xref: /netbsd-src/sys/arch/sun3/sun3x/pmap.c (revision 1ffa7b76c40339c17a0fb2a09fac93f287cfc046)
1 /*	$NetBSD: pmap.c,v 1.79 2003/04/01 15:28:41 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * XXX These comments aren't quite accurate.  Need to change.
41  * The sun3x uses the MC68851 Memory Management Unit, which is built
42  * into the CPU.  The 68851 maps virtual to physical addresses using
43  * a multi-level table lookup, which is stored in the very memory that
44  * it maps.  The number of levels of lookup is configurable from one
45  * to four.  In this implementation, we use three, named 'A' through 'C'.
46  *
47  * The MMU translates virtual addresses into physical addresses by
48  * traversing these tables in a proccess called a 'table walk'.  The most
49  * significant 7 bits of the Virtual Address ('VA') being translated are
50  * used as an index into the level A table, whose base in physical memory
51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
52  * address found at that index in the A table is used as the base
53  * address for the next table, the B table.  The next six bits of the VA are
54  * used as an index into the B table, which in turn gives the base address
55  * of the third and final C table.
56  *
57  * The next six bits of the VA are used as an index into the C table to
58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
59  * to which the remaining 13 bits of the VA are added, producing the
60  * mapped physical address.
61  *
62  * To map the entire memory space in this manner would require 2114296 bytes
63  * of page tables per process - quite expensive.  Instead we will
64  * allocate a fixed but considerably smaller space for the page tables at
65  * the time the VM system is initialized.  When the pmap code is asked by
66  * the kernel to map a VA to a PA, it allocates tables as needed from this
67  * pool.  When there are no more tables in the pool, tables are stolen
68  * from the oldest mapped entries in the tree.  This is only possible
69  * because all memory mappings are stored in the kernel memory map
70  * structures, independent of the pmap structures.  A VA which references
71  * one of these invalidated maps will cause a page fault.  The kernel
72  * will determine that the page fault was caused by a task using a valid
73  * VA, but for some reason (which does not concern it), that address was
74  * not mapped.  It will ask the pmap code to re-map the entry and then
75  * it will resume executing the faulting task.
76  *
77  * In this manner the most efficient use of the page table space is
78  * achieved.  Tasks which do not execute often will have their tables
79  * stolen and reused by tasks which execute more frequently.  The best
80  * size for the page table pool will probably be determined by
81  * experimentation.
82  *
83  * You read all of the comments so far.  Good for you.
84  * Now go play!
85  */
86 
87 /*** A Note About the 68851 Address Translation Cache
88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
89  * or 'ATC'.  This cache stores the most recently used page descriptors
90  * accessed by the MMU when it does translations.  Using a marker called a
91  * 'task alias' the MMU can store the descriptors from 8 different table
92  * spaces concurrently.  The task alias is associated with the base
93  * address of the level A table of that address space.  When an address
94  * space is currently active (the CRP currently points to its A table)
95  * the only cached descriptors that will be obeyed are ones which have a
96  * matching task alias of the current space associated with them.
97  *
98  * Since the cache is always consulted before any table lookups are done,
99  * it is important that it accurately reflect the state of the MMU tables.
100  * Whenever a change has been made to a table that has been loaded into
101  * the MMU, the code must be sure to flush any cached entries that are
102  * affected by the change.  These instances are documented in the code at
103  * various points.
104  */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106  * 4 months into this code I discovered that the sun3x does not have
107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108  * the 68030 CPU.
109  * All though it behaves very similarly to the 68851, it only has 1 task
110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
111  * of the previous note does not apply to the sun3x pmap.
112  */
113 
114 #include "opt_ddb.h"
115 
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124 
125 #include <uvm/uvm.h>
126 
127 #include <machine/cpu.h>
128 #include <machine/kcore.h>
129 #include <machine/mon.h>
130 #include <machine/pmap.h>
131 #include <machine/pte.h>
132 #include <machine/vmparam.h>
133 #include <m68k/cacheops.h>
134 
135 #include <sun3/sun3/cache.h>
136 #include <sun3/sun3/machdep.h>
137 
138 #include "pmap_pvt.h"
139 
140 /* XXX - What headers declare these? */
141 extern struct pcb *curpcb;
142 extern int physmem;
143 
144 /* Defined in locore.s */
145 extern char kernel_text[];
146 
147 /* Defined by the linker */
148 extern char etext[], edata[], end[];
149 extern char *esym;	/* DDB */
150 
151 /*************************** DEBUGGING DEFINITIONS ***********************
152  * Macros, preprocessor defines and variables used in debugging can make *
153  * code hard to read.  Anything used exclusively for debugging purposes  *
154  * is defined here to avoid having such mess scattered around the file.  *
155  *************************************************************************/
156 #ifdef	PMAP_DEBUG
157 /*
158  * To aid the debugging process, macros should be expanded into smaller steps
159  * that accomplish the same goal, yet provide convenient places for placing
160  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
161  * 'INLINE' keyword is defined to an empty string.  This way, any function
162  * defined to be a 'static INLINE' will become 'outlined' and compiled as
163  * a separate function, which is much easier to debug.
164  */
165 #define	INLINE	/* nothing */
166 
167 /*
168  * It is sometimes convenient to watch the activity of a particular table
169  * in the system.  The following variables are used for that purpose.
170  */
171 a_tmgr_t *pmap_watch_atbl = 0;
172 b_tmgr_t *pmap_watch_btbl = 0;
173 c_tmgr_t *pmap_watch_ctbl = 0;
174 
175 int pmap_debug = 0;
176 #define DPRINT(args) if (pmap_debug) printf args
177 
178 #else	/********** Stuff below is defined if NOT debugging **************/
179 
180 #define	INLINE	inline
181 #define DPRINT(args)  /* nada */
182 
183 #endif	/* PMAP_DEBUG */
184 /*********************** END OF DEBUGGING DEFINITIONS ********************/
185 
186 /*** Management Structure - Memory Layout
187  * For every MMU table in the sun3x pmap system there must be a way to
188  * manage it; we must know which process is using it, what other tables
189  * depend on it, and whether or not it contains any locked pages.  This
190  * is solved by the creation of 'table management'  or 'tmgr'
191  * structures.  One for each MMU table in the system.
192  *
193  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
194  *
195  *      towards lower memory
196  * kernAbase -> +-------------------------------------------------------+
197  *              | Kernel     MMU A level table                          |
198  * kernBbase -> +-------------------------------------------------------+
199  *              | Kernel     MMU B level tables                         |
200  * kernCbase -> +-------------------------------------------------------+
201  *              |                                                       |
202  *              | Kernel     MMU C level tables                         |
203  *              |                                                       |
204  * mmuCbase  -> +-------------------------------------------------------+
205  *              | User       MMU C level tables                         |
206  * mmuAbase  -> +-------------------------------------------------------+
207  *              |                                                       |
208  *              | User       MMU A level tables                         |
209  *              |                                                       |
210  * mmuBbase  -> +-------------------------------------------------------+
211  *              | User       MMU B level tables                         |
212  * tmgrAbase -> +-------------------------------------------------------+
213  *              |  TMGR A level table structures                        |
214  * tmgrBbase -> +-------------------------------------------------------+
215  *              |  TMGR B level table structures                        |
216  * tmgrCbase -> +-------------------------------------------------------+
217  *              |  TMGR C level table structures                        |
218  * pvbase    -> +-------------------------------------------------------+
219  *              |  Physical to Virtual mapping table (list heads)       |
220  * pvebase   -> +-------------------------------------------------------+
221  *              |  Physical to Virtual mapping table (list elements)    |
222  *              |                                                       |
223  *              +-------------------------------------------------------+
224  *      towards higher memory
225  *
226  * For every A table in the MMU A area, there will be a corresponding
227  * a_tmgr structure in the TMGR A area.  The same will be true for
228  * the B and C tables.  This arrangement will make it easy to find the
229  * controling tmgr structure for any table in the system by use of
230  * (relatively) simple macros.
231  */
232 
233 /*
234  * Global variables for storing the base addresses for the areas
235  * labeled above.
236  */
237 static vaddr_t  	kernAphys;
238 static mmu_long_dte_t	*kernAbase;
239 static mmu_short_dte_t	*kernBbase;
240 static mmu_short_pte_t	*kernCbase;
241 static mmu_short_pte_t	*mmuCbase;
242 static mmu_short_dte_t	*mmuBbase;
243 static mmu_long_dte_t	*mmuAbase;
244 static a_tmgr_t		*Atmgrbase;
245 static b_tmgr_t		*Btmgrbase;
246 static c_tmgr_t		*Ctmgrbase;
247 static pv_t 		*pvbase;
248 static pv_elem_t	*pvebase;
249 struct pmap 		kernel_pmap;
250 
251 /*
252  * This holds the CRP currently loaded into the MMU.
253  */
254 struct mmu_rootptr kernel_crp;
255 
256 /*
257  * Just all around global variables.
258  */
259 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
260 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
261 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
262 
263 
264 /*
265  * Flags used to mark the safety/availability of certain operations or
266  * resources.
267  */
268 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
269 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
270 
271 /*
272  * XXX:  For now, retain the traditional variables that were
273  * used in the old pmap/vm interface (without NONCONTIG).
274  */
275 /* Kernel virtual address space available: */
276 vaddr_t	virtual_avail, virtual_end;
277 /* Physical address space available: */
278 paddr_t	avail_start, avail_end;
279 
280 /* This keep track of the end of the contiguously mapped range. */
281 vaddr_t virtual_contig_end;
282 
283 /* Physical address used by pmap_next_page() */
284 paddr_t avail_next;
285 
286 /* These are used by pmap_copy_page(), etc. */
287 vaddr_t tmp_vpages[2];
288 
289 /* memory pool for pmap structures */
290 struct pool	pmap_pmap_pool;
291 
292 /*
293  * The 3/80 is the only member of the sun3x family that has non-contiguous
294  * physical memory.  Memory is divided into 4 banks which are physically
295  * locatable on the system board.  Although the size of these banks varies
296  * with the size of memory they contain, their base addresses are
297  * permenently fixed.  The following structure, which describes these
298  * banks, is initialized by pmap_bootstrap() after it reads from a similar
299  * structure provided by the ROM Monitor.
300  *
301  * For the other machines in the sun3x architecture which do have contiguous
302  * RAM, this list will have only one entry, which will describe the entire
303  * range of available memory.
304  */
305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
306 u_int total_phys_mem;
307 
308 /*************************************************************************/
309 
310 /*
311  * XXX - Should "tune" these based on statistics.
312  *
313  * My first guess about the relative numbers of these needed is
314  * based on the fact that a "typical" process will have several
315  * pages mapped at low virtual addresses (text, data, bss), then
316  * some mapped shared libraries, and then some stack pages mapped
317  * near the high end of the VA space.  Each process can use only
318  * one A table, and most will use only two B tables (maybe three)
319  * and probably about four C tables.  Therefore, the first guess
320  * at the relative numbers of these needed is 1:2:4 -gwr
321  *
322  * The number of C tables needed is closely related to the amount
323  * of physical memory available plus a certain amount attributable
324  * to the use of double mappings.  With a few simulation statistics
325  * we can find a reasonably good estimation of this unknown value.
326  * Armed with that and the above ratios, we have a good idea of what
327  * is needed at each level. -j
328  *
329  * Note: It is not physical memory memory size, but the total mapped
330  * virtual space required by the combined working sets of all the
331  * currently _runnable_ processes.  (Sleeping ones don't count.)
332  * The amount of physical memory should be irrelevant. -gwr
333  */
334 #ifdef	FIXED_NTABLES
335 #define NUM_A_TABLES	16
336 #define NUM_B_TABLES	32
337 #define NUM_C_TABLES	64
338 #else
339 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
340 #endif	/* FIXED_NTABLES */
341 
342 /*
343  * This determines our total virtual mapping capacity.
344  * Yes, it is a FIXED value so we can pre-allocate.
345  */
346 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
347 
348 /*
349  * The size of the Kernel Virtual Address Space (KVAS)
350  * for purposes of MMU table allocation is -KERNBASE
351  * (length from KERNBASE to 0xFFFFffff)
352  */
353 #define	KVAS_SIZE		(-KERNBASE)
354 
355 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
356 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
357 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
358 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
359 
360 /*************************** MISCELANEOUS MACROS *************************/
361 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
362 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
363 #define pmap_add_ref(pmap) ++pmap->pm_refcount
364 #define pmap_del_ref(pmap) --pmap->pm_refcount
365 #define pmap_refcount(pmap) pmap->pm_refcount
366 
367 void *pmap_bootstrap_alloc(int);
368 
369 static INLINE void *mmu_ptov __P((paddr_t));
370 static INLINE paddr_t mmu_vtop __P((void *));
371 
372 #if	0
373 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
374 #endif /* 0 */
375 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
376 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
377 
378 static INLINE pv_t *pa2pv __P((paddr_t));
379 static INLINE int   pteidx __P((mmu_short_pte_t *));
380 static INLINE pmap_t current_pmap __P((void));
381 
382 /*
383  * We can always convert between virtual and physical addresses
384  * for anything in the range [KERNBASE ... avail_start] because
385  * that range is GUARANTEED to be mapped linearly.
386  * We rely heavily upon this feature!
387  */
388 static INLINE void *
389 mmu_ptov(pa)
390 	paddr_t pa;
391 {
392 	vaddr_t va;
393 
394 	va = (pa + KERNBASE);
395 #ifdef	PMAP_DEBUG
396 	if ((va < KERNBASE) || (va >= virtual_contig_end))
397 		panic("mmu_ptov");
398 #endif
399 	return ((void*)va);
400 }
401 
402 static INLINE paddr_t
403 mmu_vtop(vva)
404 	void *vva;
405 {
406 	vaddr_t va;
407 
408 	va = (vaddr_t)vva;
409 #ifdef	PMAP_DEBUG
410 	if ((va < KERNBASE) || (va >= virtual_contig_end))
411 		panic("mmu_vtop");
412 #endif
413 	return (va - KERNBASE);
414 }
415 
416 /*
417  * These macros map MMU tables to their corresponding manager structures.
418  * They are needed quite often because many of the pointers in the pmap
419  * system reference MMU tables and not the structures that control them.
420  * There needs to be a way to find one when given the other and these
421  * macros do so by taking advantage of the memory layout described above.
422  * Here's a quick step through the first macro, mmuA2tmgr():
423  *
424  * 1) find the offset of the given MMU A table from the base of its table
425  *    pool (table - mmuAbase).
426  * 2) convert this offset into a table index by dividing it by the
427  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
428  * 3) use this index to select the corresponding 'A' table manager
429  *    structure from the 'A' table manager pool (Atmgrbase[index]).
430  */
431 /*  This function is not currently used. */
432 #if	0
433 static INLINE a_tmgr_t *
434 mmuA2tmgr(mmuAtbl)
435 	mmu_long_dte_t *mmuAtbl;
436 {
437 	int idx;
438 
439 	/* Which table is this in? */
440 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
441 #ifdef	PMAP_DEBUG
442 	if ((idx < 0) || (idx >= NUM_A_TABLES))
443 		panic("mmuA2tmgr");
444 #endif
445 	return (&Atmgrbase[idx]);
446 }
447 #endif	/* 0 */
448 
449 static INLINE b_tmgr_t *
450 mmuB2tmgr(mmuBtbl)
451 	mmu_short_dte_t *mmuBtbl;
452 {
453 	int idx;
454 
455 	/* Which table is this in? */
456 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
457 #ifdef	PMAP_DEBUG
458 	if ((idx < 0) || (idx >= NUM_B_TABLES))
459 		panic("mmuB2tmgr");
460 #endif
461 	return (&Btmgrbase[idx]);
462 }
463 
464 /* mmuC2tmgr			INTERNAL
465  **
466  * Given a pte known to belong to a C table, return the address of
467  * that table's management structure.
468  */
469 static INLINE c_tmgr_t *
470 mmuC2tmgr(mmuCtbl)
471 	mmu_short_pte_t *mmuCtbl;
472 {
473 	int idx;
474 
475 	/* Which table is this in? */
476 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
477 #ifdef	PMAP_DEBUG
478 	if ((idx < 0) || (idx >= NUM_C_TABLES))
479 		panic("mmuC2tmgr");
480 #endif
481 	return (&Ctmgrbase[idx]);
482 }
483 
484 /* This is now a function call below.
485  * #define pa2pv(pa) \
486  *	(&pvbase[(unsigned long)\
487  *		m68k_btop(pa)\
488  *	])
489  */
490 
491 /* pa2pv			INTERNAL
492  **
493  * Return the pv_list_head element which manages the given physical
494  * address.
495  */
496 static INLINE pv_t *
497 pa2pv(pa)
498 	paddr_t pa;
499 {
500 	struct pmap_physmem_struct *bank;
501 	int idx;
502 
503 	bank = &avail_mem[0];
504 	while (pa >= bank->pmem_end)
505 		bank = bank->pmem_next;
506 
507 	pa -= bank->pmem_start;
508 	idx = bank->pmem_pvbase + m68k_btop(pa);
509 #ifdef	PMAP_DEBUG
510 	if ((idx < 0) || (idx >= physmem))
511 		panic("pa2pv");
512 #endif
513 	return &pvbase[idx];
514 }
515 
516 /* pteidx			INTERNAL
517  **
518  * Return the index of the given PTE within the entire fixed table of
519  * PTEs.
520  */
521 static INLINE int
522 pteidx(pte)
523 	mmu_short_pte_t *pte;
524 {
525 	return (pte - kernCbase);
526 }
527 
528 /*
529  * This just offers a place to put some debugging checks,
530  * and reduces the number of places "curlwp" appears...
531  */
532 static INLINE pmap_t
533 current_pmap()
534 {
535 	struct vmspace *vm;
536 	struct vm_map *map;
537 	pmap_t	pmap;
538 
539 	if (curlwp == NULL)
540 		pmap = &kernel_pmap;
541 	else {
542 		vm = curproc->p_vmspace;
543 		map = &vm->vm_map;
544 		pmap = vm_map_pmap(map);
545 	}
546 
547 	return (pmap);
548 }
549 
550 
551 /*************************** FUNCTION DEFINITIONS ************************
552  * These appear here merely for the compiler to enforce type checking on *
553  * all function calls.                                                   *
554  *************************************************************************/
555 
556 /** Internal functions
557  ** Most functions used only within this module are defined in
558  **   pmap_pvt.h (why not here if used only here?)
559  **/
560 static void pmap_page_upload __P((void));
561 
562 /** Interface functions
563  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
564  **   defined.
565  **/
566 void pmap_pinit __P((pmap_t));
567 void pmap_release __P((pmap_t));
568 
569 /********************************** CODE ********************************
570  * Functions that are called from other parts of the kernel are labeled *
571  * as 'INTERFACE' functions.  Functions that are only called from       *
572  * within the pmap module are labeled as 'INTERNAL' functions.          *
573  * Functions that are internal, but are not (currently) used at all are *
574  * labeled 'INTERNAL_X'.                                                *
575  ************************************************************************/
576 
577 /* pmap_bootstrap			INTERNAL
578  **
579  * Initializes the pmap system.  Called at boot time from
580  * locore2.c:_vm_init()
581  *
582  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
583  *           system implement pmap_steal_memory() is redundant.
584  *           Don't release this code without removing one or the other!
585  */
586 void
587 pmap_bootstrap(nextva)
588 	vaddr_t nextva;
589 {
590 	struct physmemory *membank;
591 	struct pmap_physmem_struct *pmap_membank;
592 	vaddr_t va, eva;
593 	paddr_t pa;
594 	int b, c, i, j;	/* running table counts */
595 	int size, resvmem;
596 
597 	/*
598 	 * This function is called by __bootstrap after it has
599 	 * determined the type of machine and made the appropriate
600 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
601 	 * by that.)  It allocates and sets up enough of the pmap system
602 	 * to manage the kernel's address space.
603 	 */
604 
605 	/*
606 	 * Determine the range of kernel virtual and physical
607 	 * space available. Note that we ABSOLUTELY DEPEND on
608 	 * the fact that the first bank of memory (4MB) is
609 	 * mapped linearly to KERNBASE (which we guaranteed in
610 	 * the first instructions of locore.s).
611 	 * That is plenty for our bootstrap work.
612 	 */
613 	virtual_avail = m68k_round_page(nextva);
614 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
615 	virtual_end = VM_MAX_KERNEL_ADDRESS;
616 	/* Don't need avail_start til later. */
617 
618 	/* We may now call pmap_bootstrap_alloc(). */
619 	bootstrap_alloc_enabled = TRUE;
620 
621 	/*
622 	 * This is a somewhat unwrapped loop to deal with
623 	 * copying the PROM's 'phsymem' banks into the pmap's
624 	 * banks.  The following is always assumed:
625 	 * 1. There is always at least one bank of memory.
626 	 * 2. There is always a last bank of memory, and its
627 	 *    pmem_next member must be set to NULL.
628 	 */
629 	membank = romVectorPtr->v_physmemory;
630 	pmap_membank = avail_mem;
631 	total_phys_mem = 0;
632 
633 	for (;;) { /* break on !membank */
634 		pmap_membank->pmem_start = membank->address;
635 		pmap_membank->pmem_end = membank->address + membank->size;
636 		total_phys_mem += membank->size;
637 		membank = membank->next;
638 		if (!membank)
639 			break;
640 		/* This silly syntax arises because pmap_membank
641 		 * is really a pre-allocated array, but it is put into
642 		 * use as a linked list.
643 		 */
644 		pmap_membank->pmem_next = pmap_membank + 1;
645 		pmap_membank = pmap_membank->pmem_next;
646 	}
647 	/* This is the last element. */
648 	pmap_membank->pmem_next = NULL;
649 
650 	/*
651 	 * Note: total_phys_mem, physmem represent
652 	 * actual physical memory, including that
653 	 * reserved for the PROM monitor.
654 	 */
655 	physmem = btoc(total_phys_mem);
656 
657 	/*
658 	 * Avail_end is set to the first byte of physical memory
659 	 * after the end of the last bank.  We use this only to
660 	 * determine if a physical address is "managed" memory.
661 	 * This address range should be reduced to prevent the
662 	 * physical pages needed by the PROM monitor from being used
663 	 * in the VM system.
664 	 */
665 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
666 	resvmem = m68k_round_page(resvmem);
667 	avail_end = pmap_membank->pmem_end - resvmem;
668 
669 	/*
670 	 * First allocate enough kernel MMU tables to map all
671 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
672 	 * Note: All must be aligned on 256 byte boundaries.
673 	 * Start with the level-A table (one of those).
674 	 */
675 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
676 	kernAbase = pmap_bootstrap_alloc(size);
677 	memset(kernAbase, 0, size);
678 
679 	/* Now the level-B kernel tables... */
680 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
681 	kernBbase = pmap_bootstrap_alloc(size);
682 	memset(kernBbase, 0, size);
683 
684 	/* Now the level-C kernel tables... */
685 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
686 	kernCbase = pmap_bootstrap_alloc(size);
687 	memset(kernCbase, 0, size);
688 	/*
689 	 * Note: In order for the PV system to work correctly, the kernel
690 	 * and user-level C tables must be allocated contiguously.
691 	 * Nothing should be allocated between here and the allocation of
692 	 * mmuCbase below.  XXX: Should do this as one allocation, and
693 	 * then compute a pointer for mmuCbase instead of this...
694 	 *
695 	 * Allocate user MMU tables.
696 	 * These must be contiguous with the preceding.
697 	 */
698 
699 #ifndef	FIXED_NTABLES
700 	/*
701 	 * The number of user-level C tables that should be allocated is
702 	 * related to the size of physical memory.  In general, there should
703 	 * be enough tables to map four times the amount of available RAM.
704 	 * The extra amount is needed because some table space is wasted by
705 	 * fragmentation.
706 	 */
707 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
708 	NUM_B_TABLES = NUM_C_TABLES / 2;
709 	NUM_A_TABLES = NUM_B_TABLES / 2;
710 #endif	/* !FIXED_NTABLES */
711 
712 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
713 	mmuCbase = pmap_bootstrap_alloc(size);
714 
715 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
716 	mmuBbase = pmap_bootstrap_alloc(size);
717 
718 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
719 	mmuAbase = pmap_bootstrap_alloc(size);
720 
721 	/*
722 	 * Fill in the never-changing part of the kernel tables.
723 	 * For simplicity, the kernel's mappings will be editable as a
724 	 * flat array of page table entries at kernCbase.  The
725 	 * higher level 'A' and 'B' tables must be initialized to point
726 	 * to this lower one.
727 	 */
728 	b = c = 0;
729 
730 	/*
731 	 * Invalidate all mappings below KERNBASE in the A table.
732 	 * This area has already been zeroed out, but it is good
733 	 * practice to explicitly show that we are interpreting
734 	 * it as a list of A table descriptors.
735 	 */
736 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
737 		kernAbase[i].addr.raw = 0;
738 	}
739 
740 	/*
741 	 * Set up the kernel A and B tables so that they will reference the
742 	 * correct spots in the contiguous table of PTEs allocated for the
743 	 * kernel's virtual memory space.
744 	 */
745 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
746 		kernAbase[i].attr.raw =
747 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
748 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
749 
750 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
751 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
752 				| MMU_DT_SHORT;
753 			c += MMU_C_TBL_SIZE;
754 		}
755 		b += MMU_B_TBL_SIZE;
756 	}
757 
758 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
759 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
760 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
761 
762 	/*
763 	 * We are now done with pmap_bootstrap_alloc().  Round up
764 	 * `virtual_avail' to the nearest page, and set the flag
765 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
766 	 */
767 	pmap_bootstrap_aalign(PAGE_SIZE);
768 	bootstrap_alloc_enabled = FALSE;
769 
770 	/*
771 	 * Now that we are done with pmap_bootstrap_alloc(), we
772 	 * must save the virtual and physical addresses of the
773 	 * end of the linearly mapped range, which are stored in
774 	 * virtual_contig_end and avail_start, respectively.
775 	 * These variables will never change after this point.
776 	 */
777 	virtual_contig_end = virtual_avail;
778 	avail_start = virtual_avail - KERNBASE;
779 
780 	/*
781 	 * `avail_next' is a running pointer used by pmap_next_page() to
782 	 * keep track of the next available physical page to be handed
783 	 * to the VM system during its initialization, in which it
784 	 * asks for physical pages, one at a time.
785 	 */
786 	avail_next = avail_start;
787 
788 	/*
789 	 * Now allocate some virtual addresses, but not the physical pages
790 	 * behind them.  Note that virtual_avail is already page-aligned.
791 	 *
792 	 * tmp_vpages[] is an array of two virtual pages used for temporary
793 	 * kernel mappings in the pmap module to facilitate various physical
794 	 * address-oritented operations.
795 	 */
796 	tmp_vpages[0] = virtual_avail;
797 	virtual_avail += PAGE_SIZE;
798 	tmp_vpages[1] = virtual_avail;
799 	virtual_avail += PAGE_SIZE;
800 
801 	/** Initialize the PV system **/
802 	pmap_init_pv();
803 
804 	/*
805 	 * Fill in the kernel_pmap structure and kernel_crp.
806 	 */
807 	kernAphys = mmu_vtop(kernAbase);
808 	kernel_pmap.pm_a_tmgr = NULL;
809 	kernel_pmap.pm_a_phys = kernAphys;
810 	kernel_pmap.pm_refcount = 1; /* always in use */
811 	simple_lock_init(&kernel_pmap.pm_lock);
812 
813 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
814 	kernel_crp.rp_addr = kernAphys;
815 
816 	/*
817 	 * Now pmap_enter_kernel() may be used safely and will be
818 	 * the main interface used hereafter to modify the kernel's
819 	 * virtual address space.  Note that since we are still running
820 	 * under the PROM's address table, none of these table modifications
821 	 * actually take effect until pmap_takeover_mmu() is called.
822 	 *
823 	 * Note: Our tables do NOT have the PROM linear mappings!
824 	 * Only the mappings created here exist in our tables, so
825 	 * remember to map anything we expect to use.
826 	 */
827 	va = (vaddr_t)KERNBASE;
828 	pa = 0;
829 
830 	/*
831 	 * The first page of the kernel virtual address space is the msgbuf
832 	 * page.  The page attributes (data, non-cached) are set here, while
833 	 * the address is assigned to this global pointer in cpu_startup().
834 	 * It is non-cached, mostly due to paranoia.
835 	 */
836 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
837 	va += PAGE_SIZE; pa += PAGE_SIZE;
838 
839 	/* Next page is used as the temporary stack. */
840 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
841 	va += PAGE_SIZE; pa += PAGE_SIZE;
842 
843 	/*
844 	 * Map all of the kernel's text segment as read-only and cacheable.
845 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
846 	 * of kernel text and the first bytes of kernel data will often be
847 	 * sharing the same page.  Therefore, the last page of kernel text
848 	 * has to be mapped as read/write, to accomodate the data.
849 	 */
850 	eva = m68k_trunc_page((vaddr_t)etext);
851 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
852 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
853 
854 	/*
855 	 * Map all of the kernel's data as read/write and cacheable.
856 	 * This includes: data, BSS, symbols, and everything in the
857 	 * contiguous memory used by pmap_bootstrap_alloc()
858 	 */
859 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
860 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
861 
862 	/*
863 	 * At this point we are almost ready to take over the MMU.  But first
864 	 * we must save the PROM's address space in our map, as we call its
865 	 * routines and make references to its data later in the kernel.
866 	 */
867 	pmap_bootstrap_copyprom();
868 	pmap_takeover_mmu();
869 	pmap_bootstrap_setprom();
870 
871 	/* Notify the VM system of our page size. */
872 	uvmexp.pagesize = PAGE_SIZE;
873 	uvm_setpagesize();
874 
875 	pmap_page_upload();
876 }
877 
878 
879 /* pmap_alloc_usermmu			INTERNAL
880  **
881  * Called from pmap_bootstrap() to allocate MMU tables that will
882  * eventually be used for user mappings.
883  */
884 void
885 pmap_alloc_usermmu()
886 {
887 	/* XXX: Moved into caller. */
888 }
889 
890 /* pmap_alloc_pv			INTERNAL
891  **
892  * Called from pmap_bootstrap() to allocate the physical
893  * to virtual mapping list.  Each physical page of memory
894  * in the system has a corresponding element in this list.
895  */
896 void
897 pmap_alloc_pv()
898 {
899 	int	i;
900 	unsigned int	total_mem;
901 
902 	/*
903 	 * Allocate a pv_head structure for every page of physical
904 	 * memory that will be managed by the system.  Since memory on
905 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
906 	 * count by subtraction of the lowest available address from the
907 	 * highest, but rather we have to step through each memory
908 	 * bank and add the number of pages in each to the total.
909 	 *
910 	 * At this time we also initialize the offset of each bank's
911 	 * starting pv_head within the pv_head list so that the physical
912 	 * memory state routines (pmap_is_referenced(),
913 	 * pmap_is_modified(), et al.) can quickly find coresponding
914 	 * pv_heads in spite of the non-contiguity.
915 	 */
916 	total_mem = 0;
917 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
918 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
919 		total_mem += avail_mem[i].pmem_end -
920 			avail_mem[i].pmem_start;
921 		if (avail_mem[i].pmem_next == NULL)
922 			break;
923 	}
924 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
925 		m68k_btop(total_phys_mem));
926 }
927 
928 /* pmap_alloc_usertmgr			INTERNAL
929  **
930  * Called from pmap_bootstrap() to allocate the structures which
931  * facilitate management of user MMU tables.  Each user MMU table
932  * in the system has one such structure associated with it.
933  */
934 void
935 pmap_alloc_usertmgr()
936 {
937 	/* Allocate user MMU table managers */
938 	/* It would be a lot simpler to just make these BSS, but */
939 	/* we may want to change their size at boot time... -j */
940 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
941 		* NUM_A_TABLES);
942 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
943 		* NUM_B_TABLES);
944 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
945 		* NUM_C_TABLES);
946 
947 	/*
948 	 * Allocate PV list elements for the physical to virtual
949 	 * mapping system.
950 	 */
951 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
952 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
953 }
954 
955 /* pmap_bootstrap_copyprom()			INTERNAL
956  **
957  * Copy the PROM mappings into our own tables.  Note, we
958  * can use physical addresses until __bootstrap returns.
959  */
960 void
961 pmap_bootstrap_copyprom()
962 {
963 	struct sunromvec *romp;
964 	int *mon_ctbl;
965 	mmu_short_pte_t *kpte;
966 	int i, len;
967 
968 	romp = romVectorPtr;
969 
970 	/*
971 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
972 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
973 	 */
974 	mon_ctbl = *romp->monptaddr;
975 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
976 	kpte = &kernCbase[i];
977 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
978 
979 	for (i = 0; i < len; i++) {
980 		kpte[i].attr.raw = mon_ctbl[i];
981 	}
982 
983 	/*
984 	 * Copy the mappings at MON_DVMA_BASE (to the end).
985 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
986 	 * Actually, we only want the last page, which the
987 	 * PROM has set up for use by the "ie" driver.
988 	 * (The i82686 needs its SCP there.)
989 	 * If we copy all the mappings, pmap_enter_kernel
990 	 * may complain about finding valid PTEs that are
991 	 * not recorded in our PV lists...
992 	 */
993 	mon_ctbl = *romp->shadowpteaddr;
994 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
995 	kpte = &kernCbase[i];
996 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
997 	for (i = (len-1); i < len; i++) {
998 		kpte[i].attr.raw = mon_ctbl[i];
999 	}
1000 }
1001 
1002 /* pmap_takeover_mmu			INTERNAL
1003  **
1004  * Called from pmap_bootstrap() after it has copied enough of the
1005  * PROM mappings into the kernel map so that we can use our own
1006  * MMU table.
1007  */
1008 void
1009 pmap_takeover_mmu()
1010 {
1011 
1012 	loadcrp(&kernel_crp);
1013 }
1014 
1015 /* pmap_bootstrap_setprom()			INTERNAL
1016  **
1017  * Set the PROM mappings so it can see kernel space.
1018  * Note that physical addresses are used here, which
1019  * we can get away with because this runs with the
1020  * low 1GB set for transparent translation.
1021  */
1022 void
1023 pmap_bootstrap_setprom()
1024 {
1025 	mmu_long_dte_t *mon_dte;
1026 	extern struct mmu_rootptr mon_crp;
1027 	int i;
1028 
1029 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1030 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1031 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1032 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1033 	}
1034 }
1035 
1036 
1037 /* pmap_init			INTERFACE
1038  **
1039  * Called at the end of vm_init() to set up the pmap system to go
1040  * into full time operation.  All initialization of kernel_pmap
1041  * should be already done by now, so this should just do things
1042  * needed for user-level pmaps to work.
1043  */
1044 void
1045 pmap_init()
1046 {
1047 	/** Initialize the manager pools **/
1048 	TAILQ_INIT(&a_pool);
1049 	TAILQ_INIT(&b_pool);
1050 	TAILQ_INIT(&c_pool);
1051 
1052 	/**************************************************************
1053 	 * Initialize all tmgr structures and MMU tables they manage. *
1054 	 **************************************************************/
1055 	/** Initialize A tables **/
1056 	pmap_init_a_tables();
1057 	/** Initialize B tables **/
1058 	pmap_init_b_tables();
1059 	/** Initialize C tables **/
1060 	pmap_init_c_tables();
1061 
1062 	/** Initialize the pmap pools **/
1063 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1064 	    &pool_allocator_nointr);
1065 }
1066 
1067 /* pmap_init_a_tables()			INTERNAL
1068  **
1069  * Initializes all A managers, their MMU A tables, and inserts
1070  * them into the A manager pool for use by the system.
1071  */
1072 void
1073 pmap_init_a_tables()
1074 {
1075 	int i;
1076 	a_tmgr_t *a_tbl;
1077 
1078 	for (i=0; i < NUM_A_TABLES; i++) {
1079 		/* Select the next available A manager from the pool */
1080 		a_tbl = &Atmgrbase[i];
1081 
1082 		/*
1083 		 * Clear its parent entry.  Set its wired and valid
1084 		 * entry count to zero.
1085 		 */
1086 		a_tbl->at_parent = NULL;
1087 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1088 
1089 		/* Assign it the next available MMU A table from the pool */
1090 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1091 
1092 		/*
1093 		 * Initialize the MMU A table with the table in the `proc0',
1094 		 * or kernel, mapping.  This ensures that every process has
1095 		 * the kernel mapped in the top part of its address space.
1096 		 */
1097 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1098 			sizeof(mmu_long_dte_t));
1099 
1100 		/*
1101 		 * Finally, insert the manager into the A pool,
1102 		 * making it ready to be used by the system.
1103 		 */
1104 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1105     }
1106 }
1107 
1108 /* pmap_init_b_tables()			INTERNAL
1109  **
1110  * Initializes all B table managers, their MMU B tables, and
1111  * inserts them into the B manager pool for use by the system.
1112  */
1113 void
1114 pmap_init_b_tables()
1115 {
1116 	int i,j;
1117 	b_tmgr_t *b_tbl;
1118 
1119 	for (i=0; i < NUM_B_TABLES; i++) {
1120 		/* Select the next available B manager from the pool */
1121 		b_tbl = &Btmgrbase[i];
1122 
1123 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1124 		b_tbl->bt_pidx = 0;		/* parent index,      */
1125 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1126 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1127 
1128 		/* Assign it the next available MMU B table from the pool */
1129 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1130 
1131 		/* Invalidate every descriptor in the table */
1132 		for (j=0; j < MMU_B_TBL_SIZE; j++)
1133 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1134 
1135 		/* Insert the manager into the B pool */
1136 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1137 	}
1138 }
1139 
1140 /* pmap_init_c_tables()			INTERNAL
1141  **
1142  * Initializes all C table managers, their MMU C tables, and
1143  * inserts them into the C manager pool for use by the system.
1144  */
1145 void
1146 pmap_init_c_tables()
1147 {
1148 	int i,j;
1149 	c_tmgr_t *c_tbl;
1150 
1151 	for (i=0; i < NUM_C_TABLES; i++) {
1152 		/* Select the next available C manager from the pool */
1153 		c_tbl = &Ctmgrbase[i];
1154 
1155 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1156 		c_tbl->ct_pidx = 0;		/* parent index,      */
1157 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1158 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1159 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1160 		c_tbl->ct_va = 0;		/* base of managed range */
1161 
1162 		/* Assign it the next available MMU C table from the pool */
1163 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1164 
1165 		for (j=0; j < MMU_C_TBL_SIZE; j++)
1166 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1167 
1168 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1169 	}
1170 }
1171 
1172 /* pmap_init_pv()			INTERNAL
1173  **
1174  * Initializes the Physical to Virtual mapping system.
1175  */
1176 void
1177 pmap_init_pv()
1178 {
1179 	int	i;
1180 
1181 	/* Initialize every PV head. */
1182 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1183 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1184 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1185 	}
1186 }
1187 
1188 /* get_a_table			INTERNAL
1189  **
1190  * Retrieve and return a level A table for use in a user map.
1191  */
1192 a_tmgr_t *
1193 get_a_table()
1194 {
1195 	a_tmgr_t *tbl;
1196 	pmap_t pmap;
1197 
1198 	/* Get the top A table in the pool */
1199 	tbl = a_pool.tqh_first;
1200 	if (tbl == NULL) {
1201 		/*
1202 		 * XXX - Instead of panicing here and in other get_x_table
1203 		 * functions, we do have the option of sleeping on the head of
1204 		 * the table pool.  Any function which updates the table pool
1205 		 * would then issue a wakeup() on the head, thus waking up any
1206 		 * processes waiting for a table.
1207 		 *
1208 		 * Actually, the place to sleep would be when some process
1209 		 * asks for a "wired" mapping that would run us short of
1210 		 * mapping resources.  This design DEPENDS on always having
1211 		 * some mapping resources in the pool for stealing, so we
1212 		 * must make sure we NEVER let the pool become empty. -gwr
1213 		 */
1214 		panic("get_a_table: out of A tables.");
1215 	}
1216 
1217 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1218 	/*
1219 	 * If the table has a non-null parent pointer then it is in use.
1220 	 * Forcibly abduct it from its parent and clear its entries.
1221 	 * No re-entrancy worries here.  This table would not be in the
1222 	 * table pool unless it was available for use.
1223 	 *
1224 	 * Note that the second argument to free_a_table() is FALSE.  This
1225 	 * indicates that the table should not be relinked into the A table
1226 	 * pool.  That is a job for the function that called us.
1227 	 */
1228 	if (tbl->at_parent) {
1229 		pmap = tbl->at_parent;
1230 		free_a_table(tbl, FALSE);
1231 		pmap->pm_a_tmgr = NULL;
1232 		pmap->pm_a_phys = kernAphys;
1233 	}
1234 	return tbl;
1235 }
1236 
1237 /* get_b_table			INTERNAL
1238  **
1239  * Return a level B table for use.
1240  */
1241 b_tmgr_t *
1242 get_b_table()
1243 {
1244 	b_tmgr_t *tbl;
1245 
1246 	/* See 'get_a_table' for comments. */
1247 	tbl = b_pool.tqh_first;
1248 	if (tbl == NULL)
1249 		panic("get_b_table: out of B tables.");
1250 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1251 	if (tbl->bt_parent) {
1252 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1253 		tbl->bt_parent->at_ecnt--;
1254 		free_b_table(tbl, FALSE);
1255 	}
1256 	return tbl;
1257 }
1258 
1259 /* get_c_table			INTERNAL
1260  **
1261  * Return a level C table for use.
1262  */
1263 c_tmgr_t *
1264 get_c_table()
1265 {
1266 	c_tmgr_t *tbl;
1267 
1268 	/* See 'get_a_table' for comments */
1269 	tbl = c_pool.tqh_first;
1270 	if (tbl == NULL)
1271 		panic("get_c_table: out of C tables.");
1272 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1273 	if (tbl->ct_parent) {
1274 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1275 		tbl->ct_parent->bt_ecnt--;
1276 		free_c_table(tbl, FALSE);
1277 	}
1278 	return tbl;
1279 }
1280 
1281 /*
1282  * The following 'free_table' and 'steal_table' functions are called to
1283  * detach tables from their current obligations (parents and children) and
1284  * prepare them for reuse in another mapping.
1285  *
1286  * Free_table is used when the calling function will handle the fate
1287  * of the parent table, such as returning it to the free pool when it has
1288  * no valid entries.  Functions that do not want to handle this should
1289  * call steal_table, in which the parent table's descriptors and entry
1290  * count are automatically modified when this table is removed.
1291  */
1292 
1293 /* free_a_table			INTERNAL
1294  **
1295  * Unmaps the given A table and all child tables from their current
1296  * mappings.  Returns the number of pages that were invalidated.
1297  * If 'relink' is true, the function will return the table to the head
1298  * of the available table pool.
1299  *
1300  * Cache note: The MC68851 will automatically flush all
1301  * descriptors derived from a given A table from its
1302  * Automatic Translation Cache (ATC) if we issue a
1303  * 'PFLUSHR' instruction with the base address of the
1304  * table.  This function should do, and does so.
1305  * Note note: We are using an MC68030 - there is no
1306  * PFLUSHR.
1307  */
1308 int
1309 free_a_table(a_tbl, relink)
1310 	a_tmgr_t *a_tbl;
1311 	boolean_t relink;
1312 {
1313 	int i, removed_cnt;
1314 	mmu_long_dte_t	*dte;
1315 	mmu_short_dte_t *dtbl;
1316 	b_tmgr_t	*tmgr;
1317 
1318 	/*
1319 	 * Flush the ATC cache of all cached descriptors derived
1320 	 * from this table.
1321 	 * Sun3x does not use 68851's cached table feature
1322 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1323 	 */
1324 
1325 	/*
1326 	 * Remove any pending cache flushes that were designated
1327 	 * for the pmap this A table belongs to.
1328 	 * a_tbl->parent->atc_flushq[0] = 0;
1329 	 * Not implemented in sun3x.
1330 	 */
1331 
1332 	/*
1333 	 * All A tables in the system should retain a map for the
1334 	 * kernel. If the table contains any valid descriptors
1335 	 * (other than those for the kernel area), invalidate them all,
1336 	 * stopping short of the kernel's entries.
1337 	 */
1338 	removed_cnt = 0;
1339 	if (a_tbl->at_ecnt) {
1340 		dte = a_tbl->at_dtbl;
1341 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
1342 			/*
1343 			 * If a table entry points to a valid B table, free
1344 			 * it and its children.
1345 			 */
1346 			if (MMU_VALID_DT(dte[i])) {
1347 				/*
1348 				 * The following block does several things,
1349 				 * from innermost expression to the
1350 				 * outermost:
1351 				 * 1) It extracts the base (cc 1996)
1352 				 *    address of the B table pointed
1353 				 *    to in the A table entry dte[i].
1354 				 * 2) It converts this base address into
1355 				 *    the virtual address it can be
1356 				 *    accessed with. (all MMU tables point
1357 				 *    to physical addresses.)
1358 				 * 3) It finds the corresponding manager
1359 				 *    structure which manages this MMU table.
1360 				 * 4) It frees the manager structure.
1361 				 *    (This frees the MMU table and all
1362 				 *    child tables. See 'free_b_table' for
1363 				 *    details.)
1364 				 */
1365 				dtbl = mmu_ptov(dte[i].addr.raw);
1366 				tmgr = mmuB2tmgr(dtbl);
1367 				removed_cnt += free_b_table(tmgr, TRUE);
1368 				dte[i].attr.raw = MMU_DT_INVALID;
1369 			}
1370 		}
1371 		a_tbl->at_ecnt = 0;
1372 	}
1373 	if (relink) {
1374 		a_tbl->at_parent = NULL;
1375 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1376 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1377 	}
1378 	return removed_cnt;
1379 }
1380 
1381 /* free_b_table			INTERNAL
1382  **
1383  * Unmaps the given B table and all its children from their current
1384  * mappings.  Returns the number of pages that were invalidated.
1385  * (For comments, see 'free_a_table()').
1386  */
1387 int
1388 free_b_table(b_tbl, relink)
1389 	b_tmgr_t *b_tbl;
1390 	boolean_t relink;
1391 {
1392 	int i, removed_cnt;
1393 	mmu_short_dte_t *dte;
1394 	mmu_short_pte_t	*dtbl;
1395 	c_tmgr_t	*tmgr;
1396 
1397 	removed_cnt = 0;
1398 	if (b_tbl->bt_ecnt) {
1399 		dte = b_tbl->bt_dtbl;
1400 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
1401 			if (MMU_VALID_DT(dte[i])) {
1402 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1403 				tmgr = mmuC2tmgr(dtbl);
1404 				removed_cnt += free_c_table(tmgr, TRUE);
1405 				dte[i].attr.raw = MMU_DT_INVALID;
1406 			}
1407 		}
1408 		b_tbl->bt_ecnt = 0;
1409 	}
1410 
1411 	if (relink) {
1412 		b_tbl->bt_parent = NULL;
1413 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1414 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1415 	}
1416 	return removed_cnt;
1417 }
1418 
1419 /* free_c_table			INTERNAL
1420  **
1421  * Unmaps the given C table from use and returns it to the pool for
1422  * re-use.  Returns the number of pages that were invalidated.
1423  *
1424  * This function preserves any physical page modification information
1425  * contained in the page descriptors within the C table by calling
1426  * 'pmap_remove_pte().'
1427  */
1428 int
1429 free_c_table(c_tbl, relink)
1430 	c_tmgr_t *c_tbl;
1431 	boolean_t relink;
1432 {
1433 	int i, removed_cnt;
1434 
1435 	removed_cnt = 0;
1436 	if (c_tbl->ct_ecnt) {
1437 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
1438 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1439 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1440 				removed_cnt++;
1441 			}
1442 		}
1443 		c_tbl->ct_ecnt = 0;
1444 	}
1445 
1446 	if (relink) {
1447 		c_tbl->ct_parent = NULL;
1448 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1449 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1450 	}
1451 	return removed_cnt;
1452 }
1453 
1454 
1455 /* pmap_remove_pte			INTERNAL
1456  **
1457  * Unmap the given pte and preserve any page modification
1458  * information by transfering it to the pv head of the
1459  * physical page it maps to.  This function does not update
1460  * any reference counts because it is assumed that the calling
1461  * function will do so.
1462  */
1463 void
1464 pmap_remove_pte(pte)
1465 	mmu_short_pte_t *pte;
1466 {
1467 	u_short     pv_idx, targ_idx;
1468 	paddr_t     pa;
1469 	pv_t       *pv;
1470 
1471 	pa = MMU_PTE_PA(*pte);
1472 	if (is_managed(pa)) {
1473 		pv = pa2pv(pa);
1474 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1475 
1476 		/*
1477 		 * If the PTE being removed is the first (or only) PTE in
1478 		 * the list of PTEs currently mapped to this page, remove the
1479 		 * PTE by changing the index found on the PV head.  Otherwise
1480 		 * a linear search through the list will have to be executed
1481 		 * in order to find the PVE which points to the PTE being
1482 		 * removed, so that it may be modified to point to its new
1483 		 * neighbor.
1484 		 */
1485 
1486 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1487 		if (pv_idx == targ_idx) {
1488 			pv->pv_idx = pvebase[targ_idx].pve_next;
1489 		} else {
1490 
1491 			/*
1492 			 * Find the PV element pointing to the target
1493 			 * element.  Note: may have pv_idx==PVE_EOL
1494 			 */
1495 
1496 			for (;;) {
1497 				if (pv_idx == PVE_EOL) {
1498 					goto pv_not_found;
1499 				}
1500 				if (pvebase[pv_idx].pve_next == targ_idx)
1501 					break;
1502 				pv_idx = pvebase[pv_idx].pve_next;
1503 			}
1504 
1505 			/*
1506 			 * At this point, pv_idx is the index of the PV
1507 			 * element just before the target element in the list.
1508 			 * Unlink the target.
1509 			 */
1510 
1511 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1512 		}
1513 
1514 		/*
1515 		 * Save the mod/ref bits of the pte by simply
1516 		 * ORing the entire pte onto the pv_flags member
1517 		 * of the pv structure.
1518 		 * There is no need to use a separate bit pattern
1519 		 * for usage information on the pv head than that
1520 		 * which is used on the MMU ptes.
1521 		 */
1522 
1523 pv_not_found:
1524 		pv->pv_flags |= (u_short) pte->attr.raw;
1525 	}
1526 	pte->attr.raw = MMU_DT_INVALID;
1527 }
1528 
1529 /* pmap_stroll			INTERNAL
1530  **
1531  * Retrieve the addresses of all table managers involved in the mapping of
1532  * the given virtual address.  If the table walk completed successfully,
1533  * return TRUE.  If it was only partially successful, return FALSE.
1534  * The table walk performed by this function is important to many other
1535  * functions in this module.
1536  *
1537  * Note: This function ought to be easier to read.
1538  */
1539 boolean_t
1540 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1541 	pmap_t pmap;
1542 	vaddr_t va;
1543 	a_tmgr_t **a_tbl;
1544 	b_tmgr_t **b_tbl;
1545 	c_tmgr_t **c_tbl;
1546 	mmu_short_pte_t **pte;
1547 	int *a_idx, *b_idx, *pte_idx;
1548 {
1549 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1550 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1551 
1552 	if (pmap == pmap_kernel())
1553 		return FALSE;
1554 
1555 	/* Does the given pmap have its own A table? */
1556 	*a_tbl = pmap->pm_a_tmgr;
1557 	if (*a_tbl == NULL)
1558 		return FALSE; /* No.  Return unknown. */
1559 	/* Does the A table have a valid B table
1560 	 * under the corresponding table entry?
1561 	 */
1562 	*a_idx = MMU_TIA(va);
1563 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1564 	if (!MMU_VALID_DT(*a_dte))
1565 		return FALSE; /* No. Return unknown. */
1566 	/* Yes. Extract B table from the A table. */
1567 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1568 	/* Does the B table have a valid C table
1569 	 * under the corresponding table entry?
1570 	 */
1571 	*b_idx = MMU_TIB(va);
1572 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1573 	if (!MMU_VALID_DT(*b_dte))
1574 		return FALSE; /* No. Return unknown. */
1575 	/* Yes. Extract C table from the B table. */
1576 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1577 	*pte_idx = MMU_TIC(va);
1578 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1579 
1580 	return	TRUE;
1581 }
1582 
1583 /* pmap_enter			INTERFACE
1584  **
1585  * Called by the kernel to map a virtual address
1586  * to a physical address in the given process map.
1587  *
1588  * Note: this function should apply an exclusive lock
1589  * on the pmap system for its duration.  (it certainly
1590  * would save my hair!!)
1591  * This function ought to be easier to read.
1592  */
1593 int
1594 pmap_enter(pmap, va, pa, prot, flags)
1595 	pmap_t	pmap;
1596 	vaddr_t va;
1597 	paddr_t pa;
1598 	vm_prot_t prot;
1599 	int flags;
1600 {
1601 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
1602 	u_short nidx;            /* PV list index                     */
1603 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1604 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1605 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1606 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1607 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1608 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1609 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1610 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1611 	pv_t      *pv;           /* pv list head                      */
1612 	boolean_t wired;         /* is the mapping to be wired?       */
1613 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1614 
1615 	if (pmap == pmap_kernel()) {
1616 		pmap_enter_kernel(va, pa, prot);
1617 		return 0;
1618 	}
1619 
1620 	/*
1621 	 * Determine if the mapping should be wired.
1622 	 */
1623 	wired = ((flags & PMAP_WIRED) != 0);
1624 
1625 	/*
1626 	 * NOTE1:
1627 	 *
1628 	 * On November 13, 1999, someone changed the pmap_enter() API such
1629 	 * that it now accepts a 'flags' argument.  This new argument
1630 	 * contains bit-flags for the architecture-independent (UVM) system to
1631 	 * use in signalling certain mapping requirements to the architecture-
1632 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1633 	 * one of the flags within it.
1634 	 *
1635 	 * In addition to flags signaled by the architecture-independent
1636 	 * system, parts of the architecture-dependent section of the sun3x
1637 	 * kernel pass their own flags in the lower, unused bits of the
1638 	 * physical address supplied to this function.  These flags are
1639 	 * extracted and stored in the temporary variable 'mapflags'.
1640 	 *
1641 	 * Extract sun3x specific flags from the physical address.
1642 	 */
1643 	mapflags  = (pa & ~MMU_PAGE_MASK);
1644 	pa       &= MMU_PAGE_MASK;
1645 
1646 	/*
1647 	 * Determine if the physical address being mapped is on-board RAM.
1648 	 * Any other area of the address space is likely to belong to a
1649 	 * device and hence it would be disasterous to cache its contents.
1650 	 */
1651 	if ((managed = is_managed(pa)) == FALSE)
1652 		mapflags |= PMAP_NC;
1653 
1654 	/*
1655 	 * For user mappings we walk along the MMU tables of the given
1656 	 * pmap, reaching a PTE which describes the virtual page being
1657 	 * mapped or changed.  If any level of the walk ends in an invalid
1658 	 * entry, a table must be allocated and the entry must be updated
1659 	 * to point to it.
1660 	 * There is a bit of confusion as to whether this code must be
1661 	 * re-entrant.  For now we will assume it is.  To support
1662 	 * re-entrancy we must unlink tables from the table pool before
1663 	 * we assume we may use them.  Tables are re-linked into the pool
1664 	 * when we are finished with them at the end of the function.
1665 	 * But I don't feel like doing that until we have proof that this
1666 	 * needs to be re-entrant.
1667 	 * 'llevel' records which tables need to be relinked.
1668 	 */
1669 	llevel = NONE;
1670 
1671 	/*
1672 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1673 	 * A table, allocate a new one from the available pool.
1674 	 */
1675 
1676 	a_tbl = pmap->pm_a_tmgr;
1677 	if (a_tbl == NULL) {
1678 		/*
1679 		 * This pmap does not currently have an A table.  Allocate
1680 		 * a new one.
1681 		 */
1682 		a_tbl = get_a_table();
1683 		a_tbl->at_parent = pmap;
1684 
1685 		/*
1686 		 * Assign this new A table to the pmap, and calculate its
1687 		 * physical address so that loadcrp() can be used to make
1688 		 * the table active.
1689 		 */
1690 		pmap->pm_a_tmgr = a_tbl;
1691 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1692 
1693 		/*
1694 		 * If the process receiving a new A table is the current
1695 		 * process, we are responsible for setting the MMU so that
1696 		 * it becomes the current address space.  This only adds
1697 		 * new mappings, so no need to flush anything.
1698 		 */
1699 		if (pmap == current_pmap()) {
1700 			kernel_crp.rp_addr = pmap->pm_a_phys;
1701 			loadcrp(&kernel_crp);
1702 		}
1703 
1704 		if (!wired)
1705 			llevel = NEWA;
1706 	} else {
1707 		/*
1708 		 * Use the A table already allocated for this pmap.
1709 		 * Unlink it from the A table pool if necessary.
1710 		 */
1711 		if (wired && !a_tbl->at_wcnt)
1712 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1713 	}
1714 
1715 	/*
1716 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1717 	 * allocate one.
1718 	 */
1719 
1720 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1721 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1722 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1723 		/* The descriptor is valid.  Use the B table it points to. */
1724 		/*************************************
1725 		 *               a_idx               *
1726 		 *                 v                 *
1727 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1728 		 *          | | | | | | | | | | | |  *
1729 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1730 		 *                 |                 *
1731 		 *                 \- b_tbl -> +-+-  *
1732 		 *                             | |   *
1733 		 *                             +-+-  *
1734 		 *************************************/
1735 		b_dte = mmu_ptov(a_dte->addr.raw);
1736 		b_tbl = mmuB2tmgr(b_dte);
1737 
1738 		/*
1739 		 * If the requested mapping must be wired, but this table
1740 		 * being used to map it is not, the table must be removed
1741 		 * from the available pool and its wired entry count
1742 		 * incremented.
1743 		 */
1744 		if (wired && !b_tbl->bt_wcnt) {
1745 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1746 			a_tbl->at_wcnt++;
1747 		}
1748 	} else {
1749 		/* The descriptor is invalid.  Allocate a new B table. */
1750 		b_tbl = get_b_table();
1751 
1752 		/* Point the parent A table descriptor to this new B table. */
1753 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1754 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1755 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1756 
1757 		/* Create the necessary back references to the parent table */
1758 		b_tbl->bt_parent = a_tbl;
1759 		b_tbl->bt_pidx = a_idx;
1760 
1761 		/*
1762 		 * If this table is to be wired, make sure the parent A table
1763 		 * wired count is updated to reflect that it has another wired
1764 		 * entry.
1765 		 */
1766 		if (wired)
1767 			a_tbl->at_wcnt++;
1768 		else if (llevel == NONE)
1769 			llevel = NEWB;
1770 	}
1771 
1772 	/*
1773 	 * Step 3 - Walk into the C table, if there is no valid C table,
1774 	 * allocate one.
1775 	 */
1776 
1777 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1778 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1779 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1780 		/* The descriptor is valid.  Use the C table it points to. */
1781 		/**************************************
1782 		 *               c_idx                *
1783 		 * |                v                 *
1784 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1785 		 *             | | | | | | | | | | |  *
1786 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1787 		 *                  |                 *
1788 		 *                  \- c_tbl -> +-+-- *
1789 		 *                              | | | *
1790 		 *                              +-+-- *
1791 		 **************************************/
1792 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1793 		c_tbl = mmuC2tmgr(c_pte);
1794 
1795 		/* If mapping is wired and table is not */
1796 		if (wired && !c_tbl->ct_wcnt) {
1797 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1798 			b_tbl->bt_wcnt++;
1799 		}
1800 	} else {
1801 		/* The descriptor is invalid.  Allocate a new C table. */
1802 		c_tbl = get_c_table();
1803 
1804 		/* Point the parent B table descriptor to this new C table. */
1805 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1806 		b_dte->attr.raw |= MMU_DT_SHORT;
1807 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1808 
1809 		/* Create the necessary back references to the parent table */
1810 		c_tbl->ct_parent = b_tbl;
1811 		c_tbl->ct_pidx = b_idx;
1812 		/*
1813 		 * Store the pmap and base virtual managed address for faster
1814 		 * retrieval in the PV functions.
1815 		 */
1816 		c_tbl->ct_pmap = pmap;
1817 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1818 
1819 		/*
1820 		 * If this table is to be wired, make sure the parent B table
1821 		 * wired count is updated to reflect that it has another wired
1822 		 * entry.
1823 		 */
1824 		if (wired)
1825 			b_tbl->bt_wcnt++;
1826 		else if (llevel == NONE)
1827 			llevel = NEWC;
1828 	}
1829 
1830 	/*
1831 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1832 	 * slot of the C table, describing the PA to which the VA is mapped.
1833 	 */
1834 
1835 	pte_idx = MMU_TIC(va);
1836 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1837 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1838 		/*
1839 		 * The PTE is currently valid.  This particular call
1840 		 * is just a synonym for one (or more) of the following
1841 		 * operations:
1842 		 *     change protection of a page
1843 		 *     change wiring status of a page
1844 		 *     remove the mapping of a page
1845 		 *
1846 		 * XXX - Semi critical: This code should unwire the PTE
1847 		 * and, possibly, associated parent tables if this is a
1848 		 * change wiring operation.  Currently it does not.
1849 		 *
1850 		 * This may be ok if pmap_unwire() is the only
1851 		 * interface used to UNWIRE a page.
1852 		 */
1853 
1854 		/* First check if this is a wiring operation. */
1855 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1856 			/*
1857 			 * The PTE is already wired.  To prevent it from being
1858 			 * counted as a new wiring operation, reset the 'wired'
1859 			 * variable.
1860 			 */
1861 			wired = FALSE;
1862 		}
1863 
1864 		/* Is the new address the same as the old? */
1865 		if (MMU_PTE_PA(*c_pte) == pa) {
1866 			/*
1867 			 * Yes, mark that it does not need to be reinserted
1868 			 * into the PV list.
1869 			 */
1870 			insert = FALSE;
1871 
1872 			/*
1873 			 * Clear all but the modified, referenced and wired
1874 			 * bits on the PTE.
1875 			 */
1876 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1877 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1878 		} else {
1879 			/* No, remove the old entry */
1880 			pmap_remove_pte(c_pte);
1881 			insert = TRUE;
1882 		}
1883 
1884 		/*
1885 		 * TLB flush is only necessary if modifying current map.
1886 		 * However, in pmap_enter(), the pmap almost always IS
1887 		 * the current pmap, so don't even bother to check.
1888 		 */
1889 		TBIS(va);
1890 	} else {
1891 		/*
1892 		 * The PTE is invalid.  Increment the valid entry count in
1893 		 * the C table manager to reflect the addition of a new entry.
1894 		 */
1895 		c_tbl->ct_ecnt++;
1896 
1897 		/* XXX - temporarily make sure the PTE is cleared. */
1898 		c_pte->attr.raw = 0;
1899 
1900 		/* It will also need to be inserted into the PV list. */
1901 		insert = TRUE;
1902 	}
1903 
1904 	/*
1905 	 * If page is changing from unwired to wired status, set an unused bit
1906 	 * within the PTE to indicate that it is wired.  Also increment the
1907 	 * wired entry count in the C table manager.
1908 	 */
1909 	if (wired) {
1910 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1911 		c_tbl->ct_wcnt++;
1912 	}
1913 
1914 	/*
1915 	 * Map the page, being careful to preserve modify/reference/wired
1916 	 * bits.  At this point it is assumed that the PTE either has no bits
1917 	 * set, or if there are set bits, they are only modified, reference or
1918 	 * wired bits.  If not, the following statement will cause erratic
1919 	 * behavior.
1920 	 */
1921 #ifdef	PMAP_DEBUG
1922 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1923 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1924 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1925 		Debugger();
1926 	}
1927 #endif
1928 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1929 
1930 	/*
1931 	 * If the mapping should be read-only, set the write protect
1932 	 * bit in the PTE.
1933 	 */
1934 	if (!(prot & VM_PROT_WRITE))
1935 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1936 
1937 	/*
1938 	 * If the mapping should be cache inhibited (indicated by the flag
1939 	 * bits found on the lower order of the physical address.)
1940 	 * mark the PTE as a cache inhibited page.
1941 	 */
1942 	if (mapflags & PMAP_NC)
1943 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1944 
1945 	/*
1946 	 * If the physical address being mapped is managed by the PV
1947 	 * system then link the pte into the list of pages mapped to that
1948 	 * address.
1949 	 */
1950 	if (insert && managed) {
1951 		pv = pa2pv(pa);
1952 		nidx = pteidx(c_pte);
1953 
1954 		pvebase[nidx].pve_next = pv->pv_idx;
1955 		pv->pv_idx = nidx;
1956 	}
1957 
1958 	/* Move any allocated tables back into the active pool. */
1959 
1960 	switch (llevel) {
1961 		case NEWA:
1962 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1963 			/* FALLTHROUGH */
1964 		case NEWB:
1965 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1966 			/* FALLTHROUGH */
1967 		case NEWC:
1968 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1969 			/* FALLTHROUGH */
1970 		default:
1971 			break;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 /* pmap_enter_kernel			INTERNAL
1978  **
1979  * Map the given virtual address to the given physical address within the
1980  * kernel address space.  This function exists because the kernel map does
1981  * not do dynamic table allocation.  It consists of a contiguous array of ptes
1982  * and can be edited directly without the need to walk through any tables.
1983  *
1984  * XXX: "Danger, Will Robinson!"
1985  * Note that the kernel should never take a fault on any page
1986  * between [ KERNBASE .. virtual_avail ] and this is checked in
1987  * trap.c for kernel-mode MMU faults.  This means that mappings
1988  * created in that range must be implicily wired. -gwr
1989  */
1990 void
1991 pmap_enter_kernel(va, pa, prot)
1992 	vaddr_t va;
1993 	paddr_t pa;
1994 	vm_prot_t   prot;
1995 {
1996 	boolean_t       was_valid, insert;
1997 	u_short         pte_idx;
1998 	int             flags;
1999 	mmu_short_pte_t *pte;
2000 	pv_t            *pv;
2001 	paddr_t     old_pa;
2002 
2003 	flags = (pa & ~MMU_PAGE_MASK);
2004 	pa &= MMU_PAGE_MASK;
2005 
2006 	if (is_managed(pa))
2007 		insert = TRUE;
2008 	else
2009 		insert = FALSE;
2010 
2011 	/*
2012 	 * Calculate the index of the PTE being modified.
2013 	 */
2014 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
2015 
2016 	/* This array is traditionally named "Sysmap" */
2017 	pte = &kernCbase[pte_idx];
2018 
2019 	if (MMU_VALID_DT(*pte)) {
2020 		was_valid = TRUE;
2021 		/*
2022 		 * If the PTE already maps a different
2023 		 * physical address, umap and pv_unlink.
2024 		 */
2025 		old_pa = MMU_PTE_PA(*pte);
2026 		if (pa != old_pa)
2027 			pmap_remove_pte(pte);
2028 		else {
2029 		    /*
2030 		     * Old PA and new PA are the same.  No need to
2031 		     * relink the mapping within the PV list.
2032 		     */
2033 		     insert = FALSE;
2034 
2035 		    /*
2036 		     * Save any mod/ref bits on the PTE.
2037 		     */
2038 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2039 		}
2040 	} else {
2041 		pte->attr.raw = MMU_DT_INVALID;
2042 		was_valid = FALSE;
2043 	}
2044 
2045 	/*
2046 	 * Map the page.  Being careful to preserve modified/referenced bits
2047 	 * on the PTE.
2048 	 */
2049 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2050 
2051 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2052 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2053 	if (flags & PMAP_NC)
2054 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2055 	if (was_valid)
2056 		TBIS(va);
2057 
2058 	/*
2059 	 * Insert the PTE into the PV system, if need be.
2060 	 */
2061 	if (insert) {
2062 		pv = pa2pv(pa);
2063 		pvebase[pte_idx].pve_next = pv->pv_idx;
2064 		pv->pv_idx = pte_idx;
2065 	}
2066 }
2067 
2068 void
2069 pmap_kenter_pa(va, pa, prot)
2070 	vaddr_t va;
2071 	paddr_t pa;
2072 	vm_prot_t prot;
2073 {
2074 	mmu_short_pte_t	*pte;
2075 
2076 	/* This array is traditionally named "Sysmap" */
2077 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2078 
2079 	KASSERT(!MMU_VALID_DT(*pte));
2080 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2081 	if (!(prot & VM_PROT_WRITE))
2082 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2083 }
2084 
2085 void
2086 pmap_kremove(va, len)
2087 	vaddr_t va;
2088 	vsize_t len;
2089 {
2090 	int idx, eidx;
2091 
2092 #ifdef	PMAP_DEBUG
2093 	if ((sva & PGOFSET) || (eva & PGOFSET))
2094 		panic("pmap_kremove: alignment");
2095 #endif
2096 
2097 	idx  = m68k_btop(va - KERNBASE);
2098 	eidx = m68k_btop(va + len - KERNBASE);
2099 
2100 	while (idx < eidx) {
2101 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2102 		TBIS(va);
2103 		va += PAGE_SIZE;
2104 	}
2105 }
2106 
2107 /* pmap_map			INTERNAL
2108  **
2109  * Map a contiguous range of physical memory into a contiguous range of
2110  * the kernel virtual address space.
2111  *
2112  * Used for device mappings and early mapping of the kernel text/data/bss.
2113  * Returns the first virtual address beyond the end of the range.
2114  */
2115 vaddr_t
2116 pmap_map(va, pa, endpa, prot)
2117 	vaddr_t	va;
2118 	paddr_t	pa;
2119 	paddr_t	endpa;
2120 	int		prot;
2121 {
2122 	int sz;
2123 
2124 	sz = endpa - pa;
2125 	do {
2126 		pmap_enter_kernel(va, pa, prot);
2127 		va += PAGE_SIZE;
2128 		pa += PAGE_SIZE;
2129 		sz -= PAGE_SIZE;
2130 	} while (sz > 0);
2131 	pmap_update(pmap_kernel());
2132 	return(va);
2133 }
2134 
2135 /* pmap_protect			INTERFACE
2136  **
2137  * Apply the given protection to the given virtual address range within
2138  * the given map.
2139  *
2140  * It is ok for the protection applied to be stronger than what is
2141  * specified.  We use this to our advantage when the given map has no
2142  * mapping for the virtual address.  By skipping a page when this
2143  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2144  * and therefore do not need to map the page just to apply a protection
2145  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2146  *
2147  * XXX - This function could be speeded up by using pmap_stroll() for inital
2148  *       setup, and then manual scrolling in the for() loop.
2149  */
2150 void
2151 pmap_protect(pmap, startva, endva, prot)
2152 	pmap_t pmap;
2153 	vaddr_t startva, endva;
2154 	vm_prot_t prot;
2155 {
2156 	boolean_t iscurpmap;
2157 	int a_idx, b_idx, c_idx;
2158 	a_tmgr_t *a_tbl;
2159 	b_tmgr_t *b_tbl;
2160 	c_tmgr_t *c_tbl;
2161 	mmu_short_pte_t *pte;
2162 
2163 	if (pmap == pmap_kernel()) {
2164 		pmap_protect_kernel(startva, endva, prot);
2165 		return;
2166 	}
2167 
2168 	/*
2169 	 * In this particular pmap implementation, there are only three
2170 	 * types of memory protection: 'all' (read/write/execute),
2171 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2172 	 * It is not possible for us to treat 'executable' as a separate
2173 	 * protection type.  Therefore, protection requests that seek to
2174 	 * remove execute permission while retaining read or write, and those
2175 	 * that make little sense (write-only for example) are ignored.
2176 	 */
2177 	switch (prot) {
2178 		case VM_PROT_NONE:
2179 			/*
2180 			 * A request to apply the protection code of
2181 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2182 			 */
2183 			pmap_remove(pmap, startva, endva);
2184 			return;
2185 		case	VM_PROT_EXECUTE:
2186 		case	VM_PROT_READ:
2187 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2188 			/* continue */
2189 			break;
2190 		case	VM_PROT_WRITE:
2191 		case	VM_PROT_WRITE|VM_PROT_READ:
2192 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2193 		case	VM_PROT_ALL:
2194 			/* None of these should happen in a sane system. */
2195 			return;
2196 	}
2197 
2198 	/*
2199 	 * If the pmap has no A table, it has no mappings and therefore
2200 	 * there is nothing to protect.
2201 	 */
2202 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2203 		return;
2204 
2205 	a_idx = MMU_TIA(startva);
2206 	b_idx = MMU_TIB(startva);
2207 	c_idx = MMU_TIC(startva);
2208 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
2209 
2210 	iscurpmap = (pmap == current_pmap());
2211 	while (startva < endva) {
2212 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2213 		  if (b_tbl == NULL) {
2214 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2215 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2216 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2217 		  }
2218 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2219 		    if (c_tbl == NULL) {
2220 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2221 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2222 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2223 		    }
2224 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2225 		      pte = &c_tbl->ct_dtbl[c_idx];
2226 		      /* make the mapping read-only */
2227 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2228 		      /*
2229 		       * If we just modified the current address space,
2230 		       * flush any translations for the modified page from
2231 		       * the translation cache and any data from it in the
2232 		       * data cache.
2233 		       */
2234 		      if (iscurpmap)
2235 		          TBIS(startva);
2236 		    }
2237 		    startva += PAGE_SIZE;
2238 
2239 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2240 		      c_tbl = NULL;
2241 		      c_idx = 0;
2242 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2243 		        b_tbl = NULL;
2244 		        b_idx = 0;
2245 		      }
2246 		    }
2247 		  } else { /* C table wasn't valid */
2248 		    c_tbl = NULL;
2249 		    c_idx = 0;
2250 		    startva += MMU_TIB_RANGE;
2251 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2252 		      b_tbl = NULL;
2253 		      b_idx = 0;
2254 		    }
2255 		  } /* C table */
2256 		} else { /* B table wasn't valid */
2257 		  b_tbl = NULL;
2258 		  b_idx = 0;
2259 		  startva += MMU_TIA_RANGE;
2260 		  a_idx++;
2261 		} /* B table */
2262 	}
2263 }
2264 
2265 /* pmap_protect_kernel			INTERNAL
2266  **
2267  * Apply the given protection code to a kernel address range.
2268  */
2269 void
2270 pmap_protect_kernel(startva, endva, prot)
2271 	vaddr_t startva, endva;
2272 	vm_prot_t prot;
2273 {
2274 	vaddr_t va;
2275 	mmu_short_pte_t *pte;
2276 
2277 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2278 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2279 		if (MMU_VALID_DT(*pte)) {
2280 		    switch (prot) {
2281 		        case VM_PROT_ALL:
2282 		            break;
2283 		        case VM_PROT_EXECUTE:
2284 		        case VM_PROT_READ:
2285 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2286 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2287 		            break;
2288 		        case VM_PROT_NONE:
2289 		            /* this is an alias for 'pmap_remove_kernel' */
2290 		            pmap_remove_pte(pte);
2291 		            break;
2292 		        default:
2293 		            break;
2294 		    }
2295 		    /*
2296 		     * since this is the kernel, immediately flush any cached
2297 		     * descriptors for this address.
2298 		     */
2299 		    TBIS(va);
2300 		}
2301 	}
2302 }
2303 
2304 /* pmap_unwire				INTERFACE
2305  **
2306  * Clear the wired attribute of the specified page.
2307  *
2308  * This function is called from vm_fault.c to unwire
2309  * a mapping.
2310  */
2311 void
2312 pmap_unwire(pmap, va)
2313 	pmap_t pmap;
2314 	vaddr_t va;
2315 {
2316 	int a_idx, b_idx, c_idx;
2317 	a_tmgr_t *a_tbl;
2318 	b_tmgr_t *b_tbl;
2319 	c_tmgr_t *c_tbl;
2320 	mmu_short_pte_t *pte;
2321 
2322 	/* Kernel mappings always remain wired. */
2323 	if (pmap == pmap_kernel())
2324 		return;
2325 
2326 	/*
2327 	 * Walk through the tables.  If the walk terminates without
2328 	 * a valid PTE then the address wasn't wired in the first place.
2329 	 * Return immediately.
2330 	 */
2331 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2332 		&b_idx, &c_idx) == FALSE)
2333 		return;
2334 
2335 
2336 	/* Is the PTE wired?  If not, return. */
2337 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2338 		return;
2339 
2340 	/* Remove the wiring bit. */
2341 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2342 
2343 	/*
2344 	 * Decrement the wired entry count in the C table.
2345 	 * If it reaches zero the following things happen:
2346 	 * 1. The table no longer has any wired entries and is considered
2347 	 *    unwired.
2348 	 * 2. It is placed on the available queue.
2349 	 * 3. The parent table's wired entry count is decremented.
2350 	 * 4. If it reaches zero, this process repeats at step 1 and
2351 	 *    stops at after reaching the A table.
2352 	 */
2353 	if (--c_tbl->ct_wcnt == 0) {
2354 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2355 		if (--b_tbl->bt_wcnt == 0) {
2356 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2357 			if (--a_tbl->at_wcnt == 0) {
2358 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2359 			}
2360 		}
2361 	}
2362 }
2363 
2364 /* pmap_copy				INTERFACE
2365  **
2366  * Copy the mappings of a range of addresses in one pmap, into
2367  * the destination address of another.
2368  *
2369  * This routine is advisory.  Should we one day decide that MMU tables
2370  * may be shared by more than one pmap, this function should be used to
2371  * link them together.  Until that day however, we do nothing.
2372  */
2373 void
2374 pmap_copy(pmap_a, pmap_b, dst, len, src)
2375 	pmap_t pmap_a, pmap_b;
2376 	vaddr_t dst;
2377 	vsize_t len;
2378 	vaddr_t src;
2379 {
2380 	/* not implemented. */
2381 }
2382 
2383 /* pmap_copy_page			INTERFACE
2384  **
2385  * Copy the contents of one physical page into another.
2386  *
2387  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2388  * to map the two specified physical pages into the kernel address space.
2389  *
2390  * Note: We could use the transparent translation registers to make the
2391  * mappings.  If we do so, be sure to disable interrupts before using them.
2392  */
2393 void
2394 pmap_copy_page(srcpa, dstpa)
2395 	paddr_t srcpa, dstpa;
2396 {
2397 	vaddr_t srcva, dstva;
2398 	int s;
2399 
2400 	srcva = tmp_vpages[0];
2401 	dstva = tmp_vpages[1];
2402 
2403 	s = splvm();
2404 #ifdef DIAGNOSTIC
2405 	if (tmp_vpages_inuse++)
2406 		panic("pmap_copy_page: temporary vpages are in use.");
2407 #endif
2408 
2409 	/* Map pages as non-cacheable to avoid cache polution? */
2410 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2411 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2412 
2413 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2414 	copypage((char *) srcva, (char *) dstva);
2415 
2416 	pmap_kremove(srcva, PAGE_SIZE);
2417 	pmap_kremove(dstva, PAGE_SIZE);
2418 
2419 #ifdef DIAGNOSTIC
2420 	--tmp_vpages_inuse;
2421 #endif
2422 	splx(s);
2423 }
2424 
2425 /* pmap_zero_page			INTERFACE
2426  **
2427  * Zero the contents of the specified physical page.
2428  *
2429  * Uses one of the virtual pages allocated in pmap_boostrap()
2430  * to map the specified page into the kernel address space.
2431  */
2432 void
2433 pmap_zero_page(dstpa)
2434 	paddr_t dstpa;
2435 {
2436 	vaddr_t dstva;
2437 	int s;
2438 
2439 	dstva = tmp_vpages[1];
2440 	s = splvm();
2441 #ifdef DIAGNOSTIC
2442 	if (tmp_vpages_inuse++)
2443 		panic("pmap_zero_page: temporary vpages are in use.");
2444 #endif
2445 
2446 	/* The comments in pmap_copy_page() above apply here also. */
2447 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2448 
2449 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2450 	zeropage((char *) dstva);
2451 
2452 	pmap_kremove(dstva, PAGE_SIZE);
2453 #ifdef DIAGNOSTIC
2454 	--tmp_vpages_inuse;
2455 #endif
2456 	splx(s);
2457 }
2458 
2459 /* pmap_collect			INTERFACE
2460  **
2461  * Called from the VM system when we are about to swap out
2462  * the process using this pmap.  This should give up any
2463  * resources held here, including all its MMU tables.
2464  */
2465 void
2466 pmap_collect(pmap)
2467 	pmap_t pmap;
2468 {
2469 	/* XXX - todo... */
2470 }
2471 
2472 /* pmap_create			INTERFACE
2473  **
2474  * Create and return a pmap structure.
2475  */
2476 pmap_t
2477 pmap_create()
2478 {
2479 	pmap_t	pmap;
2480 
2481 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2482 	pmap_pinit(pmap);
2483 	return pmap;
2484 }
2485 
2486 /* pmap_pinit			INTERNAL
2487  **
2488  * Initialize a pmap structure.
2489  */
2490 void
2491 pmap_pinit(pmap)
2492 	pmap_t pmap;
2493 {
2494 	memset(pmap, 0, sizeof(struct pmap));
2495 	pmap->pm_a_tmgr = NULL;
2496 	pmap->pm_a_phys = kernAphys;
2497 	pmap->pm_refcount = 1;
2498 	simple_lock_init(&pmap->pm_lock);
2499 }
2500 
2501 /* pmap_release				INTERFACE
2502  **
2503  * Release any resources held by the given pmap.
2504  *
2505  * This is the reverse analog to pmap_pinit.  It does not
2506  * necessarily mean for the pmap structure to be deallocated,
2507  * as in pmap_destroy.
2508  */
2509 void
2510 pmap_release(pmap)
2511 	pmap_t pmap;
2512 {
2513 	/*
2514 	 * As long as the pmap contains no mappings,
2515 	 * which always should be the case whenever
2516 	 * this function is called, there really should
2517 	 * be nothing to do.
2518 	 */
2519 #ifdef	PMAP_DEBUG
2520 	if (pmap == pmap_kernel())
2521 		panic("pmap_release: kernel pmap");
2522 #endif
2523 	/*
2524 	 * XXX - If this pmap has an A table, give it back.
2525 	 * The pmap SHOULD be empty by now, and pmap_remove
2526 	 * should have already given back the A table...
2527 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2528 	 * at this point, which means some mapping was not
2529 	 * removed when it should have been. -gwr
2530 	 */
2531 	if (pmap->pm_a_tmgr != NULL) {
2532 		/* First make sure we are not using it! */
2533 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2534 			kernel_crp.rp_addr = kernAphys;
2535 			loadcrp(&kernel_crp);
2536 		}
2537 #ifdef	PMAP_DEBUG /* XXX - todo! */
2538 		/* XXX - Now complain... */
2539 		printf("pmap_release: still have table\n");
2540 		Debugger();
2541 #endif
2542 		free_a_table(pmap->pm_a_tmgr, TRUE);
2543 		pmap->pm_a_tmgr = NULL;
2544 		pmap->pm_a_phys = kernAphys;
2545 	}
2546 }
2547 
2548 /* pmap_reference			INTERFACE
2549  **
2550  * Increment the reference count of a pmap.
2551  */
2552 void
2553 pmap_reference(pmap)
2554 	pmap_t pmap;
2555 {
2556 	pmap_lock(pmap);
2557 	pmap_add_ref(pmap);
2558 	pmap_unlock(pmap);
2559 }
2560 
2561 /* pmap_dereference			INTERNAL
2562  **
2563  * Decrease the reference count on the given pmap
2564  * by one and return the current count.
2565  */
2566 int
2567 pmap_dereference(pmap)
2568 	pmap_t pmap;
2569 {
2570 	int rtn;
2571 
2572 	pmap_lock(pmap);
2573 	rtn = pmap_del_ref(pmap);
2574 	pmap_unlock(pmap);
2575 
2576 	return rtn;
2577 }
2578 
2579 /* pmap_destroy			INTERFACE
2580  **
2581  * Decrement a pmap's reference count and delete
2582  * the pmap if it becomes zero.  Will be called
2583  * only after all mappings have been removed.
2584  */
2585 void
2586 pmap_destroy(pmap)
2587 	pmap_t pmap;
2588 {
2589 	if (pmap_dereference(pmap) == 0) {
2590 		pmap_release(pmap);
2591 		pool_put(&pmap_pmap_pool, pmap);
2592 	}
2593 }
2594 
2595 /* pmap_is_referenced			INTERFACE
2596  **
2597  * Determine if the given physical page has been
2598  * referenced (read from [or written to.])
2599  */
2600 boolean_t
2601 pmap_is_referenced(pg)
2602 	struct vm_page *pg;
2603 {
2604 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2605 	pv_t      *pv;
2606 	int       idx;
2607 
2608 	/*
2609 	 * Check the flags on the pv head.  If they are set,
2610 	 * return immediately.  Otherwise a search must be done.
2611 	 */
2612 
2613 	pv = pa2pv(pa);
2614 	if (pv->pv_flags & PV_FLAGS_USED)
2615 		return TRUE;
2616 
2617 	/*
2618 	 * Search through all pv elements pointing
2619 	 * to this page and query their reference bits
2620 	 */
2621 
2622 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2623 		if (MMU_PTE_USED(kernCbase[idx])) {
2624 			return TRUE;
2625 		}
2626 	}
2627 	return FALSE;
2628 }
2629 
2630 /* pmap_is_modified			INTERFACE
2631  **
2632  * Determine if the given physical page has been
2633  * modified (written to.)
2634  */
2635 boolean_t
2636 pmap_is_modified(pg)
2637 	struct vm_page *pg;
2638 {
2639 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2640 	pv_t      *pv;
2641 	int       idx;
2642 
2643 	/* see comments in pmap_is_referenced() */
2644 	pv = pa2pv(pa);
2645 	if (pv->pv_flags & PV_FLAGS_MDFY)
2646 		return TRUE;
2647 
2648 	for (idx = pv->pv_idx;
2649 		 idx != PVE_EOL;
2650 		 idx = pvebase[idx].pve_next) {
2651 
2652 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2653 			return TRUE;
2654 		}
2655 	}
2656 
2657 	return FALSE;
2658 }
2659 
2660 /* pmap_page_protect			INTERFACE
2661  **
2662  * Applies the given protection to all mappings to the given
2663  * physical page.
2664  */
2665 void
2666 pmap_page_protect(pg, prot)
2667 	struct vm_page *pg;
2668 	vm_prot_t prot;
2669 {
2670 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2671 	pv_t      *pv;
2672 	int       idx;
2673 	vaddr_t va;
2674 	struct mmu_short_pte_struct *pte;
2675 	c_tmgr_t  *c_tbl;
2676 	pmap_t    pmap, curpmap;
2677 
2678 	curpmap = current_pmap();
2679 	pv = pa2pv(pa);
2680 
2681 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2682 		pte = &kernCbase[idx];
2683 		switch (prot) {
2684 			case VM_PROT_ALL:
2685 				/* do nothing */
2686 				break;
2687 			case VM_PROT_EXECUTE:
2688 			case VM_PROT_READ:
2689 			case VM_PROT_READ|VM_PROT_EXECUTE:
2690 				/*
2691 				 * Determine the virtual address mapped by
2692 				 * the PTE and flush ATC entries if necessary.
2693 				 */
2694 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2695 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2696 				if (pmap == curpmap || pmap == pmap_kernel())
2697 					TBIS(va);
2698 				break;
2699 			case VM_PROT_NONE:
2700 				/* Save the mod/ref bits. */
2701 				pv->pv_flags |= pte->attr.raw;
2702 				/* Invalidate the PTE. */
2703 				pte->attr.raw = MMU_DT_INVALID;
2704 
2705 				/*
2706 				 * Update table counts.  And flush ATC entries
2707 				 * if necessary.
2708 				 */
2709 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2710 
2711 				/*
2712 				 * If the PTE belongs to the kernel map,
2713 				 * be sure to flush the page it maps.
2714 				 */
2715 				if (pmap == pmap_kernel()) {
2716 					TBIS(va);
2717 				} else {
2718 					/*
2719 					 * The PTE belongs to a user map.
2720 					 * update the entry count in the C
2721 					 * table to which it belongs and flush
2722 					 * the ATC if the mapping belongs to
2723 					 * the current pmap.
2724 					 */
2725 					c_tbl->ct_ecnt--;
2726 					if (pmap == curpmap)
2727 						TBIS(va);
2728 				}
2729 				break;
2730 			default:
2731 				break;
2732 		}
2733 	}
2734 
2735 	/*
2736 	 * If the protection code indicates that all mappings to the page
2737 	 * be removed, truncate the PV list to zero entries.
2738 	 */
2739 	if (prot == VM_PROT_NONE)
2740 		pv->pv_idx = PVE_EOL;
2741 }
2742 
2743 /* pmap_get_pteinfo		INTERNAL
2744  **
2745  * Called internally to find the pmap and virtual address within that
2746  * map to which the pte at the given index maps.  Also includes the PTE's C
2747  * table manager.
2748  *
2749  * Returns the pmap in the argument provided, and the virtual address
2750  * by return value.
2751  */
2752 vaddr_t
2753 pmap_get_pteinfo(idx, pmap, tbl)
2754 	u_int idx;
2755 	pmap_t *pmap;
2756 	c_tmgr_t **tbl;
2757 {
2758 	vaddr_t     va = 0;
2759 
2760 	/*
2761 	 * Determine if the PTE is a kernel PTE or a user PTE.
2762 	 */
2763 	if (idx >= NUM_KERN_PTES) {
2764 		/*
2765 		 * The PTE belongs to a user mapping.
2766 		 */
2767 		/* XXX: Would like an inline for this to validate idx... */
2768 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2769 
2770 		*pmap = (*tbl)->ct_pmap;
2771 		/*
2772 		 * To find the va to which the PTE maps, we first take
2773 		 * the table's base virtual address mapping which is stored
2774 		 * in ct_va.  We then increment this address by a page for
2775 		 * every slot skipped until we reach the PTE.
2776 		 */
2777 		va =    (*tbl)->ct_va;
2778 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2779 	} else {
2780 		/*
2781 		 * The PTE belongs to the kernel map.
2782 		 */
2783 		*pmap = pmap_kernel();
2784 
2785 		va = m68k_ptob(idx);
2786 		va += KERNBASE;
2787 	}
2788 
2789 	return va;
2790 }
2791 
2792 /* pmap_clear_modify			INTERFACE
2793  **
2794  * Clear the modification bit on the page at the specified
2795  * physical address.
2796  *
2797  */
2798 boolean_t
2799 pmap_clear_modify(pg)
2800 	struct vm_page *pg;
2801 {
2802 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2803 	boolean_t rv;
2804 
2805 	rv = pmap_is_modified(pg);
2806 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2807 	return rv;
2808 }
2809 
2810 /* pmap_clear_reference			INTERFACE
2811  **
2812  * Clear the referenced bit on the page at the specified
2813  * physical address.
2814  */
2815 boolean_t
2816 pmap_clear_reference(pg)
2817 	struct vm_page *pg;
2818 {
2819 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2820 	boolean_t rv;
2821 
2822 	rv = pmap_is_referenced(pg);
2823 	pmap_clear_pv(pa, PV_FLAGS_USED);
2824 	return rv;
2825 }
2826 
2827 /* pmap_clear_pv			INTERNAL
2828  **
2829  * Clears the specified flag from the specified physical address.
2830  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2831  *
2832  * Flag is one of:
2833  *   PV_FLAGS_MDFY - Page modified bit.
2834  *   PV_FLAGS_USED - Page used (referenced) bit.
2835  *
2836  * This routine must not only clear the flag on the pv list
2837  * head.  It must also clear the bit on every pte in the pv
2838  * list associated with the address.
2839  */
2840 void
2841 pmap_clear_pv(pa, flag)
2842 	paddr_t pa;
2843 	int flag;
2844 {
2845 	pv_t      *pv;
2846 	int       idx;
2847 	vaddr_t   va;
2848 	pmap_t          pmap;
2849 	mmu_short_pte_t *pte;
2850 	c_tmgr_t        *c_tbl;
2851 
2852 	pv = pa2pv(pa);
2853 	pv->pv_flags &= ~(flag);
2854 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2855 		pte = &kernCbase[idx];
2856 		pte->attr.raw &= ~(flag);
2857 
2858 		/*
2859 		 * The MC68030 MMU will not set the modified or
2860 		 * referenced bits on any MMU tables for which it has
2861 		 * a cached descriptor with its modify bit set.  To insure
2862 		 * that it will modify these bits on the PTE during the next
2863 		 * time it is written to or read from, we must flush it from
2864 		 * the ATC.
2865 		 *
2866 		 * Ordinarily it is only necessary to flush the descriptor
2867 		 * if it is used in the current address space.  But since I
2868 		 * am not sure that there will always be a notion of
2869 		 * 'the current address space' when this function is called,
2870 		 * I will skip the test and always flush the address.  It
2871 		 * does no harm.
2872 		 */
2873 
2874 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2875 		TBIS(va);
2876 	}
2877 }
2878 
2879 /* pmap_extract			INTERFACE
2880  **
2881  * Return the physical address mapped by the virtual address
2882  * in the specified pmap.
2883  *
2884  * Note: this function should also apply an exclusive lock
2885  * on the pmap system during its duration.
2886  */
2887 boolean_t
2888 pmap_extract(pmap, va, pap)
2889 	pmap_t pmap;
2890 	vaddr_t va;
2891 	paddr_t *pap;
2892 {
2893 	int a_idx, b_idx, pte_idx;
2894 	a_tmgr_t	*a_tbl;
2895 	b_tmgr_t	*b_tbl;
2896 	c_tmgr_t	*c_tbl;
2897 	mmu_short_pte_t	*c_pte;
2898 
2899 	if (pmap == pmap_kernel())
2900 		return pmap_extract_kernel(va, pap);
2901 
2902 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2903 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2904 		return FALSE;
2905 
2906 	if (!MMU_VALID_DT(*c_pte))
2907 		return FALSE;
2908 
2909 	if (pap != NULL)
2910 		*pap = MMU_PTE_PA(*c_pte);
2911 	return (TRUE);
2912 }
2913 
2914 /* pmap_extract_kernel		INTERNAL
2915  **
2916  * Extract a translation from the kernel address space.
2917  */
2918 boolean_t
2919 pmap_extract_kernel(va, pap)
2920 	vaddr_t va;
2921 	paddr_t *pap;
2922 {
2923 	mmu_short_pte_t *pte;
2924 
2925 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2926 	if (!MMU_VALID_DT(*pte))
2927 		return (FALSE);
2928 	if (pap != NULL)
2929 		*pap = MMU_PTE_PA(*pte);
2930 	return (TRUE);
2931 }
2932 
2933 /* pmap_remove_kernel		INTERNAL
2934  **
2935  * Remove the mapping of a range of virtual addresses from the kernel map.
2936  * The arguments are already page-aligned.
2937  */
2938 void
2939 pmap_remove_kernel(sva, eva)
2940 	vaddr_t sva;
2941 	vaddr_t eva;
2942 {
2943 	int idx, eidx;
2944 
2945 #ifdef	PMAP_DEBUG
2946 	if ((sva & PGOFSET) || (eva & PGOFSET))
2947 		panic("pmap_remove_kernel: alignment");
2948 #endif
2949 
2950 	idx  = m68k_btop(sva - KERNBASE);
2951 	eidx = m68k_btop(eva - KERNBASE);
2952 
2953 	while (idx < eidx) {
2954 		pmap_remove_pte(&kernCbase[idx++]);
2955 		TBIS(sva);
2956 		sva += PAGE_SIZE;
2957 	}
2958 }
2959 
2960 /* pmap_remove			INTERFACE
2961  **
2962  * Remove the mapping of a range of virtual addresses from the given pmap.
2963  *
2964  * If the range contains any wired entries, this function will probably create
2965  * disaster.
2966  */
2967 void
2968 pmap_remove(pmap, start, end)
2969 	pmap_t pmap;
2970 	vaddr_t start;
2971 	vaddr_t end;
2972 {
2973 
2974 	if (pmap == pmap_kernel()) {
2975 		pmap_remove_kernel(start, end);
2976 		return;
2977 	}
2978 
2979 	/*
2980 	 * If the pmap doesn't have an A table of its own, it has no mappings
2981 	 * that can be removed.
2982 	 */
2983 	if (pmap->pm_a_tmgr == NULL)
2984 		return;
2985 
2986 	/*
2987 	 * Remove the specified range from the pmap.  If the function
2988 	 * returns true, the operation removed all the valid mappings
2989 	 * in the pmap and freed its A table.  If this happened to the
2990 	 * currently loaded pmap, the MMU root pointer must be reloaded
2991 	 * with the default 'kernel' map.
2992 	 */
2993 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2994 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2995 			kernel_crp.rp_addr = kernAphys;
2996 			loadcrp(&kernel_crp);
2997 			/* will do TLB flush below */
2998 		}
2999 		pmap->pm_a_tmgr = NULL;
3000 		pmap->pm_a_phys = kernAphys;
3001 	}
3002 
3003 	/*
3004 	 * If we just modified the current address space,
3005 	 * make sure to flush the MMU cache.
3006 	 *
3007 	 * XXX - this could be an unecessarily large flush.
3008 	 * XXX - Could decide, based on the size of the VA range
3009 	 * to be removed, whether to flush "by pages" or "all".
3010 	 */
3011 	if (pmap == current_pmap())
3012 		TBIAU();
3013 }
3014 
3015 /* pmap_remove_a			INTERNAL
3016  **
3017  * This is function number one in a set of three that removes a range
3018  * of memory in the most efficient manner by removing the highest possible
3019  * tables from the memory space.  This particular function attempts to remove
3020  * as many B tables as it can, delegating the remaining fragmented ranges to
3021  * pmap_remove_b().
3022  *
3023  * If the removal operation results in an empty A table, the function returns
3024  * TRUE.
3025  *
3026  * It's ugly but will do for now.
3027  */
3028 boolean_t
3029 pmap_remove_a(a_tbl, start, end)
3030 	a_tmgr_t *a_tbl;
3031 	vaddr_t start;
3032 	vaddr_t end;
3033 {
3034 	boolean_t empty;
3035 	int idx;
3036 	vaddr_t nstart, nend;
3037 	b_tmgr_t *b_tbl;
3038 	mmu_long_dte_t  *a_dte;
3039 	mmu_short_dte_t *b_dte;
3040 
3041 	/*
3042 	 * The following code works with what I call a 'granularity
3043 	 * reduction algorithim'.  A range of addresses will always have
3044 	 * the following properties, which are classified according to
3045 	 * how the range relates to the size of the current granularity
3046 	 * - an A table entry:
3047 	 *
3048 	 *            1 2       3 4
3049 	 * -+---+---+---+---+---+---+---+-
3050 	 * -+---+---+---+---+---+---+---+-
3051 	 *
3052 	 * A range will always start on a granularity boundary, illustrated
3053 	 * by '+' signs in the table above, or it will start at some point
3054 	 * inbetween a granularity boundary, as illustrated by point 1.
3055 	 * The first step in removing a range of addresses is to remove the
3056 	 * range between 1 and 2, the nearest granularity boundary.  This
3057 	 * job is handled by the section of code governed by the
3058 	 * 'if (start < nstart)' statement.
3059 	 *
3060 	 * A range will always encompass zero or more intergral granules,
3061 	 * illustrated by points 2 and 3.  Integral granules are easy to
3062 	 * remove.  The removal of these granules is the second step, and
3063 	 * is handled by the code block 'if (nstart < nend)'.
3064 	 *
3065 	 * Lastly, a range will always end on a granularity boundary,
3066 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3067 	 * 4.  The last step involves removing this range and is handled by
3068 	 * the code block 'if (nend < end)'.
3069 	 */
3070 	nstart = MMU_ROUND_UP_A(start);
3071 	nend = MMU_ROUND_A(end);
3072 
3073 	if (start < nstart) {
3074 		/*
3075 		 * This block is executed if the range starts between
3076 		 * a granularity boundary.
3077 		 *
3078 		 * First find the DTE which is responsible for mapping
3079 		 * the start of the range.
3080 		 */
3081 		idx = MMU_TIA(start);
3082 		a_dte = &a_tbl->at_dtbl[idx];
3083 
3084 		/*
3085 		 * If the DTE is valid then delegate the removal of the sub
3086 		 * range to pmap_remove_b(), which can remove addresses at
3087 		 * a finer granularity.
3088 		 */
3089 		if (MMU_VALID_DT(*a_dte)) {
3090 			b_dte = mmu_ptov(a_dte->addr.raw);
3091 			b_tbl = mmuB2tmgr(b_dte);
3092 
3093 			/*
3094 			 * The sub range to be removed starts at the start
3095 			 * of the full range we were asked to remove, and ends
3096 			 * at the greater of:
3097 			 * 1. The end of the full range, -or-
3098 			 * 2. The end of the full range, rounded down to the
3099 			 *    nearest granularity boundary.
3100 			 */
3101 			if (end < nstart)
3102 				empty = pmap_remove_b(b_tbl, start, end);
3103 			else
3104 				empty = pmap_remove_b(b_tbl, start, nstart);
3105 
3106 			/*
3107 			 * If the removal resulted in an empty B table,
3108 			 * invalidate the DTE that points to it and decrement
3109 			 * the valid entry count of the A table.
3110 			 */
3111 			if (empty) {
3112 				a_dte->attr.raw = MMU_DT_INVALID;
3113 				a_tbl->at_ecnt--;
3114 			}
3115 		}
3116 		/*
3117 		 * If the DTE is invalid, the address range is already non-
3118 		 * existent and can simply be skipped.
3119 		 */
3120 	}
3121 	if (nstart < nend) {
3122 		/*
3123 		 * This block is executed if the range spans a whole number
3124 		 * multiple of granules (A table entries.)
3125 		 *
3126 		 * First find the DTE which is responsible for mapping
3127 		 * the start of the first granule involved.
3128 		 */
3129 		idx = MMU_TIA(nstart);
3130 		a_dte = &a_tbl->at_dtbl[idx];
3131 
3132 		/*
3133 		 * Remove entire sub-granules (B tables) one at a time,
3134 		 * until reaching the end of the range.
3135 		 */
3136 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3137 			if (MMU_VALID_DT(*a_dte)) {
3138 				/*
3139 				 * Find the B table manager for the
3140 				 * entry and free it.
3141 				 */
3142 				b_dte = mmu_ptov(a_dte->addr.raw);
3143 				b_tbl = mmuB2tmgr(b_dte);
3144 				free_b_table(b_tbl, TRUE);
3145 
3146 				/*
3147 				 * Invalidate the DTE that points to the
3148 				 * B table and decrement the valid entry
3149 				 * count of the A table.
3150 				 */
3151 				a_dte->attr.raw = MMU_DT_INVALID;
3152 				a_tbl->at_ecnt--;
3153 			}
3154 	}
3155 	if (nend < end) {
3156 		/*
3157 		 * This block is executed if the range ends beyond a
3158 		 * granularity boundary.
3159 		 *
3160 		 * First find the DTE which is responsible for mapping
3161 		 * the start of the nearest (rounded down) granularity
3162 		 * boundary.
3163 		 */
3164 		idx = MMU_TIA(nend);
3165 		a_dte = &a_tbl->at_dtbl[idx];
3166 
3167 		/*
3168 		 * If the DTE is valid then delegate the removal of the sub
3169 		 * range to pmap_remove_b(), which can remove addresses at
3170 		 * a finer granularity.
3171 		 */
3172 		if (MMU_VALID_DT(*a_dte)) {
3173 			/*
3174 			 * Find the B table manager for the entry
3175 			 * and hand it to pmap_remove_b() along with
3176 			 * the sub range.
3177 			 */
3178 			b_dte = mmu_ptov(a_dte->addr.raw);
3179 			b_tbl = mmuB2tmgr(b_dte);
3180 
3181 			empty = pmap_remove_b(b_tbl, nend, end);
3182 
3183 			/*
3184 			 * If the removal resulted in an empty B table,
3185 			 * invalidate the DTE that points to it and decrement
3186 			 * the valid entry count of the A table.
3187 			 */
3188 			if (empty) {
3189 				a_dte->attr.raw = MMU_DT_INVALID;
3190 				a_tbl->at_ecnt--;
3191 			}
3192 		}
3193 	}
3194 
3195 	/*
3196 	 * If there are no more entries in the A table, release it
3197 	 * back to the available pool and return TRUE.
3198 	 */
3199 	if (a_tbl->at_ecnt == 0) {
3200 		a_tbl->at_parent = NULL;
3201 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3202 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3203 		empty = TRUE;
3204 	} else {
3205 		empty = FALSE;
3206 	}
3207 
3208 	return empty;
3209 }
3210 
3211 /* pmap_remove_b			INTERNAL
3212  **
3213  * Remove a range of addresses from an address space, trying to remove entire
3214  * C tables if possible.
3215  *
3216  * If the operation results in an empty B table, the function returns TRUE.
3217  */
3218 boolean_t
3219 pmap_remove_b(b_tbl, start, end)
3220 	b_tmgr_t *b_tbl;
3221 	vaddr_t start;
3222 	vaddr_t end;
3223 {
3224 	boolean_t empty;
3225 	int idx;
3226 	vaddr_t nstart, nend, rstart;
3227 	c_tmgr_t *c_tbl;
3228 	mmu_short_dte_t  *b_dte;
3229 	mmu_short_pte_t  *c_dte;
3230 
3231 
3232 	nstart = MMU_ROUND_UP_B(start);
3233 	nend = MMU_ROUND_B(end);
3234 
3235 	if (start < nstart) {
3236 		idx = MMU_TIB(start);
3237 		b_dte = &b_tbl->bt_dtbl[idx];
3238 		if (MMU_VALID_DT(*b_dte)) {
3239 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3240 			c_tbl = mmuC2tmgr(c_dte);
3241 			if (end < nstart)
3242 				empty = pmap_remove_c(c_tbl, start, end);
3243 			else
3244 				empty = pmap_remove_c(c_tbl, start, nstart);
3245 			if (empty) {
3246 				b_dte->attr.raw = MMU_DT_INVALID;
3247 				b_tbl->bt_ecnt--;
3248 			}
3249 		}
3250 	}
3251 	if (nstart < nend) {
3252 		idx = MMU_TIB(nstart);
3253 		b_dte = &b_tbl->bt_dtbl[idx];
3254 		rstart = nstart;
3255 		while (rstart < nend) {
3256 			if (MMU_VALID_DT(*b_dte)) {
3257 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3258 				c_tbl = mmuC2tmgr(c_dte);
3259 				free_c_table(c_tbl, TRUE);
3260 				b_dte->attr.raw = MMU_DT_INVALID;
3261 				b_tbl->bt_ecnt--;
3262 			}
3263 			b_dte++;
3264 			rstart += MMU_TIB_RANGE;
3265 		}
3266 	}
3267 	if (nend < end) {
3268 		idx = MMU_TIB(nend);
3269 		b_dte = &b_tbl->bt_dtbl[idx];
3270 		if (MMU_VALID_DT(*b_dte)) {
3271 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3272 			c_tbl = mmuC2tmgr(c_dte);
3273 			empty = pmap_remove_c(c_tbl, nend, end);
3274 			if (empty) {
3275 				b_dte->attr.raw = MMU_DT_INVALID;
3276 				b_tbl->bt_ecnt--;
3277 			}
3278 		}
3279 	}
3280 
3281 	if (b_tbl->bt_ecnt == 0) {
3282 		b_tbl->bt_parent = NULL;
3283 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3284 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3285 		empty = TRUE;
3286 	} else {
3287 		empty = FALSE;
3288 	}
3289 
3290 	return empty;
3291 }
3292 
3293 /* pmap_remove_c			INTERNAL
3294  **
3295  * Remove a range of addresses from the given C table.
3296  */
3297 boolean_t
3298 pmap_remove_c(c_tbl, start, end)
3299 	c_tmgr_t *c_tbl;
3300 	vaddr_t start;
3301 	vaddr_t end;
3302 {
3303 	boolean_t empty;
3304 	int idx;
3305 	mmu_short_pte_t *c_pte;
3306 
3307 	idx = MMU_TIC(start);
3308 	c_pte = &c_tbl->ct_dtbl[idx];
3309 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3310 		if (MMU_VALID_DT(*c_pte)) {
3311 			pmap_remove_pte(c_pte);
3312 			c_tbl->ct_ecnt--;
3313 		}
3314 	}
3315 
3316 	if (c_tbl->ct_ecnt == 0) {
3317 		c_tbl->ct_parent = NULL;
3318 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3319 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3320 		empty = TRUE;
3321 	} else {
3322 		empty = FALSE;
3323 	}
3324 
3325 	return empty;
3326 }
3327 
3328 /* is_managed				INTERNAL
3329  **
3330  * Determine if the given physical address is managed by the PV system.
3331  * Note that this logic assumes that no one will ask for the status of
3332  * addresses which lie in-between the memory banks on the 3/80.  If they
3333  * do so, it will falsely report that it is managed.
3334  *
3335  * Note: A "managed" address is one that was reported to the VM system as
3336  * a "usable page" during system startup.  As such, the VM system expects the
3337  * pmap module to keep an accurate track of the useage of those pages.
3338  * Any page not given to the VM system at startup does not exist (as far as
3339  * the VM system is concerned) and is therefore "unmanaged."  Examples are
3340  * those pages which belong to the ROM monitor and the memory allocated before
3341  * the VM system was started.
3342  */
3343 boolean_t
3344 is_managed(pa)
3345 	paddr_t pa;
3346 {
3347 	if (pa >= avail_start && pa < avail_end)
3348 		return TRUE;
3349 	else
3350 		return FALSE;
3351 }
3352 
3353 /* pmap_bootstrap_alloc			INTERNAL
3354  **
3355  * Used internally for memory allocation at startup when malloc is not
3356  * available.  This code will fail once it crosses the first memory
3357  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3358  * will be in charge of allocation.
3359  */
3360 void *
3361 pmap_bootstrap_alloc(size)
3362 	int size;
3363 {
3364 	void *rtn;
3365 
3366 #ifdef	PMAP_DEBUG
3367 	if (bootstrap_alloc_enabled == FALSE) {
3368 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3369 		sunmon_abort();
3370 	}
3371 #endif
3372 
3373 	rtn = (void *) virtual_avail;
3374 	virtual_avail += size;
3375 
3376 #ifdef	PMAP_DEBUG
3377 	if (virtual_avail > virtual_contig_end) {
3378 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3379 		sunmon_abort();
3380 	}
3381 #endif
3382 
3383 	return rtn;
3384 }
3385 
3386 /* pmap_bootstap_aalign			INTERNAL
3387  **
3388  * Used to insure that the next call to pmap_bootstrap_alloc() will
3389  * return a chunk of memory aligned to the specified size.
3390  *
3391  * Note: This function will only support alignment sizes that are powers
3392  * of two.
3393  */
3394 void
3395 pmap_bootstrap_aalign(size)
3396 	int size;
3397 {
3398 	int off;
3399 
3400 	off = virtual_avail & (size - 1);
3401 	if (off) {
3402 		(void) pmap_bootstrap_alloc(size - off);
3403 	}
3404 }
3405 
3406 /* pmap_pa_exists
3407  **
3408  * Used by the /dev/mem driver to see if a given PA is memory
3409  * that can be mapped.  (The PA is not in a hole.)
3410  */
3411 int
3412 pmap_pa_exists(pa)
3413 	paddr_t pa;
3414 {
3415 	int i;
3416 
3417 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3418 		if ((pa >= avail_mem[i].pmem_start) &&
3419 			(pa <  avail_mem[i].pmem_end))
3420 			return (1);
3421 		if (avail_mem[i].pmem_next == NULL)
3422 			break;
3423 	}
3424 	return (0);
3425 }
3426 
3427 /* Called only from locore.s and pmap.c */
3428 void	_pmap_switch __P((pmap_t pmap));
3429 
3430 /*
3431  * _pmap_switch			INTERNAL
3432  *
3433  * This is called by locore.s:cpu_switch() when it is
3434  * switching to a new process.  Load new translations.
3435  * Note: done in-line by locore.s unless PMAP_DEBUG
3436  *
3437  * Note that we do NOT allocate a context here, but
3438  * share the "kernel only" context until we really
3439  * need our own context for user-space mappings in
3440  * pmap_enter_user().  [ s/context/mmu A table/ ]
3441  */
3442 void
3443 _pmap_switch(pmap)
3444 	pmap_t pmap;
3445 {
3446 	u_long rootpa;
3447 
3448 	/*
3449 	 * Only do reload/flush if we have to.
3450 	 * Note that if the old and new process
3451 	 * were BOTH using the "null" context,
3452 	 * then this will NOT flush the TLB.
3453 	 */
3454 	rootpa = pmap->pm_a_phys;
3455 	if (kernel_crp.rp_addr != rootpa) {
3456 		DPRINT(("pmap_activate(%p)\n", pmap));
3457 		kernel_crp.rp_addr = rootpa;
3458 		loadcrp(&kernel_crp);
3459 		TBIAU();
3460 	}
3461 }
3462 
3463 /*
3464  * Exported version of pmap_activate().  This is called from the
3465  * machine-independent VM code when a process is given a new pmap.
3466  * If (p == curlwp) do like cpu_switch would do; otherwise just
3467  * take this as notification that the process has a new pmap.
3468  */
3469 void
3470 pmap_activate(l)
3471 	struct lwp *l;
3472 {
3473 	if (l->l_proc == curproc) {
3474 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3475 	}
3476 }
3477 
3478 /*
3479  * pmap_deactivate			INTERFACE
3480  **
3481  * This is called to deactivate the specified process's address space.
3482  */
3483 void
3484 pmap_deactivate(l)
3485 struct lwp *l;
3486 {
3487 	/* Nothing to do. */
3488 }
3489 
3490 /*
3491  * Fill in the sun3x-specific part of the kernel core header
3492  * for dumpsys().  (See machdep.c for the rest.)
3493  */
3494 void
3495 pmap_kcore_hdr(sh)
3496 	struct sun3x_kcore_hdr *sh;
3497 {
3498 	u_long spa, len;
3499 	int i;
3500 
3501 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3502 	sh->pg_valid = MMU_DT_PAGE;
3503 	sh->contig_end = virtual_contig_end;
3504 	sh->kernCbase = (u_long)kernCbase;
3505 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3506 		spa = avail_mem[i].pmem_start;
3507 		spa = m68k_trunc_page(spa);
3508 		len = avail_mem[i].pmem_end - spa;
3509 		len = m68k_round_page(len);
3510 		sh->ram_segs[i].start = spa;
3511 		sh->ram_segs[i].size  = len;
3512 	}
3513 }
3514 
3515 
3516 /* pmap_virtual_space			INTERFACE
3517  **
3518  * Return the current available range of virtual addresses in the
3519  * arguuments provided.  Only really called once.
3520  */
3521 void
3522 pmap_virtual_space(vstart, vend)
3523 	vaddr_t *vstart, *vend;
3524 {
3525 	*vstart = virtual_avail;
3526 	*vend = virtual_end;
3527 }
3528 
3529 /*
3530  * Provide memory to the VM system.
3531  *
3532  * Assume avail_start is always in the
3533  * first segment as pmap_bootstrap does.
3534  */
3535 static void
3536 pmap_page_upload()
3537 {
3538 	paddr_t	a, b;	/* memory range */
3539 	int i;
3540 
3541 	/* Supply the memory in segments. */
3542 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3543 		a = atop(avail_mem[i].pmem_start);
3544 		b = atop(avail_mem[i].pmem_end);
3545 		if (i == 0)
3546 			a = atop(avail_start);
3547 		if (avail_mem[i].pmem_end > avail_end)
3548 			b = atop(avail_end);
3549 
3550 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3551 
3552 		if (avail_mem[i].pmem_next == NULL)
3553 			break;
3554 	}
3555 }
3556 
3557 /* pmap_count			INTERFACE
3558  **
3559  * Return the number of resident (valid) pages in the given pmap.
3560  *
3561  * Note:  If this function is handed the kernel map, it will report
3562  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3563  * map statistics.
3564  */
3565 segsz_t
3566 pmap_count(pmap, type)
3567 	pmap_t pmap;
3568 	int    type;
3569 {
3570 	u_int     count;
3571 	int       a_idx, b_idx;
3572 	a_tmgr_t *a_tbl;
3573 	b_tmgr_t *b_tbl;
3574 	c_tmgr_t *c_tbl;
3575 
3576 	/*
3577 	 * If the pmap does not have its own A table manager, it has no
3578 	 * valid entires.
3579 	 */
3580 	if (pmap->pm_a_tmgr == NULL)
3581 		return 0;
3582 
3583 	a_tbl = pmap->pm_a_tmgr;
3584 
3585 	count = 0;
3586 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3587 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3588 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3589 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3590 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3591 	                c_tbl = mmuC2tmgr(
3592 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3593 	                if (type == 0)
3594 	                    /*
3595 	                     * A resident entry count has been requested.
3596 	                     */
3597 	                    count += c_tbl->ct_ecnt;
3598 	                else
3599 	                    /*
3600 	                     * A wired entry count has been requested.
3601 	                     */
3602 	                    count += c_tbl->ct_wcnt;
3603 	            }
3604 	        }
3605 	    }
3606 	}
3607 
3608 	return count;
3609 }
3610 
3611 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3612  * The following routines are only used by DDB for tricky kernel text    *
3613  * text operations in db_memrw.c.  They are provided for sun3            *
3614  * compatibility.                                                        *
3615  *************************************************************************/
3616 /* get_pte			INTERNAL
3617  **
3618  * Return the page descriptor the describes the kernel mapping
3619  * of the given virtual address.
3620  */
3621 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
3622 u_int
3623 get_pte(va)
3624 	vaddr_t va;
3625 {
3626 	u_long pte_pa;
3627 	mmu_short_pte_t *pte;
3628 
3629 	/* Get the physical address of the PTE */
3630 	pte_pa = ptest_addr(va & ~PGOFSET);
3631 
3632 	/* Convert to a virtual address... */
3633 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3634 
3635 	/* Make sure it is in our level-C tables... */
3636 	if ((pte < kernCbase) ||
3637 		(pte >= &mmuCbase[NUM_USER_PTES]))
3638 		return 0;
3639 
3640 	/* ... and just return its contents. */
3641 	return (pte->attr.raw);
3642 }
3643 
3644 
3645 /* set_pte			INTERNAL
3646  **
3647  * Set the page descriptor that describes the kernel mapping
3648  * of the given virtual address.
3649  */
3650 void
3651 set_pte(va, pte)
3652 	vaddr_t va;
3653 	u_int pte;
3654 {
3655 	u_long idx;
3656 
3657 	if (va < KERNBASE)
3658 		return;
3659 
3660 	idx = (unsigned long) m68k_btop(va - KERNBASE);
3661 	kernCbase[idx].attr.raw = pte;
3662 	TBIS(va);
3663 }
3664 
3665 /*
3666  *	Routine:        pmap_procwr
3667  *
3668  *	Function:
3669  *		Synchronize caches corresponding to [addr, addr+len) in p.
3670  */
3671 void
3672 pmap_procwr(p, va, len)
3673 	struct proc	*p;
3674 	vaddr_t		va;
3675 	size_t		len;
3676 {
3677 	(void)cachectl1(0x80000004, va, len, p);
3678 }
3679 
3680 
3681 #ifdef	PMAP_DEBUG
3682 /************************** DEBUGGING ROUTINES **************************
3683  * The following routines are meant to be an aid to debugging the pmap  *
3684  * system.  They are callable from the DDB command line and should be   *
3685  * prepared to be handed unstable or incomplete states of the system.   *
3686  ************************************************************************/
3687 
3688 /* pv_list
3689  **
3690  * List all pages found on the pv list for the given physical page.
3691  * To avoid endless loops, the listing will stop at the end of the list
3692  * or after 'n' entries - whichever comes first.
3693  */
3694 void
3695 pv_list(pa, n)
3696 	paddr_t pa;
3697 	int n;
3698 {
3699 	int  idx;
3700 	vaddr_t va;
3701 	pv_t *pv;
3702 	c_tmgr_t *c_tbl;
3703 	pmap_t pmap;
3704 
3705 	pv = pa2pv(pa);
3706 	idx = pv->pv_idx;
3707 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3708 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3709 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3710 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3711 	}
3712 }
3713 #endif	/* PMAP_DEBUG */
3714 
3715 #ifdef NOT_YET
3716 /* and maybe not ever */
3717 /************************** LOW-LEVEL ROUTINES **************************
3718  * These routines will eventually be re-written into assembly and placed*
3719  * in locore.s.  They are here now as stubs so that the pmap module can *
3720  * be linked as a standalone user program for testing.                  *
3721  ************************************************************************/
3722 /* flush_atc_crp			INTERNAL
3723  **
3724  * Flush all page descriptors derived from the given CPU Root Pointer
3725  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3726  * cache.
3727  */
3728 void
3729 flush_atc_crp(a_tbl)
3730 {
3731 	mmu_long_rp_t rp;
3732 
3733 	/* Create a temporary root table pointer that points to the
3734 	 * given A table.
3735 	 */
3736 	rp.attr.raw = ~MMU_LONG_RP_LU;
3737 	rp.addr.raw = (unsigned int) a_tbl;
3738 
3739 	mmu_pflushr(&rp);
3740 	/* mmu_pflushr:
3741 	 * 	movel   sp(4)@,a0
3742 	 * 	pflushr a0@
3743 	 *	rts
3744 	 */
3745 }
3746 #endif /* NOT_YET */
3747