 		b_tbl->bt_parent = NULL;
1481 		if (!bt_wired)
1482 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1483 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1484 	}
1485 	return removed_cnt;
1486 }
1487 
1488 /* free_c_table			INTERNAL
1489  **
1490  * Unmaps the given C table from use and returns it to the pool for
1491  * re-use.  Returns the number of pages that were invalidated.
1492  *
1493  * This function preserves any physical page modification information
1494  * contained in the page descriptors within the C table by calling
1495  * 'pmap_remove_pte().'
1496  */
1497 int
1498 free_c_table(c_tmgr_t *c_tbl, bool relink)
1499 {
1500 	mmu_short_pte_t *c_pte;
1501 	int i, removed_cnt;
1502 	uint8_t ct_wired;
1503 
1504 	removed_cnt = 0;
1505 	ct_wired = c_tbl->ct_wcnt;
1506 	if (c_tbl->ct_ecnt) {
1507 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1508 			c_pte = &c_tbl->ct_dtbl[i];
1509 			if (MMU_VALID_DT(*c_pte)) {
1510 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1511 					c_tbl->ct_wcnt--;
1512 				pmap_remove_pte(c_pte);
1513 				removed_cnt++;
1514 			}
1515 		}
1516 		c_tbl->ct_ecnt = 0;
1517 	}
1518 	KASSERT(c_tbl->ct_wcnt == 0);
1519 
1520 	if (relink) {
1521 		c_tbl->ct_parent = NULL;
1522 		if (!ct_wired)
1523 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1524 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1525 	}
1526 	return removed_cnt;
1527 }
1528 
1529 
1530 /* pmap_remove_pte			INTERNAL
1531  **
1532  * Unmap the given pte and preserve any page modification
1533  * information by transfering it to the pv head of the
1534  * physical page it maps to.  This function does not update
1535  * any reference counts because it is assumed that the calling
1536  * function will do so.
1537  */
1538 void
1539 pmap_remove_pte(mmu_short_pte_t *pte)
1540 {
1541 	u_short     pv_idx, targ_idx;
1542 	paddr_t     pa;
1543 	pv_t       *pv;
1544 
1545 	pa = MMU_PTE_PA(*pte);
1546 	if (is_managed(pa)) {
1547 		pv = pa2pv(pa);
1548 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1549 
1550 		/*
1551 		 * If the PTE being removed is the first (or only) PTE in
1552 		 * the list of PTEs currently mapped to this page, remove the
1553 		 * PTE by changing the index found on the PV head.  Otherwise
1554 		 * a linear search through the list will have to be executed
1555 		 * in order to find the PVE which points to the PTE being
1556 		 * removed, so that it may be modified to point to its new
1557 		 * neighbor.
1558 		 */
1559 
1560 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1561 		if (pv_idx == targ_idx) {
1562 			pv->pv_idx = pvebase[targ_idx].pve_next;
1563 		} else {
1564 
1565 			/*
1566 			 * Find the PV element pointing to the target
1567 			 * element.  Note: may have pv_idx==PVE_EOL
1568 			 */
1569 
1570 			for (;;) {
1571 				if (pv_idx == PVE_EOL) {
1572 					goto pv_not_found;
1573 				}
1574 				if (pvebase[pv_idx].pve_next == targ_idx)
1575 					break;
1576 				pv_idx = pvebase[pv_idx].pve_next;
1577 			}
1578 
1579 			/*
1580 			 * At this point, pv_idx is the index of the PV
1581 			 * element just before the target element in the list.
1582 			 * Unlink the target.
1583 			 */
1584 
1585 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1586 		}
1587 
1588 		/*
1589 		 * Save the mod/ref bits of the pte by simply
1590 		 * ORing the entire pte onto the pv_flags member
1591 		 * of the pv structure.
1592 		 * There is no need to use a separate bit pattern
1593 		 * for usage information on the pv head than that
1594 		 * which is used on the MMU ptes.
1595 		 */
1596 
1597  pv_not_found:
1598 		pv->pv_flags |= (u_short) pte->attr.raw;
1599 	}
1600 	pte->attr.raw = MMU_DT_INVALID;
1601 }
1602 
1603 /* pmap_stroll			INTERNAL
1604  **
1605  * Retrieve the addresses of all table managers involved in the mapping of
1606  * the given virtual address.  If the table walk completed successfully,
1607  * return true.  If it was only partially successful, return false.
1608  * The table walk performed by this function is important to many other
1609  * functions in this module.
1610  *
1611  * Note: This function ought to be easier to read.
1612  */
1613 bool
1614 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1615     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1616     int *pte_idx)
1617 {
1618 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1619 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1620 
1621 	if (pmap == pmap_kernel())
1622 		return false;
1623 
1624 	/* Does the given pmap have its own A table? */
1625 	*a_tbl = pmap->pm_a_tmgr;
1626 	if (*a_tbl == NULL)
1627 		return false; /* No.  Return unknown. */
1628 	/* Does the A table have a valid B table
1629 	 * under the corresponding table entry?
1630 	 */
1631 	*a_idx = MMU_TIA(va);
1632 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1633 	if (!MMU_VALID_DT(*a_dte))
1634 		return false; /* No. Return unknown. */
1635 	/* Yes. Extract B table from the A table. */
1636 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1637 	/*
1638 	 * Does the B table have a valid C table
1639 	 * under the corresponding table entry?
1640 	 */
1641 	*b_idx = MMU_TIB(va);
1642 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1643 	if (!MMU_VALID_DT(*b_dte))
1644 		return false; /* No. Return unknown. */
1645 	/* Yes. Extract C table from the B table. */
1646 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1647 	*pte_idx = MMU_TIC(va);
1648 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1649 
1650 	return true;
1651 }
1652 
1653 /* pmap_enter			INTERFACE
1654  **
1655  * Called by the kernel to map a virtual address
1656  * to a physical address in the given process map.
1657  *
1658  * Note: this function should apply an exclusive lock
1659  * on the pmap system for its duration.  (it certainly
1660  * would save my hair!!)
1661  * This function ought to be easier to read.
1662  */
1663 int
1664 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1665 {
1666 	bool insert, managed; /* Marks the need for PV insertion.*/
1667 	u_short nidx;            /* PV list index                     */
1668 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1669 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1670 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1671 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1672 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1673 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1674 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1675 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1676 	pv_t      *pv;           /* pv list head                      */
1677 	bool wired;         /* is the mapping to be wired?       */
1678 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1679 
1680 	if (pmap == pmap_kernel()) {
1681 		pmap_enter_kernel(va, pa, prot);
1682 		return 0;
1683 	}
1684 
1685 	/*
1686 	 * Determine if the mapping should be wired.
1687 	 */
1688 	wired = ((flags & PMAP_WIRED) != 0);
1689 
1690 	/*
1691 	 * NOTE1:
1692 	 *
1693 	 * On November 13, 1999, someone changed the pmap_enter() API such
1694 	 * that it now accepts a 'flags' argument.  This new argument
1695 	 * contains bit-flags for the architecture-independent (UVM) system to
1696 	 * use in signalling certain mapping requirements to the architecture-
1697 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1698 	 * one of the flags within it.
1699 	 *
1700 	 * In addition to flags signaled by the architecture-independent
1701 	 * system, parts of the architecture-dependent section of the sun3x
1702 	 * kernel pass their own flags in the lower, unused bits of the
1703 	 * physical address supplied to this function.  These flags are
1704 	 * extracted and stored in the temporary variable 'mapflags'.
1705 	 *
1706 	 * Extract sun3x specific flags from the physical address.
1707 	 */
1708 	mapflags = (pa & ~MMU_PAGE_MASK);
1709 	pa &= MMU_PAGE_MASK;
1710 
1711 	/*
1712 	 * Determine if the physical address being mapped is on-board RAM.
1713 	 * Any other area of the address space is likely to belong to a
1714 	 * device and hence it would be disasterous to cache its contents.
1715 	 */
1716 	if ((managed = is_managed(pa)) == false)
1717 		mapflags |= PMAP_NC;
1718 
1719 	/*
1720 	 * For user mappings we walk along the MMU tables of the given
1721 	 * pmap, reaching a PTE which describes the virtual page being
1722 	 * mapped or changed.  If any level of the walk ends in an invalid
1723 	 * entry, a table must be allocated and the entry must be updated
1724 	 * to point to it.
1725 	 * There is a bit of confusion as to whether this code must be
1726 	 * re-entrant.  For now we will assume it is.  To support
1727 	 * re-entrancy we must unlink tables from the table pool before
1728 	 * we assume we may use them.  Tables are re-linked into the pool
1729 	 * when we are finished with them at the end of the function.
1730 	 * But I don't feel like doing that until we have proof that this
1731 	 * needs to be re-entrant.
1732 	 * 'llevel' records which tables need to be relinked.
1733 	 */
1734 	llevel = NONE;
1735 
1736 	/*
1737 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1738 	 * A table, allocate a new one from the available pool.
1739 	 */
1740 
1741 	a_tbl = pmap->pm_a_tmgr;
1742 	if (a_tbl == NULL) {
1743 		/*
1744 		 * This pmap does not currently have an A table.  Allocate
1745 		 * a new one.
1746 		 */
1747 		a_tbl = get_a_table();
1748 		a_tbl->at_parent = pmap;
1749 
1750 		/*
1751 		 * Assign this new A table to the pmap, and calculate its
1752 		 * physical address so that loadcrp() can be used to make
1753 		 * the table active.
1754 		 */
1755 		pmap->pm_a_tmgr = a_tbl;
1756 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1757 
1758 		/*
1759 		 * If the process receiving a new A table is the current
1760 		 * process, we are responsible for setting the MMU so that
1761 		 * it becomes the current address space.  This only adds
1762 		 * new mappings, so no need to flush anything.
1763 		 */
1764 		if (pmap == current_pmap()) {
1765 			kernel_crp.rp_addr = pmap->pm_a_phys;
1766 			loadcrp(&kernel_crp);
1767 		}
1768 
1769 		if (!wired)
1770 			llevel = NEWA;
1771 	} else {
1772 		/*
1773 		 * Use the A table already allocated for this pmap.
1774 		 * Unlink it from the A table pool if necessary.
1775 		 */
1776 		if (wired && !a_tbl->at_wcnt)
1777 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1778 	}
1779 
1780 	/*
1781 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1782 	 * allocate one.
1783 	 */
1784 
1785 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1786 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1787 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1788 		/* The descriptor is valid.  Use the B table it points to. */
1789 		/*************************************
1790 		 *               a_idx               *
1791 		 *                 v                 *
1792 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1793 		 *          | | | | | | | | | | | |  *
1794 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1795 		 *                 |                 *
1796 		 *                 \- b_tbl -> +-+-  *
1797 		 *                             | |   *
1798 		 *                             +-+-  *
1799 		 *************************************/
1800 		b_dte = mmu_ptov(a_dte->addr.raw);
1801 		b_tbl = mmuB2tmgr(b_dte);
1802 
1803 		/*
1804 		 * If the requested mapping must be wired, but this table
1805 		 * being used to map it is not, the table must be removed
1806 		 * from the available pool and its wired entry count
1807 		 * incremented.
1808 		 */
1809 		if (wired && !b_tbl->bt_wcnt) {
1810 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1811 			a_tbl->at_wcnt++;
1812 		}
1813 	} else {
1814 		/* The descriptor is invalid.  Allocate a new B table. */
1815 		b_tbl = get_b_table();
1816 
1817 		/* Point the parent A table descriptor to this new B table. */
1818 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1819 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1820 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1821 
1822 		/* Create the necessary back references to the parent table */
1823 		b_tbl->bt_parent = a_tbl;
1824 		b_tbl->bt_pidx = a_idx;
1825 
1826 		/*
1827 		 * If this table is to be wired, make sure the parent A table
1828 		 * wired count is updated to reflect that it has another wired
1829 		 * entry.
1830 		 */
1831 		if (wired)
1832 			a_tbl->at_wcnt++;
1833 		else if (llevel == NONE)
1834 			llevel = NEWB;
1835 	}
1836 
1837 	/*
1838 	 * Step 3 - Walk into the C table, if there is no valid C table,
1839 	 * allocate one.
1840 	 */
1841 
1842 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1843 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1844 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1845 		/* The descriptor is valid.  Use the C table it points to. */
1846 		/**************************************
1847 		 *               c_idx                *
1848 		 * |                v                 *
1849 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1850 		 *             | | | | | | | | | | |  *
1851 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1852 		 *                  |                 *
1853 		 *                  \- c_tbl -> +-+-- *
1854 		 *                              | | | *
1855 		 *                              +-+-- *
1856 		 **************************************/
1857 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1858 		c_tbl = mmuC2tmgr(c_pte);
1859 
1860 		/* If mapping is wired and table is not */
1861 		if (wired && !c_tbl->ct_wcnt) {
1862 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1863 			b_tbl->bt_wcnt++;
1864 		}
1865 	} else {
1866 		/* The descriptor is invalid.  Allocate a new C table. */
1867 		c_tbl = get_c_table();
1868 
1869 		/* Point the parent B table descriptor to this new C table. */
1870 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1871 		b_dte->attr.raw |= MMU_DT_SHORT;
1872 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1873 
1874 		/* Create the necessary back references to the parent table */
1875 		c_tbl->ct_parent = b_tbl;
1876 		c_tbl->ct_pidx = b_idx;
1877 		/*
1878 		 * Store the pmap and base virtual managed address for faster
1879 		 * retrieval in the PV functions.
1880 		 */
1881 		c_tbl->ct_pmap = pmap;
1882 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1883 
1884 		/*
1885 		 * If this table is to be wired, make sure the parent B table
1886 		 * wired count is updated to reflect that it has another wired
1887 		 * entry.
1888 		 */
1889 		if (wired)
1890 			b_tbl->bt_wcnt++;
1891 		else if (llevel == NONE)
1892 			llevel = NEWC;
1893 	}
1894 
1895 	/*
1896 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1897 	 * slot of the C table, describing the PA to which the VA is mapped.
1898 	 */
1899 
1900 	pte_idx = MMU_TIC(va);
1901 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1902 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1903 		/*
1904 		 * The PTE is currently valid.  This particular call
1905 		 * is just a synonym for one (or more) of the following
1906 		 * operations:
1907 		 *     change protection of a page
1908 		 *     change wiring status of a page
1909 		 *     remove the mapping of a page
1910 		 */
1911 
1912 		/* First check if this is a wiring operation. */
1913 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1914 			/*
1915 			 * The existing mapping is wired, so adjust wired
1916 			 * entry count here. If new mapping is still wired,
1917 			 * wired entry count will be incremented again later.
1918 			 */
1919 			c_tbl->ct_wcnt--;
1920 			if (!wired) {
1921 				/*
1922 				 * The mapping of this PTE is being changed
1923 				 * from wired to unwired.
1924 				 * Adjust wired entry counts in each table and
1925 				 * set llevel flag to put unwired tables back
1926 				 * into the active pool.
1927 				 */
1928 				if (c_tbl->ct_wcnt == 0) {
1929 					llevel = NEWC;
1930 					if (--b_tbl->bt_wcnt == 0) {
1931 						llevel = NEWB;
1932 						if (--a_tbl->at_wcnt == 0) {
1933 							llevel = NEWA;
1934 						}
1935 					}
1936 				}
1937 			}
1938 		}
1939 
1940 		/* Is the new address the same as the old? */
1941 		if (MMU_PTE_PA(*c_pte) == pa) {
1942 			/*
1943 			 * Yes, mark that it does not need to be reinserted
1944 			 * into the PV list.
1945 			 */
1946 			insert = false;
1947 
1948 			/*
1949 			 * Clear all but the modified, referenced and wired
1950 			 * bits on the PTE.
1951 			 */
1952 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1953 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1954 		} else {
1955 			/* No, remove the old entry */
1956 			pmap_remove_pte(c_pte);
1957 			insert = true;
1958 		}
1959 
1960 		/*
1961 		 * TLB flush is only necessary if modifying current map.
1962 		 * However, in pmap_enter(), the pmap almost always IS
1963 		 * the current pmap, so don't even bother to check.
1964 		 */
1965 		TBIS(va);
1966 	} else {
1967 		/*
1968 		 * The PTE is invalid.  Increment the valid entry count in
1969 		 * the C table manager to reflect the addition of a new entry.
1970 		 */
1971 		c_tbl->ct_ecnt++;
1972 
1973 		/* XXX - temporarily make sure the PTE is cleared. */
1974 		c_pte->attr.raw = 0;
1975 
1976 		/* It will also need to be inserted into the PV list. */
1977 		insert = true;
1978 	}
1979 
1980 	/*
1981 	 * If page is changing from unwired to wired status, set an unused bit
1982 	 * within the PTE to indicate that it is wired.  Also increment the
1983 	 * wired entry count in the C table manager.
1984 	 */
1985 	if (wired) {
1986 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1987 		c_tbl->ct_wcnt++;
1988 	}
1989 
1990 	/*
1991 	 * Map the page, being careful to preserve modify/reference/wired
1992 	 * bits.  At this point it is assumed that the PTE either has no bits
1993 	 * set, or if there are set bits, they are only modified, reference or
1994 	 * wired bits.  If not, the following statement will cause erratic
1995 	 * behavior.
1996 	 */
1997 #ifdef	PMAP_DEBUG
1998 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1999 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2000 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2001 		Debugger();
2002 	}
2003 #endif
2004 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2005 
2006 	/*
2007 	 * If the mapping should be read-only, set the write protect
2008 	 * bit in the PTE.
2009 	 */
2010 	if (!(prot & VM_PROT_WRITE))
2011 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2012 
2013 	/*
2014 	 * Mark the PTE as used and/or modified as specified by the flags arg.
2015 	 */
2016 	if (flags & VM_PROT_ALL) {
2017 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2018 		if (flags & VM_PROT_WRITE) {
2019 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * If the mapping should be cache inhibited (indicated by the flag
2025 	 * bits found on the lower order of the physical address.)
2026 	 * mark the PTE as a cache inhibited page.
2027 	 */
2028 	if (mapflags & PMAP_NC)
2029 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2030 
2031 	/*
2032 	 * If the physical address being mapped is managed by the PV
2033 	 * system then link the pte into the list of pages mapped to that
2034 	 * address.
2035 	 */
2036 	if (insert && managed) {
2037 		pv = pa2pv(pa);
2038 		nidx = pteidx(c_pte);
2039 
2040 		pvebase[nidx].pve_next = pv->pv_idx;
2041 		pv->pv_idx = nidx;
2042 	}
2043 
2044 	/* Move any allocated or unwired tables back into the active pool. */
2045 
2046 	switch (llevel) {
2047 		case NEWA:
2048 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2049 			/* FALLTHROUGH */
2050 		case NEWB:
2051 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2052 			/* FALLTHROUGH */
2053 		case NEWC:
2054 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2055 			/* FALLTHROUGH */
2056 		default:
2057 			break;
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 /* pmap_enter_kernel			INTERNAL
2064  **
2065  * Map the given virtual address to the given physical address within the
2066  * kernel address space.  This function exists because the kernel map does
2067  * not do dynamic table allocation.  It consists of a contiguous array of ptes
2068  * and can be edited directly without the need to walk through any tables.
2069  *
2070  * XXX: "Danger, Will Robinson!"
2071  * Note that the kernel should never take a fault on any page
2072  * between [ KERNBASE .. virtual_avail ] and this is checked in
2073  * trap.c for kernel-mode MMU faults.  This means that mappings
2074  * created in that range must be implicily wired. -gwr
2075  */
2076 void
2077 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2078 {
2079 	bool       was_valid, insert;
2080 	u_short         pte_idx;
2081 	int             flags;
2082 	mmu_short_pte_t *pte;
2083 	pv_t            *pv;
2084 	paddr_t     old_pa;
2085 
2086 	flags = (pa & ~MMU_PAGE_MASK);
2087 	pa &= MMU_PAGE_MASK;
2088 
2089 	if (is_managed(pa))
2090 		insert = true;
2091 	else
2092 		insert = false;
2093 
2094 	/*
2095 	 * Calculate the index of the PTE being modified.
2096 	 */
2097 	pte_idx = (u_long)m68k_btop(va - KERNBASE);
2098 
2099 	/* This array is traditionally named "Sysmap" */
2100 	pte = &kernCbase[pte_idx];
2101 
2102 	if (MMU_VALID_DT(*pte)) {
2103 		was_valid = true;
2104 		/*
2105 		 * If the PTE already maps a different
2106 		 * physical address, umap and pv_unlink.
2107 		 */
2108 		old_pa = MMU_PTE_PA(*pte);
2109 		if (pa != old_pa)
2110 			pmap_remove_pte(pte);
2111 		else {
2112 		    /*
2113 		     * Old PA and new PA are the same.  No need to
2114 		     * relink the mapping within the PV list.
2115 		     */
2116 		     insert = false;
2117 
2118 		    /*
2119 		     * Save any mod/ref bits on the PTE.
2120 		     */
2121 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2122 		}
2123 	} else {
2124 		pte->attr.raw = MMU_DT_INVALID;
2125 		was_valid = false;
2126 	}
2127 
2128 	/*
2129 	 * Map the page.  Being careful to preserve modified/referenced bits
2130 	 * on the PTE.
2131 	 */
2132 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2133 
2134 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2135 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2136 	if (flags & PMAP_NC)
2137 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2138 	if (was_valid)
2139 		TBIS(va);
2140 
2141 	/*
2142 	 * Insert the PTE into the PV system, if need be.
2143 	 */
2144 	if (insert) {
2145 		pv = pa2pv(pa);
2146 		pvebase[pte_idx].pve_next = pv->pv_idx;
2147 		pv->pv_idx = pte_idx;
2148 	}
2149 }
2150 
2151 void
2152 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2153 {
2154 	mmu_short_pte_t	*pte;
2155 
2156 	/* This array is traditionally named "Sysmap" */
2157 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2158 
2159 	KASSERT(!MMU_VALID_DT(*pte));
2160 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2161 	if (!(prot & VM_PROT_WRITE))
2162 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2163 }
2164 
2165 void
2166 pmap_kremove(vaddr_t va, vsize_t len)
2167 {
2168 	int idx, eidx;
2169 
2170 #ifdef	PMAP_DEBUG
2171 	if ((va & PGOFSET) || (len & PGOFSET))
2172 		panic("pmap_kremove: alignment");
2173 #endif
2174 
2175 	idx  = m68k_btop(va - KERNBASE);
2176 	eidx = m68k_btop(va + len - KERNBASE);
2177 
2178 	while (idx < eidx) {
2179 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2180 		TBIS(va);
2181 		va += PAGE_SIZE;
2182 	}
2183 }
2184 
2185 /* pmap_map			INTERNAL
2186  **
2187  * Map a contiguous range of physical memory into a contiguous range of
2188  * the kernel virtual address space.
2189  *
2190  * Used for device mappings and early mapping of the kernel text/data/bss.
2191  * Returns the first virtual address beyond the end of the range.
2192  */
2193 vaddr_t
2194 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2195 {
2196 	int sz;
2197 
2198 	sz = endpa - pa;
2199 	do {
2200 		pmap_enter_kernel(va, pa, prot);
2201 		va += PAGE_SIZE;
2202 		pa += PAGE_SIZE;
2203 		sz -= PAGE_SIZE;
2204 	} while (sz > 0);
2205 	pmap_update(pmap_kernel());
2206 	return va;
2207 }
2208 
2209 /* pmap_protect_kernel			INTERNAL
2210  **
2211  * Apply the given protection code to a kernel address range.
2212  */
2213 static INLINE void
2214 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2215 {
2216 	vaddr_t va;
2217 	mmu_short_pte_t *pte;
2218 
2219 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2220 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2221 		if (MMU_VALID_DT(*pte)) {
2222 		    switch (prot) {
2223 		        case VM_PROT_ALL:
2224 		            break;
2225 		        case VM_PROT_EXECUTE:
2226 		        case VM_PROT_READ:
2227 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2228 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2229 		            break;
2230 		        case VM_PROT_NONE:
2231 		            /* this is an alias for 'pmap_remove_kernel' */
2232 		            pmap_remove_pte(pte);
2233 		            break;
2234 		        default:
2235 		            break;
2236 		    }
2237 		    /*
2238 		     * since this is the kernel, immediately flush any cached
2239 		     * descriptors for this address.
2240 		     */
2241 		    TBIS(va);
2242 		}
2243 	}
2244 }
2245 
2246 /* pmap_protect			INTERFACE
2247  **
2248  * Apply the given protection to the given virtual address range within
2249  * the given map.
2250  *
2251  * It is ok for the protection applied to be stronger than what is
2252  * specified.  We use this to our advantage when the given map has no
2253  * mapping for the virtual address.  By skipping a page when this
2254  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2255  * and therefore do not need to map the page just to apply a protection
2256  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2257  *
2258  * XXX - This function could be speeded up by using pmap_stroll() for inital
2259  *       setup, and then manual scrolling in the for() loop.
2260  */
2261 void
2262 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2263 {
2264 	bool iscurpmap;
2265 	int a_idx, b_idx, c_idx;
2266 	a_tmgr_t *a_tbl;
2267 	b_tmgr_t *b_tbl;
2268 	c_tmgr_t *c_tbl;
2269 	mmu_short_pte_t *pte;
2270 
2271 	if (pmap == pmap_kernel()) {
2272 		pmap_protect_kernel(startva, endva, prot);
2273 		return;
2274 	}
2275 
2276 	/*
2277 	 * In this particular pmap implementation, there are only three
2278 	 * types of memory protection: 'all' (read/write/execute),
2279 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2280 	 * It is not possible for us to treat 'executable' as a separate
2281 	 * protection type.  Therefore, protection requests that seek to
2282 	 * remove execute permission while retaining read or write, and those
2283 	 * that make little sense (write-only for example) are ignored.
2284 	 */
2285 	switch (prot) {
2286 		case VM_PROT_NONE:
2287 			/*
2288 			 * A request to apply the protection code of
2289 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2290 			 */
2291 			pmap_remove(pmap, startva, endva);
2292 			return;
2293 		case	VM_PROT_EXECUTE:
2294 		case	VM_PROT_READ:
2295 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2296 			/* continue */
2297 			break;
2298 		case	VM_PROT_WRITE:
2299 		case	VM_PROT_WRITE|VM_PROT_READ:
2300 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2301 		case	VM_PROT_ALL:
2302 			/* None of these should happen in a sane system. */
2303 			return;
2304 	}
2305 
2306 	/*
2307 	 * If the pmap has no A table, it has no mappings and therefore
2308 	 * there is nothing to protect.
2309 	 */
2310 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2311 		return;
2312 
2313 	a_idx = MMU_TIA(startva);
2314 	b_idx = MMU_TIB(startva);
2315 	c_idx = MMU_TIC(startva);
2316 	b_tbl = NULL;
2317 	c_tbl = NULL;
2318 
2319 	iscurpmap = (pmap == current_pmap());
2320 	while (startva < endva) {
2321 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2322 		  if (b_tbl == NULL) {
2323 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2324 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2325 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2326 		  }
2327 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2328 		    if (c_tbl == NULL) {
2329 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2330 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2331 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2332 		    }
2333 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2334 		      pte = &c_tbl->ct_dtbl[c_idx];
2335 		      /* make the mapping read-only */
2336 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2337 		      /*
2338 		       * If we just modified the current address space,
2339 		       * flush any translations for the modified page from
2340 		       * the translation cache and any data from it in the
2341 		       * data cache.
2342 		       */
2343 		      if (iscurpmap)
2344 		          TBIS(startva);
2345 		    }
2346 		    startva += PAGE_SIZE;
2347 
2348 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2349 		      c_tbl = NULL;
2350 		      c_idx = 0;
2351 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2352 		        b_tbl = NULL;
2353 		        b_idx = 0;
2354 		      }
2355 		    }
2356 		  } else { /* C table wasn't valid */
2357 		    c_tbl = NULL;
2358 		    c_idx = 0;
2359 		    startva += MMU_TIB_RANGE;
2360 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2361 		      b_tbl = NULL;
2362 		      b_idx = 0;
2363 		    }
2364 		  } /* C table */
2365 		} else { /* B table wasn't valid */
2366 		  b_tbl = NULL;
2367 		  b_idx = 0;
2368 		  startva += MMU_TIA_RANGE;
2369 		  a_idx++;
2370 		} /* B table */
2371 	}
2372 }
2373 
2374 /* pmap_unwire				INTERFACE
2375  **
2376  * Clear the wired attribute of the specified page.
2377  *
2378  * This function is called from vm_fault.c to unwire
2379  * a mapping.
2380  */
2381 void
2382 pmap_unwire(pmap_t pmap, vaddr_t va)
2383 {
2384 	int a_idx, b_idx, c_idx;
2385 	a_tmgr_t *a_tbl;
2386 	b_tmgr_t *b_tbl;
2387 	c_tmgr_t *c_tbl;
2388 	mmu_short_pte_t *pte;
2389 
2390 	/* Kernel mappings always remain wired. */
2391 	if (pmap == pmap_kernel())
2392 		return;
2393 
2394 	/*
2395 	 * Walk through the tables.  If the walk terminates without
2396 	 * a valid PTE then the address wasn't wired in the first place.
2397 	 * Return immediately.
2398 	 */
2399 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2400 		&b_idx, &c_idx) == false)
2401 		return;
2402 
2403 
2404 	/* Is the PTE wired?  If not, return. */
2405 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2406 		return;
2407 
2408 	/* Remove the wiring bit. */
2409 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2410 
2411 	/*
2412 	 * Decrement the wired entry count in the C table.
2413 	 * If it reaches zero the following things happen:
2414 	 * 1. The table no longer has any wired entries and is considered
2415 	 *    unwired.
2416 	 * 2. It is placed on the available queue.
2417 	 * 3. The parent table's wired entry count is decremented.
2418 	 * 4. If it reaches zero, this process repeats at step 1 and
2419 	 *    stops at after reaching the A table.
2420 	 */
2421 	if (--c_tbl->ct_wcnt == 0) {
2422 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2423 		if (--b_tbl->bt_wcnt == 0) {
2424 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2425 			if (--a_tbl->at_wcnt == 0) {
2426 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2427 			}
2428 		}
2429 	}
2430 }
2431 
2432 /* pmap_copy				INTERFACE
2433  **
2434  * Copy the mappings of a range of addresses in one pmap, into
2435  * the destination address of another.
2436  *
2437  * This routine is advisory.  Should we one day decide that MMU tables
2438  * may be shared by more than one pmap, this function should be used to
2439  * link them together.  Until that day however, we do nothing.
2440  */
2441 void
2442 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2443 {
2444 
2445 	/* not implemented. */
2446 }
2447 
2448 /* pmap_copy_page			INTERFACE
2449  **
2450  * Copy the contents of one physical page into another.
2451  *
2452  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2453  * to map the two specified physical pages into the kernel address space.
2454  *
2455  * Note: We could use the transparent translation registers to make the
2456  * mappings.  If we do so, be sure to disable interrupts before using them.
2457  */
2458 void
2459 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2460 {
2461 	vaddr_t srcva, dstva;
2462 	int s;
2463 
2464 	srcva = tmp_vpages[0];
2465 	dstva = tmp_vpages[1];
2466 
2467 	s = splvm();
2468 #ifdef DIAGNOSTIC
2469 	if (tmp_vpages_inuse++)
2470 		panic("pmap_copy_page: temporary vpages are in use.");
2471 #endif
2472 
2473 	/* Map pages as non-cacheable to avoid cache polution? */
2474 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2475 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2476 
2477 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2478 	copypage((char *)srcva, (char *)dstva);
2479 
2480 	pmap_kremove(srcva, PAGE_SIZE);
2481 	pmap_kremove(dstva, PAGE_SIZE);
2482 
2483 #ifdef DIAGNOSTIC
2484 	--tmp_vpages_inuse;
2485 #endif
2486 	splx(s);
2487 }
2488 
2489 /* pmap_zero_page			INTERFACE
2490  **
2491  * Zero the contents of the specified physical page.
2492  *
2493  * Uses one of the virtual pages allocated in pmap_boostrap()
2494  * to map the specified page into the kernel address space.
2495  */
2496 void
2497 pmap_zero_page(paddr_t dstpa)
2498 {
2499 	vaddr_t dstva;
2500 	int s;
2501 
2502 	dstva = tmp_vpages[1];
2503 	s = splvm();
2504 #ifdef DIAGNOSTIC
2505 	if (tmp_vpages_inuse++)
2506 		panic("pmap_zero_page: temporary vpages are in use.");
2507 #endif
2508 
2509 	/* The comments in pmap_copy_page() above apply here also. */
2510 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2511 
2512 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2513 	zeropage((char *)dstva);
2514 
2515 	pmap_kremove(dstva, PAGE_SIZE);
2516 #ifdef DIAGNOSTIC
2517 	--tmp_vpages_inuse;
2518 #endif
2519 	splx(s);
2520 }
2521 
2522 /* pmap_collect			INTERFACE
2523  **
2524  * Called from the VM system when we are about to swap out
2525  * the process using this pmap.  This should give up any
2526  * resources held here, including all its MMU tables.
2527  */
2528 void
2529 pmap_collect(pmap_t pmap)
2530 {
2531 
2532 	/* XXX - todo... */
2533 }
2534 
2535 /* pmap_pinit			INTERNAL
2536  **
2537  * Initialize a pmap structure.
2538  */
2539 static INLINE void
2540 pmap_pinit(pmap_t pmap)
2541 {
2542 
2543 	memset(pmap, 0, sizeof(struct pmap));
2544 	pmap->pm_a_tmgr = NULL;
2545 	pmap->pm_a_phys = kernAphys;
2546 	pmap->pm_refcount = 1;
2547 	simple_lock_init(&pmap->pm_lock);
2548 }
2549 
2550 /* pmap_create			INTERFACE
2551  **
2552  * Create and return a pmap structure.
2553  */
2554 pmap_t
2555 pmap_create(void)
2556 {
2557 	pmap_t	pmap;
2558 
2559 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2560 	pmap_pinit(pmap);
2561 	return pmap;
2562 }
2563 
2564 /* pmap_release				INTERNAL
2565  **
2566  * Release any resources held by the given pmap.
2567  *
2568  * This is the reverse analog to pmap_pinit.  It does not
2569  * necessarily mean for the pmap structure to be deallocated,
2570  * as in pmap_destroy.
2571  */
2572 static INLINE void
2573 pmap_release(pmap_t pmap)
2574 {
2575 
2576 	/*
2577 	 * As long as the pmap contains no mappings,
2578 	 * which always should be the case whenever
2579 	 * this function is called, there really should
2580 	 * be nothing to do.
2581 	 */
2582 #ifdef	PMAP_DEBUG
2583 	if (pmap == pmap_kernel())
2584 		panic("pmap_release: kernel pmap");
2585 #endif
2586 	/*
2587 	 * XXX - If this pmap has an A table, give it back.
2588 	 * The pmap SHOULD be empty by now, and pmap_remove
2589 	 * should have already given back the A table...
2590 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2591 	 * at this point, which means some mapping was not
2592 	 * removed when it should have been. -gwr
2593 	 */
2594 	if (pmap->pm_a_tmgr != NULL) {
2595 		/* First make sure we are not using it! */
2596 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2597 			kernel_crp.rp_addr = kernAphys;
2598 			loadcrp(&kernel_crp);
2599 		}
2600 #ifdef	PMAP_DEBUG /* XXX - todo! */
2601 		/* XXX - Now complain... */
2602 		printf("pmap_release: still have table\n");
2603 		Debugger();
2604 #endif
2605 		free_a_table(pmap->pm_a_tmgr, true);
2606 		pmap->pm_a_tmgr = NULL;
2607 		pmap->pm_a_phys = kernAphys;
2608 	}
2609 }
2610 
2611 /* pmap_reference			INTERFACE
2612  **
2613  * Increment the reference count of a pmap.
2614  */
2615 void
2616 pmap_reference(pmap_t pmap)
2617 {
2618 	pmap_lock(pmap);
2619 	pmap_add_ref(pmap);
2620 	pmap_unlock(pmap);
2621 }
2622 
2623 /* pmap_dereference			INTERNAL
2624  **
2625  * Decrease the reference count on the given pmap
2626  * by one and return the current count.
2627  */
2628 static INLINE int
2629 pmap_dereference(pmap_t pmap)
2630 {
2631 	int rtn;
2632 
2633 	pmap_lock(pmap);
2634 	rtn = pmap_del_ref(pmap);
2635 	pmap_unlock(pmap);
2636 
2637 	return rtn;
2638 }
2639 
2640 /* pmap_destroy			INTERFACE
2641  **
2642  * Decrement a pmap's reference count and delete
2643  * the pmap if it becomes zero.  Will be called
2644  * only after all mappings have been removed.
2645  */
2646 void
2647 pmap_destroy(pmap_t pmap)
2648 {
2649 
2650 	if (pmap_dereference(pmap) == 0) {
2651 		pmap_release(pmap);
2652 		pool_put(&pmap_pmap_pool, pmap);
2653 	}
2654 }
2655 
2656 /* pmap_is_referenced			INTERFACE
2657  **
2658  * Determine if the given physical page has been
2659  * referenced (read from [or written to.])
2660  */
2661 bool
2662 pmap_is_referenced(struct vm_page *pg)
2663 {
2664 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2665 	pv_t      *pv;
2666 	int       idx;
2667 
2668 	/*
2669 	 * Check the flags on the pv head.  If they are set,
2670 	 * return immediately.  Otherwise a search must be done.
2671 	 */
2672 
2673 	pv = pa2pv(pa);
2674 	if (pv->pv_flags & PV_FLAGS_USED)
2675 		return true;
2676 
2677 	/*
2678 	 * Search through all pv elements pointing
2679 	 * to this page and query their reference bits
2680 	 */
2681 
2682 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2683 		if (MMU_PTE_USED(kernCbase[idx])) {
2684 			return true;
2685 		}
2686 	}
2687 	return false;
2688 }
2689 
2690 /* pmap_is_modified			INTERFACE
2691  **
2692  * Determine if the given physical page has been
2693  * modified (written to.)
2694  */
2695 bool
2696 pmap_is_modified(struct vm_page *pg)
2697 {
2698 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2699 	pv_t      *pv;
2700 	int       idx;
2701 
2702 	/* see comments in pmap_is_referenced() */
2703 	pv = pa2pv(pa);
2704 	if (pv->pv_flags & PV_FLAGS_MDFY)
2705 		return true;
2706 
2707 	for (idx = pv->pv_idx;
2708 		 idx != PVE_EOL;
2709 		 idx = pvebase[idx].pve_next) {
2710 
2711 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2712 			return true;
2713 		}
2714 	}
2715 
2716 	return false;
2717 }
2718 
2719 /* pmap_page_protect			INTERFACE
2720  **
2721  * Applies the given protection to all mappings to the given
2722  * physical page.
2723  */
2724 void
2725 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2726 {
2727 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2728 	pv_t      *pv;
2729 	int       idx;
2730 	vaddr_t va;
2731 	struct mmu_short_pte_struct *pte;
2732 	c_tmgr_t  *c_tbl;
2733 	pmap_t    pmap, curpmap;
2734 
2735 	curpmap = current_pmap();
2736 	pv = pa2pv(pa);
2737 
2738 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2739 		pte = &kernCbase[idx];
2740 		switch (prot) {
2741 			case VM_PROT_ALL:
2742 				/* do nothing */
2743 				break;
2744 			case VM_PROT_EXECUTE:
2745 			case VM_PROT_READ:
2746 			case VM_PROT_READ|VM_PROT_EXECUTE:
2747 				/*
2748 				 * Determine the virtual address mapped by
2749 				 * the PTE and flush ATC entries if necessary.
2750 				 */
2751 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2752 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2753 				if (pmap == curpmap || pmap == pmap_kernel())
2754 					TBIS(va);
2755 				break;
2756 			case VM_PROT_NONE:
2757 				/* Save the mod/ref bits. */
2758 				pv->pv_flags |= pte->attr.raw;
2759 				/* Invalidate the PTE. */
2760 				pte->attr.raw = MMU_DT_INVALID;
2761 
2762 				/*
2763 				 * Update table counts.  And flush ATC entries
2764 				 * if necessary.
2765 				 */
2766 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2767 
2768 				/*
2769 				 * If the PTE belongs to the kernel map,
2770 				 * be sure to flush the page it maps.
2771 				 */
2772 				if (pmap == pmap_kernel()) {
2773 					TBIS(va);
2774 				} else {
2775 					/*
2776 					 * The PTE belongs to a user map.
2777 					 * update the entry count in the C
2778 					 * table to which it belongs and flush
2779 					 * the ATC if the mapping belongs to
2780 					 * the current pmap.
2781 					 */
2782 					c_tbl->ct_ecnt--;
2783 					if (pmap == curpmap)
2784 						TBIS(va);
2785 				}
2786 				break;
2787 			default:
2788 				break;
2789 		}
2790 	}
2791 
2792 	/*
2793 	 * If the protection code indicates that all mappings to the page
2794 	 * be removed, truncate the PV list to zero entries.
2795 	 */
2796 	if (prot == VM_PROT_NONE)
2797 		pv->pv_idx = PVE_EOL;
2798 }
2799 
2800 /* pmap_get_pteinfo		INTERNAL
2801  **
2802  * Called internally to find the pmap and virtual address within that
2803  * map to which the pte at the given index maps.  Also includes the PTE's C
2804  * table manager.
2805  *
2806  * Returns the pmap in the argument provided, and the virtual address
2807  * by return value.
2808  */
2809 vaddr_t
2810 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2811 {
2812 	vaddr_t     va = 0;
2813 
2814 	/*
2815 	 * Determine if the PTE is a kernel PTE or a user PTE.
2816 	 */
2817 	if (idx >= NUM_KERN_PTES) {
2818 		/*
2819 		 * The PTE belongs to a user mapping.
2820 		 */
2821 		/* XXX: Would like an inline for this to validate idx... */
2822 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2823 
2824 		*pmap = (*tbl)->ct_pmap;
2825 		/*
2826 		 * To find the va to which the PTE maps, we first take
2827 		 * the table's base virtual address mapping which is stored
2828 		 * in ct_va.  We then increment this address by a page for
2829 		 * every slot skipped until we reach the PTE.
2830 		 */
2831 		va = (*tbl)->ct_va;
2832 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2833 	} else {
2834 		/*
2835 		 * The PTE belongs to the kernel map.
2836 		 */
2837 		*pmap = pmap_kernel();
2838 
2839 		va = m68k_ptob(idx);
2840 		va += KERNBASE;
2841 	}
2842 
2843 	return va;
2844 }
2845 
2846 /* pmap_clear_modify			INTERFACE
2847  **
2848  * Clear the modification bit on the page at the specified
2849  * physical address.
2850  *
2851  */
2852 bool
2853 pmap_clear_modify(struct vm_page *pg)
2854 {
2855 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2856 	bool rv;
2857 
2858 	rv = pmap_is_modified(pg);
2859 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2860 	return rv;
2861 }
2862 
2863 /* pmap_clear_reference			INTERFACE
2864  **
2865  * Clear the referenced bit on the page at the specified
2866  * physical address.
2867  */
2868 bool
2869 pmap_clear_reference(struct vm_page *pg)
2870 {
2871 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2872 	bool rv;
2873 
2874 	rv = pmap_is_referenced(pg);
2875 	pmap_clear_pv(pa, PV_FLAGS_USED);
2876 	return rv;
2877 }
2878 
2879 /* pmap_clear_pv			INTERNAL
2880  **
2881  * Clears the specified flag from the specified physical address.
2882  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2883  *
2884  * Flag is one of:
2885  *   PV_FLAGS_MDFY - Page modified bit.
2886  *   PV_FLAGS_USED - Page used (referenced) bit.
2887  *
2888  * This routine must not only clear the flag on the pv list
2889  * head.  It must also clear the bit on every pte in the pv
2890  * list associated with the address.
2891  */
2892 void
2893 pmap_clear_pv(paddr_t pa, int flag)
2894 {
2895 	pv_t      *pv;
2896 	int       idx;
2897 	vaddr_t   va;
2898 	pmap_t          pmap;
2899 	mmu_short_pte_t *pte;
2900 	c_tmgr_t        *c_tbl;
2901 
2902 	pv = pa2pv(pa);
2903 	pv->pv_flags &= ~(flag);
2904 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2905 		pte = &kernCbase[idx];
2906 		pte->attr.raw &= ~(flag);
2907 
2908 		/*
2909 		 * The MC68030 MMU will not set the modified or
2910 		 * referenced bits on any MMU tables for which it has
2911 		 * a cached descriptor with its modify bit set.  To insure
2912 		 * that it will modify these bits on the PTE during the next
2913 		 * time it is written to or read from, we must flush it from
2914 		 * the ATC.
2915 		 *
2916 		 * Ordinarily it is only necessary to flush the descriptor
2917 		 * if it is used in the current address space.  But since I
2918 		 * am not sure that there will always be a notion of
2919 		 * 'the current address space' when this function is called,
2920 		 * I will skip the test and always flush the address.  It
2921 		 * does no harm.
2922 		 */
2923 
2924 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2925 		TBIS(va);
2926 	}
2927 }
2928 
2929 /* pmap_extract_kernel		INTERNAL
2930  **
2931  * Extract a translation from the kernel address space.
2932  */
2933 static INLINE bool
2934 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2935 {
2936 	mmu_short_pte_t *pte;
2937 
2938 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
2939 	if (!MMU_VALID_DT(*pte))
2940 		return false;
2941 	if (pap != NULL)
2942 		*pap = MMU_PTE_PA(*pte);
2943 	return true;
2944 }
2945 
2946 /* pmap_extract			INTERFACE
2947  **
2948  * Return the physical address mapped by the virtual address
2949  * in the specified pmap.
2950  *
2951  * Note: this function should also apply an exclusive lock
2952  * on the pmap system during its duration.
2953  */
2954 bool
2955 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2956 {
2957 	int a_idx, b_idx, pte_idx;
2958 	a_tmgr_t	*a_tbl;
2959 	b_tmgr_t	*b_tbl;
2960 	c_tmgr_t	*c_tbl;
2961 	mmu_short_pte_t	*c_pte;
2962 
2963 	if (pmap == pmap_kernel())
2964 		return pmap_extract_kernel(va, pap);
2965 
2966 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2967 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
2968 		return false;
2969 
2970 	if (!MMU_VALID_DT(*c_pte))
2971 		return false;
2972 
2973 	if (pap != NULL)
2974 		*pap = MMU_PTE_PA(*c_pte);
2975 	return true;
2976 }
2977 
2978 /* pmap_remove_kernel		INTERNAL
2979  **
2980  * Remove the mapping of a range of virtual addresses from the kernel map.
2981  * The arguments are already page-aligned.
2982  */
2983 static INLINE void
2984 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2985 {
2986 	int idx, eidx;
2987 
2988 #ifdef	PMAP_DEBUG
2989 	if ((sva & PGOFSET) || (eva & PGOFSET))
2990 		panic("pmap_remove_kernel: alignment");
2991 #endif
2992 
2993 	idx  = m68k_btop(sva - KERNBASE);
2994 	eidx = m68k_btop(eva - KERNBASE);
2995 
2996 	while (idx < eidx) {
2997 		pmap_remove_pte(&kernCbase[idx++]);
2998 		TBIS(sva);
2999 		sva += PAGE_SIZE;
3000 	}
3001 }
3002 
3003 /* pmap_remove			INTERFACE
3004  **
3005  * Remove the mapping of a range of virtual addresses from the given pmap.
3006  *
3007  */
3008 void
3009 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
3010 {
3011 
3012 	if (pmap == pmap_kernel()) {
3013 		pmap_remove_kernel(sva, eva);
3014 		return;
3015 	}
3016 
3017 	/*
3018 	 * If the pmap doesn't have an A table of its own, it has no mappings
3019 	 * that can be removed.
3020 	 */
3021 	if (pmap->pm_a_tmgr == NULL)
3022 		return;
3023 
3024 	/*
3025 	 * Remove the specified range from the pmap.  If the function
3026 	 * returns true, the operation removed all the valid mappings
3027 	 * in the pmap and freed its A table.  If this happened to the
3028 	 * currently loaded pmap, the MMU root pointer must be reloaded
3029 	 * with the default 'kernel' map.
3030 	 */
3031 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3032 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3033 			kernel_crp.rp_addr = kernAphys;
3034 			loadcrp(&kernel_crp);
3035 			/* will do TLB flush below */
3036 		}
3037 		pmap->pm_a_tmgr = NULL;
3038 		pmap->pm_a_phys = kernAphys;
3039 	}
3040 
3041 	/*
3042 	 * If we just modified the current address space,
3043 	 * make sure to flush the MMU cache.
3044 	 *
3045 	 * XXX - this could be an unecessarily large flush.
3046 	 * XXX - Could decide, based on the size of the VA range
3047 	 * to be removed, whether to flush "by pages" or "all".
3048 	 */
3049 	if (pmap == current_pmap())
3050 		TBIAU();
3051 }
3052 
3053 /* pmap_remove_a			INTERNAL
3054  **
3055  * This is function number one in a set of three that removes a range
3056  * of memory in the most efficient manner by removing the highest possible
3057  * tables from the memory space.  This particular function attempts to remove
3058  * as many B tables as it can, delegating the remaining fragmented ranges to
3059  * pmap_remove_b().
3060  *
3061  * If the removal operation results in an empty A table, the function returns
3062  * true.
3063  *
3064  * It's ugly but will do for now.
3065  */
3066 bool
3067 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3068 {
3069 	bool empty;
3070 	int idx;
3071 	vaddr_t nstart, nend;
3072 	b_tmgr_t *b_tbl;
3073 	mmu_long_dte_t  *a_dte;
3074 	mmu_short_dte_t *b_dte;
3075 	uint8_t at_wired, bt_wired;
3076 
3077 	/*
3078 	 * The following code works with what I call a 'granularity
3079 	 * reduction algorithim'.  A range of addresses will always have
3080 	 * the following properties, which are classified according to
3081 	 * how the range relates to the size of the current granularity
3082 	 * - an A table entry:
3083 	 *
3084 	 *            1 2       3 4
3085 	 * -+---+---+---+---+---+---+---+-
3086 	 * -+---+---+---+---+---+---+---+-
3087 	 *
3088 	 * A range will always start on a granularity boundary, illustrated
3089 	 * by '+' signs in the table above, or it will start at some point
3090 	 * inbetween a granularity boundary, as illustrated by point 1.
3091 	 * The first step in removing a range of addresses is to remove the
3092 	 * range between 1 and 2, the nearest granularity boundary.  This
3093 	 * job is handled by the section of code governed by the
3094 	 * 'if (start < nstart)' statement.
3095 	 *
3096 	 * A range will always encompass zero or more intergral granules,
3097 	 * illustrated by points 2 and 3.  Integral granules are easy to
3098 	 * remove.  The removal of these granules is the second step, and
3099 	 * is handled by the code block 'if (nstart < nend)'.
3100 	 *
3101 	 * Lastly, a range will always end on a granularity boundary,
3102 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3103 	 * 4.  The last step involves removing this range and is handled by
3104 	 * the code block 'if (nend < end)'.
3105 	 */
3106 	nstart = MMU_ROUND_UP_A(sva);
3107 	nend = MMU_ROUND_A(eva);
3108 
3109 	at_wired = a_tbl->at_wcnt;
3110 
3111 	if (sva < nstart) {
3112 		/*
3113 		 * This block is executed if the range starts between
3114 		 * a granularity boundary.
3115 		 *
3116 		 * First find the DTE which is responsible for mapping
3117 		 * the start of the range.
3118 		 */
3119 		idx = MMU_TIA(sva);
3120 		a_dte = &a_tbl->at_dtbl[idx];
3121 
3122 		/*
3123 		 * If the DTE is valid then delegate the removal of the sub
3124 		 * range to pmap_remove_b(), which can remove addresses at
3125 		 * a finer granularity.
3126 		 */
3127 		if (MMU_VALID_DT(*a_dte)) {
3128 			b_dte = mmu_ptov(a_dte->addr.raw);
3129 			b_tbl = mmuB2tmgr(b_dte);
3130 			bt_wired = b_tbl->bt_wcnt;
3131 
3132 			/*
3133 			 * The sub range to be removed starts at the start
3134 			 * of the full range we were asked to remove, and ends
3135 			 * at the greater of:
3136 			 * 1. The end of the full range, -or-
3137 			 * 2. The end of the full range, rounded down to the
3138 			 *    nearest granularity boundary.
3139 			 */
3140 			if (eva < nstart)
3141 				empty = pmap_remove_b(b_tbl, sva, eva);
3142 			else
3143 				empty = pmap_remove_b(b_tbl, sva, nstart);
3144 
3145 			/*
3146 			 * If the child table no longer has wired entries,
3147 			 * decrement wired entry count.
3148 			 */
3149 			if (bt_wired && b_tbl->bt_wcnt == 0)
3150 				a_tbl->at_wcnt--;
3151 
3152 			/*
3153 			 * If the removal resulted in an empty B table,
3154 			 * invalidate the DTE that points to it and decrement
3155 			 * the valid entry count of the A table.
3156 			 */
3157 			if (empty) {
3158 				a_dte->attr.raw = MMU_DT_INVALID;
3159 				a_tbl->at_ecnt--;
3160 			}
3161 		}
3162 		/*
3163 		 * If the DTE is invalid, the address range is already non-
3164 		 * existent and can simply be skipped.
3165 		 */
3166 	}
3167 	if (nstart < nend) {
3168 		/*
3169 		 * This block is executed if the range spans a whole number
3170 		 * multiple of granules (A table entries.)
3171 		 *
3172 		 * First find the DTE which is responsible for mapping
3173 		 * the start of the first granule involved.
3174 		 */
3175 		idx = MMU_TIA(nstart);
3176 		a_dte = &a_tbl->at_dtbl[idx];
3177 
3178 		/*
3179 		 * Remove entire sub-granules (B tables) one at a time,
3180 		 * until reaching the end of the range.
3181 		 */
3182 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3183 			if (MMU_VALID_DT(*a_dte)) {
3184 				/*
3185 				 * Find the B table manager for the
3186 				 * entry and free it.
3187 				 */
3188 				b_dte = mmu_ptov(a_dte->addr.raw);
3189 				b_tbl = mmuB2tmgr(b_dte);
3190 				bt_wired = b_tbl->bt_wcnt;
3191 
3192 				free_b_table(b_tbl, true);
3193 
3194 				/*
3195 				 * All child entries has been removed.
3196 				 * If there were any wired entries in it,
3197 				 * decrement wired entry count.
3198 				 */
3199 				if (bt_wired)
3200 					a_tbl->at_wcnt--;
3201 
3202 				/*
3203 				 * Invalidate the DTE that points to the
3204 				 * B table and decrement the valid entry
3205 				 * count of the A table.
3206 				 */
3207 				a_dte->attr.raw = MMU_DT_INVALID;
3208 				a_tbl->at_ecnt--;
3209 			}
3210 	}
3211 	if (nend < eva) {
3212 		/*
3213 		 * This block is executed if the range ends beyond a
3214 		 * granularity boundary.
3215 		 *
3216 		 * First find the DTE which is responsible for mapping
3217 		 * the start of the nearest (rounded down) granularity
3218 		 * boundary.
3219 		 */
3220 		idx = MMU_TIA(nend);
3221 		a_dte = &a_tbl->at_dtbl[idx];
3222 
3223 		/*
3224 		 * If the DTE is valid then delegate the removal of the sub
3225 		 * range to pmap_remove_b(), which can remove addresses at
3226 		 * a finer granularity.
3227 		 */
3228 		if (MMU_VALID_DT(*a_dte)) {
3229 			/*
3230 			 * Find the B table manager for the entry
3231 			 * and hand it to pmap_remove_b() along with
3232 			 * the sub range.
3233 			 */
3234 			b_dte = mmu_ptov(a_dte->addr.raw);
3235 			b_tbl = mmuB2tmgr(b_dte);
3236 			bt_wired = b_tbl->bt_wcnt;
3237 
3238 			empty = pmap_remove_b(b_tbl, nend, eva);
3239 
3240 			/*
3241 			 * If the child table no longer has wired entries,
3242 			 * decrement wired entry count.
3243 			 */
3244 			if (bt_wired && b_tbl->bt_wcnt == 0)
3245 				a_tbl->at_wcnt--;
3246 			/*
3247 			 * If the removal resulted in an empty B table,
3248 			 * invalidate the DTE that points to it and decrement
3249 			 * the valid entry count of the A table.
3250 			 */
3251 			if (empty) {
3252 				a_dte->attr.raw = MMU_DT_INVALID;
3253 				a_tbl->at_ecnt--;
3254 			}
3255 		}
3256 	}
3257 
3258 	/*
3259 	 * If there are no more entries in the A table, release it
3260 	 * back to the available pool and return true.
3261 	 */
3262 	if (a_tbl->at_ecnt == 0) {
3263 		KASSERT(a_tbl->at_wcnt == 0);
3264 		a_tbl->at_parent = NULL;
3265 		if (!at_wired)
3266 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3267 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3268 		empty = true;
3269 	} else {
3270 		/*
3271 		 * If the table doesn't have wired entries any longer
3272 		 * but still has unwired entries, put it back into
3273 		 * the available queue.
3274 		 */
3275 		if (at_wired && a_tbl->at_wcnt == 0)
3276 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3277 		empty = false;
3278 	}
3279 
3280 	return empty;
3281 }
3282 
3283 /* pmap_remove_b			INTERNAL
3284  **
3285  * Remove a range of addresses from an address space, trying to remove entire
3286  * C tables if possible.
3287  *
3288  * If the operation results in an empty B table, the function returns true.
3289  */
3290 bool
3291 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3292 {
3293 	bool empty;
3294 	int idx;
3295 	vaddr_t nstart, nend, rstart;
3296 	c_tmgr_t *c_tbl;
3297 	mmu_short_dte_t  *b_dte;
3298 	mmu_short_pte_t  *c_dte;
3299 	uint8_t bt_wired, ct_wired;
3300 
3301 	nstart = MMU_ROUND_UP_B(sva);
3302 	nend = MMU_ROUND_B(eva);
3303 
3304 	bt_wired = b_tbl->bt_wcnt;
3305 
3306 	if (sva < nstart) {
3307 		idx = MMU_TIB(sva);
3308 		b_dte = &b_tbl->bt_dtbl[idx];
3309 		if (MMU_VALID_DT(*b_dte)) {
3310 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3311 			c_tbl = mmuC2tmgr(c_dte);
3312 			ct_wired = c_tbl->ct_wcnt;
3313 
3314 			if (eva < nstart)
3315 				empty = pmap_remove_c(c_tbl, sva, eva);
3316 			else
3317 				empty = pmap_remove_c(c_tbl, sva, nstart);
3318 
3319 			/*
3320 			 * If the child table no longer has wired entries,
3321 			 * decrement wired entry count.
3322 			 */
3323 			if (ct_wired && c_tbl->ct_wcnt == 0)
3324 				b_tbl->bt_wcnt--;
3325 
3326 			if (empty) {
3327 				b_dte->attr.raw = MMU_DT_INVALID;
3328 				b_tbl->bt_ecnt--;
3329 			}
3330 		}
3331 	}
3332 	if (nstart < nend) {
3333 		idx = MMU_TIB(nstart);
3334 		b_dte = &b_tbl->bt_dtbl[idx];
3335 		rstart = nstart;
3336 		while (rstart < nend) {
3337 			if (MMU_VALID_DT(*b_dte)) {
3338 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3339 				c_tbl = mmuC2tmgr(c_dte);
3340 				ct_wired = c_tbl->ct_wcnt;
3341 
3342 				free_c_table(c_tbl, true);
3343 
3344 				/*
3345 				 * All child entries has been removed.
3346 				 * If there were any wired entries in it,
3347 				 * decrement wired entry count.
3348 				 */
3349 				if (ct_wired)
3350 					b_tbl->bt_wcnt--;
3351 
3352 				b_dte->attr.raw = MMU_DT_INVALID;
3353 				b_tbl->bt_ecnt--;
3354 			}
3355 			b_dte++;
3356 			rstart += MMU_TIB_RANGE;
3357 		}
3358 	}
3359 	if (nend < eva) {
3360 		idx = MMU_TIB(nend);
3361 		b_dte = &b_tbl->bt_dtbl[idx];
3362 		if (MMU_VALID_DT(*b_dte)) {
3363 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3364 			c_tbl = mmuC2tmgr(c_dte);
3365 			ct_wired = c_tbl->ct_wcnt;
3366 			empty = pmap_remove_c(c_tbl, nend, eva);
3367 
3368 			/*
3369 			 * If the child table no longer has wired entries,
3370 			 * decrement wired entry count.
3371 			 */
3372 			if (ct_wired && c_tbl->ct_wcnt == 0)
3373 				b_tbl->bt_wcnt--;
3374 
3375 			if (empty) {
3376 				b_dte->attr.raw = MMU_DT_INVALID;
3377 				b_tbl->bt_ecnt--;
3378 			}
3379 		}
3380 	}
3381 
3382 	if (b_tbl->bt_ecnt == 0) {
3383 		KASSERT(b_tbl->bt_wcnt == 0);
3384 		b_tbl->bt_parent = NULL;
3385 		if (!bt_wired)
3386 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3387 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3388 		empty = true;
3389 	} else {
3390 		/*
3391 		 * If the table doesn't have wired entries any longer
3392 		 * but still has unwired entries, put it back into
3393 		 * the available queue.
3394 		 */
3395 		if (bt_wired && b_tbl->bt_wcnt == 0)
3396 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3397 
3398 		empty = false;
3399 	}
3400 
3401 	return empty;
3402 }
3403 
3404 /* pmap_remove_c			INTERNAL
3405  **
3406  * Remove a range of addresses from the given C table.
3407  */
3408 bool
3409 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3410 {
3411 	bool empty;
3412 	int idx;
3413 	mmu_short_pte_t *c_pte;
3414 	uint8_t ct_wired;
3415 
3416 	ct_wired = c_tbl->ct_wcnt;
3417 
3418 	idx = MMU_TIC(sva);
3419 	c_pte = &c_tbl->ct_dtbl[idx];
3420 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3421 		if (MMU_VALID_DT(*c_pte)) {
3422 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3423 				c_tbl->ct_wcnt--;
3424 			pmap_remove_pte(c_pte);
3425 			c_tbl->ct_ecnt--;
3426 		}
3427 	}
3428 
3429 	if (c_tbl->ct_ecnt == 0) {
3430 		KASSERT(c_tbl->ct_wcnt == 0);
3431 		c_tbl->ct_parent = NULL;
3432 		if (!ct_wired)
3433 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3434 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3435 		empty = true;
3436 	} else {
3437 		/*
3438 		 * If the table doesn't have wired entries any longer
3439 		 * but still has unwired entries, put it back into
3440 		 * the available queue.
3441 		 */
3442 		if (ct_wired && c_tbl->ct_wcnt == 0)
3443 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3444 		empty = false;
3445 	}
3446 
3447 	return empty;
3448 }
3449 
3450 /* pmap_bootstrap_alloc			INTERNAL
3451  **
3452  * Used internally for memory allocation at startup when malloc is not
3453  * available.  This code will fail once it crosses the first memory
3454  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3455  * will be in charge of allocation.
3456  */
3457 void *
3458 pmap_bootstrap_alloc(int size)
3459 {
3460 	void *rtn;
3461 
3462 #ifdef	PMAP_DEBUG
3463 	if (bootstrap_alloc_enabled == false) {
3464 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3465 		sunmon_abort();
3466 	}
3467 #endif
3468 
3469 	rtn = (void *) virtual_avail;
3470 	virtual_avail += size;
3471 
3472 #ifdef	PMAP_DEBUG
3473 	if (virtual_avail > virtual_contig_end) {
3474 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3475 		sunmon_abort();
3476 	}
3477 #endif
3478 
3479 	return rtn;
3480 }
3481 
3482 /* pmap_bootstap_aalign			INTERNAL
3483  **
3484  * Used to insure that the next call to pmap_bootstrap_alloc() will
3485  * return a chunk of memory aligned to the specified size.
3486  *
3487  * Note: This function will only support alignment sizes that are powers
3488  * of two.
3489  */
3490 void
3491 pmap_bootstrap_aalign(int size)
3492 {
3493 	int off;
3494 
3495 	off = virtual_avail & (size - 1);
3496 	if (off) {
3497 		(void)pmap_bootstrap_alloc(size - off);
3498 	}
3499 }
3500 
3501 /* pmap_pa_exists
3502  **
3503  * Used by the /dev/mem driver to see if a given PA is memory
3504  * that can be mapped.  (The PA is not in a hole.)
3505  */
3506 int
3507 pmap_pa_exists(paddr_t pa)
3508 {
3509 	int i;
3510 
3511 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3512 		if ((pa >= avail_mem[i].pmem_start) &&
3513 			(pa <  avail_mem[i].pmem_end))
3514 			return 1;
3515 		if (avail_mem[i].pmem_next == NULL)
3516 			break;
3517 	}
3518 	return 0;
3519 }
3520 
3521 /* Called only from locore.s and pmap.c */
3522 void	_pmap_switch(pmap_t pmap);
3523 
3524 /*
3525  * _pmap_switch			INTERNAL
3526  *
3527  * This is called by locore.s:cpu_switch() when it is
3528  * switching to a new process.  Load new translations.
3529  * Note: done in-line by locore.s unless PMAP_DEBUG
3530  *
3531  * Note that we do NOT allocate a context here, but
3532  * share the "kernel only" context until we really
3533  * need our own context for user-space mappings in
3534  * pmap_enter_user().  [ s/context/mmu A table/ ]
3535  */
3536 void
3537 _pmap_switch(pmap_t pmap)
3538 {
3539 	u_long rootpa;
3540 
3541 	/*
3542 	 * Only do reload/flush if we have to.
3543 	 * Note that if the old and new process
3544 	 * were BOTH using the "null" context,
3545 	 * then this will NOT flush the TLB.
3546 	 */
3547 	rootpa = pmap->pm_a_phys;
3548 	if (kernel_crp.rp_addr != rootpa) {
3549 		DPRINT(("pmap_activate(%p)\n", pmap));
3550 		kernel_crp.rp_addr = rootpa;
3551 		loadcrp(&kernel_crp);
3552 		TBIAU();
3553 	}
3554 }
3555 
3556 /*
3557  * Exported version of pmap_activate().  This is called from the
3558  * machine-independent VM code when a process is given a new pmap.
3559  * If (p == curlwp) do like cpu_switch would do; otherwise just
3560  * take this as notification that the process has a new pmap.
3561  */
3562 void
3563 pmap_activate(struct lwp *l)
3564 {
3565 
3566 	if (l->l_proc == curproc) {
3567 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3568 	}
3569 }
3570 
3571 /*
3572  * pmap_deactivate			INTERFACE
3573  **
3574  * This is called to deactivate the specified process's address space.
3575  */
3576 void
3577 pmap_deactivate(struct lwp *l)
3578 {
3579 
3580 	/* Nothing to do. */
3581 }
3582 
3583 /*
3584  * Fill in the sun3x-specific part of the kernel core header
3585  * for dumpsys().  (See machdep.c for the rest.)
3586  */
3587 void
3588 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3589 {
3590 	u_long spa, len;
3591 	int i;
3592 
3593 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3594 	sh->pg_valid = MMU_DT_PAGE;
3595 	sh->contig_end = virtual_contig_end;
3596 	sh->kernCbase = (u_long)kernCbase;
3597 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3598 		spa = avail_mem[i].pmem_start;
3599 		spa = m68k_trunc_page(spa);
3600 		len = avail_mem[i].pmem_end - spa;
3601 		len = m68k_round_page(len);
3602 		sh->ram_segs[i].start = spa;
3603 		sh->ram_segs[i].size  = len;
3604 	}
3605 }
3606 
3607 
3608 /* pmap_virtual_space			INTERFACE
3609  **
3610  * Return the current available range of virtual addresses in the
3611  * arguuments provided.  Only really called once.
3612  */
3613 void
3614 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3615 {
3616 
3617 	*vstart = virtual_avail;
3618 	*vend = virtual_end;
3619 }
3620 
3621 /*
3622  * Provide memory to the VM system.
3623  *
3624  * Assume avail_start is always in the
3625  * first segment as pmap_bootstrap does.
3626  */
3627 static void
3628 pmap_page_upload(void)
3629 {
3630 	paddr_t	a, b;	/* memory range */
3631 	int i;
3632 
3633 	/* Supply the memory in segments. */
3634 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3635 		a = atop(avail_mem[i].pmem_start);
3636 		b = atop(avail_mem[i].pmem_end);
3637 		if (i == 0)
3638 			a = atop(avail_start);
3639 		if (avail_mem[i].pmem_end > avail_end)
3640 			b = atop(avail_end);
3641 
3642 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3643 
3644 		if (avail_mem[i].pmem_next == NULL)
3645 			break;
3646 	}
3647 }
3648 
3649 /* pmap_count			INTERFACE
3650  **
3651  * Return the number of resident (valid) pages in the given pmap.
3652  *
3653  * Note:  If this function is handed the kernel map, it will report
3654  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3655  * map statistics.
3656  */
3657 segsz_t
3658 pmap_count(pmap_t pmap, int type)
3659 {
3660 	u_int     count;
3661 	int       a_idx, b_idx;
3662 	a_tmgr_t *a_tbl;
3663 	b_tmgr_t *b_tbl;
3664 	c_tmgr_t *c_tbl;
3665 
3666 	/*
3667 	 * If the pmap does not have its own A table manager, it has no
3668 	 * valid entires.
3669 	 */
3670 	if (pmap->pm_a_tmgr == NULL)
3671 		return 0;
3672 
3673 	a_tbl = pmap->pm_a_tmgr;
3674 
3675 	count = 0;
3676 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3677 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3678 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3679 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3680 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3681 	                c_tbl = mmuC2tmgr(
3682 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3683 	                if (type == 0)
3684 	                    /*
3685 	                     * A resident entry count has been requested.
3686 	                     */
3687 	                    count += c_tbl->ct_ecnt;
3688 	                else
3689 	                    /*
3690 	                     * A wired entry count has been requested.
3691 	                     */
3692 	                    count += c_tbl->ct_wcnt;
3693 	            }
3694 	        }
3695 	    }
3696 	}
3697 
3698 	return count;
3699 }
3700 
3701 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3702  * The following routines are only used by DDB for tricky kernel text    *
3703  * text operations in db_memrw.c.  They are provided for sun3            *
3704  * compatibility.                                                        *
3705  *************************************************************************/
3706 /* get_pte			INTERNAL
3707  **
3708  * Return the page descriptor the describes the kernel mapping
3709  * of the given virtual address.
3710  */
3711 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
3712 u_int
3713 get_pte(vaddr_t va)
3714 {
3715 	u_long pte_pa;
3716 	mmu_short_pte_t *pte;
3717 
3718 	/* Get the physical address of the PTE */
3719 	pte_pa = ptest_addr(va & ~PGOFSET);
3720 
3721 	/* Convert to a virtual address... */
3722 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3723 
3724 	/* Make sure it is in our level-C tables... */
3725 	if ((pte < kernCbase) ||
3726 		(pte >= &mmuCbase[NUM_USER_PTES]))
3727 		return 0;
3728 
3729 	/* ... and just return its contents. */
3730 	return (pte->attr.raw);
3731 }
3732 
3733 
3734 /* set_pte			INTERNAL
3735  **
3736  * Set the page descriptor that describes the kernel mapping
3737  * of the given virtual address.
3738  */
3739 void
3740 set_pte(vaddr_t va, u_int pte)
3741 {
3742 	u_long idx;
3743 
3744 	if (va < KERNBASE)
3745 		return;
3746 
3747 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3748 	kernCbase[idx].attr.raw = pte;
3749 	TBIS(va);
3750 }
3751 
3752 /*
3753  *	Routine:        pmap_procwr
3754  *
3755  *	Function:
3756  *		Synchronize caches corresponding to [addr, addr+len) in p.
3757  */
3758 void
3759 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3760 {
3761 
3762 	(void)cachectl1(0x80000004, va, len, p);
3763 }
3764 
3765 
3766 #ifdef	PMAP_DEBUG
3767 /************************** DEBUGGING ROUTINES **************************
3768  * The following routines are meant to be an aid to debugging the pmap  *
3769  * system.  They are callable from the DDB command line and should be   *
3770  * prepared to be handed unstable or incomplete states of the system.   *
3771  ************************************************************************/
3772 
3773 /* pv_list
3774  **
3775  * List all pages found on the pv list for the given physical page.
3776  * To avoid endless loops, the listing will stop at the end of the list
3777  * or after 'n' entries - whichever comes first.
3778  */
3779 void
3780 pv_list(paddr_t pa, int n)
3781 {
3782 	int  idx;
3783 	vaddr_t va;
3784 	pv_t *pv;
3785 	c_tmgr_t *c_tbl;
3786 	pmap_t pmap;
3787 
3788 	pv = pa2pv(pa);
3789 	idx = pv->pv_idx;
3790 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3791 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3792 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3793 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3794 	}
3795 }
3796 #endif	/* PMAP_DEBUG */
3797 
3798 #ifdef NOT_YET
3799 /* and maybe not ever */
3800 /************************** LOW-LEVEL ROUTINES **************************
3801  * These routines will eventually be re-written into assembly and placed*
3802  * in locore.s.  They are here now as stubs so that the pmap module can *
3803  * be linked as a standalone user program for testing.                  *
3804  ************************************************************************/
3805 /* flush_atc_crp			INTERNAL
3806  **
3807  * Flush all page descriptors derived from the given CPU Root Pointer
3808  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3809  * cache.
3810  */
3811 void
3812 flush_atc_crp(int a_tbl)
3813 {
3814 	mmu_long_rp_t rp;
3815 
3816 	/* Create a temporary root table pointer that points to the
3817 	 * given A table.
3818 	 */
3819 	rp.attr.raw = ~MMU_LONG_RP_LU;
3820 	rp.addr.raw = (unsigned int) a_tbl;
3821 
3822 	mmu_pflushr(&rp);
3823 	/* mmu_pflushr:
3824 	 * 	movel   sp(4)@,a0
3825 	 * 	pflushr a0@
3826 	 *	rts
3827 	 */
3828 }
3829 #endif /* NOT_YET */
3830