1 /* $NetBSD: zs.c,v 1.63 2007/11/09 00:05:06 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1996 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Zilog Z8530 Dual UART driver (machine-dependent part) 41 * 42 * Runs two serial lines per chip using slave drivers. 43 * Plain tty/async lines use the zs_async slave. 44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. 45 */ 46 47 #include <sys/cdefs.h> 48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.63 2007/11/09 00:05:06 ad Exp $"); 49 50 #include "opt_ddb.h" 51 #include "opt_kgdb.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/conf.h> 56 #include <sys/device.h> 57 #include <sys/file.h> 58 #include <sys/ioctl.h> 59 #include <sys/kernel.h> 60 #include <sys/proc.h> 61 #include <sys/tty.h> 62 #include <sys/time.h> 63 #include <sys/syslog.h> 64 65 #include <machine/autoconf.h> 66 #include <machine/openfirm.h> 67 #include <machine/cpu.h> 68 #include <machine/eeprom.h> 69 #include <machine/psl.h> 70 #include <machine/z8530var.h> 71 72 #include <dev/cons.h> 73 #include <dev/ic/z8530reg.h> 74 #include <dev/sun/kbd_ms_ttyvar.h> 75 #include <ddb/db_output.h> 76 77 #include <sparc64/dev/cons.h> 78 79 #include "kbd.h" /* NKBD */ 80 #include "ms.h" /* NMS */ 81 #include "zs.h" /* NZS */ 82 83 /* Make life easier for the initialized arrays here. */ 84 #if NZS < 3 85 #undef NZS 86 #define NZS 3 87 #endif 88 89 /* 90 * Some warts needed by z8530tty.c - 91 * The default parity REALLY needs to be the same as the PROM uses, 92 * or you can not see messages done with printf during boot-up... 93 */ 94 int zs_def_cflag = (CREAD | CS8 | HUPCL); 95 96 /* 97 * The Sun provides a 4.9152 MHz clock to the ZS chips. 98 */ 99 #define PCLK (9600 * 512) /* PCLK pin input clock rate */ 100 101 #define ZS_DELAY() 102 103 /* The layout of this is hardware-dependent (padding, order). */ 104 struct zschan { 105 volatile u_char zc_csr; /* ctrl,status, and indirect access */ 106 u_char zc_xxx0; 107 volatile u_char zc_data; /* data */ 108 u_char zc_xxx1; 109 }; 110 struct zsdevice { 111 /* Yes, they are backwards. */ 112 struct zschan zs_chan_b; 113 struct zschan zs_chan_a; 114 }; 115 116 /* ZS channel used as the console device (if any) */ 117 void *zs_conschan_get, *zs_conschan_put; 118 119 /* Saved PROM mappings */ 120 static struct zsdevice *zsaddr[NZS]; 121 122 static u_char zs_init_reg[16] = { 123 0, /* 0: CMD (reset, etc.) */ 124 0, /* 1: No interrupts yet. */ 125 0, /* 2: IVECT */ 126 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 127 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 128 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 129 0, /* 6: TXSYNC/SYNCLO */ 130 0, /* 7: RXSYNC/SYNCHI */ 131 0, /* 8: alias for data port */ 132 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR, 133 0, /*10: Misc. TX/RX control bits */ 134 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 135 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 136 0, /*13: BAUDHI (default=9600) */ 137 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 138 ZSWR15_BREAK_IE, 139 }; 140 141 /* Console ops */ 142 static int zscngetc(dev_t); 143 static void zscnputc(dev_t, int); 144 static void zscnpollc(dev_t, int); 145 146 struct consdev zs_consdev = { 147 .cn_getc = zscngetc, 148 .cn_putc = zscnputc, 149 .cn_pollc = zscnpollc, 150 }; 151 152 153 /**************************************************************** 154 * Autoconfig 155 ****************************************************************/ 156 157 /* Definition of the driver for autoconfig. */ 158 static int zs_match_sbus(struct device *, struct cfdata *, void *); 159 static void zs_attach_sbus(struct device *, struct device *, void *); 160 161 static void zs_attach(struct zsc_softc *, struct zsdevice *, int); 162 static int zs_print(void *, const char *); 163 164 CFATTACH_DECL(zs, sizeof(struct zsc_softc), 165 zs_match_sbus, zs_attach_sbus, NULL, NULL); 166 167 extern struct cfdriver zs_cd; 168 169 /* Interrupt handlers. */ 170 int zscheckintr(void *); 171 static int zshard(void *); 172 static void zssoft(void *); 173 174 static int zs_get_speed(struct zs_chanstate *); 175 176 /* Console device support */ 177 static int zs_console_flags(int, int, int); 178 179 /* Power management hooks */ 180 int zs_enable(struct zs_chanstate *); 181 void zs_disable(struct zs_chanstate *); 182 183 /* from dev/ic/z8530tty.c */ 184 struct tty *zstty_get_tty_from_dev(struct device *); 185 186 /* 187 * Is the zs chip present? 188 */ 189 static int 190 zs_match_sbus(struct device *parent, struct cfdata *cf, void *aux) 191 { 192 struct sbus_attach_args *sa = aux; 193 194 if (strcmp(cf->cf_name, sa->sa_name) != 0) 195 return (0); 196 197 return (1); 198 } 199 200 static void 201 zs_attach_sbus(struct device *parent, struct device *self, void *aux) 202 { 203 struct zsc_softc *zsc = (void *) self; 204 struct sbus_attach_args *sa = aux; 205 bus_space_handle_t bh; 206 int zs_unit = device_unit(&zsc->zsc_dev); 207 208 if (sa->sa_nintr == 0) { 209 printf(" no interrupt lines\n"); 210 return; 211 } 212 213 /* Use the mapping setup by the Sun PROM if possible. */ 214 if (zsaddr[zs_unit] == NULL) { 215 /* Only map registers once. */ 216 if (sa->sa_npromvaddrs) { 217 /* 218 * We're converting from a 32-bit pointer to a 64-bit 219 * pointer. Since the 32-bit entity is negative, but 220 * the kernel is still mapped into the lower 4GB 221 * range, this needs to be zero-extended. 222 * 223 * XXXXX If we map the kernel and devices into the 224 * high 4GB range, this needs to be changed to 225 * sign-extend the address. 226 */ 227 sparc_promaddr_to_handle(sa->sa_bustag, 228 sa->sa_promvaddrs[0], &bh); 229 230 } else { 231 232 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, 233 sa->sa_offset, 234 sa->sa_size, 235 BUS_SPACE_MAP_LINEAR, 236 &bh) != 0) { 237 printf("%s @ sbus: cannot map registers\n", 238 self->dv_xname); 239 return; 240 } 241 } 242 zsaddr[zs_unit] = (struct zsdevice *) 243 bus_space_vaddr(sa->sa_bustag, bh); 244 } 245 zsc->zsc_bustag = sa->sa_bustag; 246 zsc->zsc_dmatag = sa->sa_dmatag; 247 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2); 248 zsc->zsc_node = sa->sa_node; 249 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri); 250 } 251 252 /* 253 * Attach a found zs. 254 * 255 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 256 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 257 */ 258 static void 259 zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri) 260 { 261 struct zsc_attach_args zsc_args; 262 struct zs_chanstate *cs; 263 int s, channel, softpri = PIL_TTY; 264 265 if (zsd == NULL) { 266 printf("configuration incomplete\n"); 267 return; 268 } 269 270 printf(" softpri %d\n", softpri); 271 272 /* 273 * Initialize software state for each channel. 274 */ 275 for (channel = 0; channel < 2; channel++) { 276 struct zschan *zc; 277 struct device *child; 278 279 zsc_args.channel = channel; 280 cs = &zsc->zsc_cs_store[channel]; 281 zsc->zsc_cs[channel] = cs; 282 283 zs_lock_init(cs); 284 cs->cs_channel = channel; 285 cs->cs_private = NULL; 286 cs->cs_ops = &zsops_null; 287 cs->cs_brg_clk = PCLK / 16; 288 289 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b; 290 291 zsc_args.consdev = NULL; 292 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit, 293 zsc->zsc_node, 294 channel); 295 296 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) { 297 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV; 298 zsc_args.consdev = &zs_consdev; 299 } 300 301 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { 302 zs_conschan_get = zc; 303 } 304 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { 305 zs_conschan_put = zc; 306 } 307 308 /* Children need to set cn_dev, etc */ 309 cs->cs_reg_csr = &zc->zc_csr; 310 cs->cs_reg_data = &zc->zc_data; 311 312 memcpy(cs->cs_creg, zs_init_reg, 16); 313 memcpy(cs->cs_preg, zs_init_reg, 16); 314 315 /* XXX: Consult PROM properties for this?! */ 316 cs->cs_defspeed = zs_get_speed(cs); 317 cs->cs_defcflag = zs_def_cflag; 318 319 /* Make these correspond to cs_defcflag (-crtscts) */ 320 cs->cs_rr0_dcd = ZSRR0_DCD; 321 cs->cs_rr0_cts = 0; 322 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 323 cs->cs_wr5_rts = 0; 324 325 /* 326 * Clear the master interrupt enable. 327 * The INTENA is common to both channels, 328 * so just do it on the A channel. 329 */ 330 if (channel == 0) { 331 zs_write_reg(cs, 9, 0); 332 } 333 334 /* 335 * Look for a child driver for this channel. 336 * The child attach will setup the hardware. 337 */ 338 child = config_found(&zsc->zsc_dev, (void *)&zsc_args, 339 zs_print); 340 if (child == NULL) { 341 /* No sub-driver. Just reset it. */ 342 u_char reset = (channel == 0) ? 343 ZSWR9_A_RESET : ZSWR9_B_RESET; 344 s = splzs(); 345 zs_write_reg(cs, 9, reset); 346 splx(s); 347 } 348 #if (NKBD > 0) || (NMS > 0) 349 /* 350 * If this was a zstty it has a keyboard 351 * property on it we need to attach the 352 * sunkbd and sunms line disciplines. 353 */ 354 if (child 355 && (device_is_a(child, "zstty")) 356 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) { 357 struct kbd_ms_tty_attach_args kma; 358 struct tty *tp; 359 360 kma.kmta_tp = tp = zstty_get_tty_from_dev(child); 361 kma.kmta_dev = tp->t_dev; 362 kma.kmta_consdev = zsc_args.consdev; 363 364 /* Attach 'em if we got 'em. */ 365 #if (NKBD > 0) 366 if (channel == 0) { 367 kma.kmta_name = "keyboard"; 368 config_found(child, (void *)&kma, NULL); 369 } 370 #endif 371 #if (NMS > 0) 372 if (channel == 1) { 373 kma.kmta_name = "mouse"; 374 config_found(child, (void *)&kma, NULL); 375 } 376 #endif 377 } 378 #endif 379 } 380 381 /* 382 * Now safe to install interrupt handlers. Note the arguments 383 * to the interrupt handlers aren't used. Note, we only do this 384 * once since both SCCs interrupt at the same level and vector. 385 */ 386 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc); 387 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc))) 388 panic("zsattach: could not establish soft interrupt"); 389 390 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL, 391 zsc->zsc_dev.dv_xname, "intr"); 392 393 394 /* 395 * Set the master interrupt enable and interrupt vector. 396 * (common to both channels, do it on A) 397 */ 398 cs = zsc->zsc_cs[0]; 399 s = splhigh(); 400 /* interrupt vector */ 401 zs_write_reg(cs, 2, zs_init_reg[2]); 402 /* master interrupt control (enable) */ 403 zs_write_reg(cs, 9, zs_init_reg[9]); 404 splx(s); 405 406 } 407 408 static int 409 zs_print(void *aux, const char *name) 410 { 411 struct zsc_attach_args *args = aux; 412 413 if (name != NULL) 414 aprint_normal("%s: ", name); 415 416 if (args->channel != -1) 417 aprint_normal(" channel %d", args->channel); 418 419 return (UNCONF); 420 } 421 422 /* Deprecate this? */ 423 static volatile int zssoftpending; 424 425 static int 426 zshard(void *arg) 427 { 428 struct zsc_softc *zsc = (struct zsc_softc *)arg; 429 int rr3, rval; 430 431 rval = 0; 432 while ((rr3 = zsc_intr_hard(zsc))) { 433 /* Count up the interrupts. */ 434 rval |= rr3; 435 zsc->zsc_intrcnt.ev_count++; 436 } 437 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) || 438 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) && 439 zsc->zsc_softintr) { 440 zssoftpending = PIL_TTY; 441 softintr_schedule(zsc->zsc_softintr); 442 } 443 return (rval); 444 } 445 446 int 447 zscheckintr(void *arg) 448 { 449 struct zsc_softc *zsc; 450 int unit, rval; 451 452 rval = 0; 453 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { 454 455 zsc = zs_cd.cd_devs[unit]; 456 if (zsc == NULL) 457 continue; 458 rval = (zshard((void *)zsc) || rval); 459 } 460 return (rval); 461 } 462 463 464 /* 465 * We need this only for TTY_DEBUG purposes. 466 */ 467 static void 468 zssoft(void *arg) 469 { 470 struct zsc_softc *zsc = (struct zsc_softc *)arg; 471 int s; 472 473 /* Make sure we call the tty layer at spltty. */ 474 s = spltty(); 475 zssoftpending = 0; 476 (void)zsc_intr_soft(zsc); 477 #ifdef TTY_DEBUG 478 { 479 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private; 480 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private; 481 if (zst0->zst_overflows || zst1->zst_overflows ) { 482 struct trapframe *frame = (struct trapframe *)arg; 483 484 printf("zs silo overflow from %p\n", 485 (long)frame->tf_pc); 486 } 487 } 488 #endif 489 splx(s); 490 } 491 492 493 /* 494 * Compute the current baud rate given a ZS channel. 495 */ 496 static int 497 zs_get_speed(struct zs_chanstate *cs) 498 { 499 int tconst; 500 501 tconst = zs_read_reg(cs, 12); 502 tconst |= zs_read_reg(cs, 13) << 8; 503 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 504 } 505 506 /* 507 * MD functions for setting the baud rate and control modes. 508 */ 509 int 510 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) 511 { 512 int tconst, real_bps; 513 514 if (bps == 0) 515 return (0); 516 517 #ifdef DIAGNOSTIC 518 if (cs->cs_brg_clk == 0) 519 panic("zs_set_speed"); 520 #endif 521 522 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 523 if (tconst < 0) 524 return (EINVAL); 525 526 /* Convert back to make sure we can do it. */ 527 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 528 529 /* XXX - Allow some tolerance here? */ 530 if (real_bps != bps) 531 return (EINVAL); 532 533 cs->cs_preg[12] = tconst; 534 cs->cs_preg[13] = tconst >> 8; 535 536 /* Caller will stuff the pending registers. */ 537 return (0); 538 } 539 540 int 541 zs_set_modes(struct zs_chanstate *cs, int cflag) 542 { 543 int s; 544 545 /* 546 * Output hardware flow control on the chip is horrendous: 547 * if carrier detect drops, the receiver is disabled, and if 548 * CTS drops, the transmitter is stoped IN MID CHARACTER! 549 * Therefore, NEVER set the HFC bit, and instead use the 550 * status interrupt to detect CTS changes. 551 */ 552 s = splzs(); 553 cs->cs_rr0_pps = 0; 554 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 555 cs->cs_rr0_dcd = 0; 556 if ((cflag & MDMBUF) == 0) 557 cs->cs_rr0_pps = ZSRR0_DCD; 558 } else 559 cs->cs_rr0_dcd = ZSRR0_DCD; 560 if ((cflag & CRTSCTS) != 0) { 561 cs->cs_wr5_dtr = ZSWR5_DTR; 562 cs->cs_wr5_rts = ZSWR5_RTS; 563 cs->cs_rr0_cts = ZSRR0_CTS; 564 } else if ((cflag & CDTRCTS) != 0) { 565 cs->cs_wr5_dtr = 0; 566 cs->cs_wr5_rts = ZSWR5_DTR; 567 cs->cs_rr0_cts = ZSRR0_CTS; 568 } else if ((cflag & MDMBUF) != 0) { 569 cs->cs_wr5_dtr = 0; 570 cs->cs_wr5_rts = ZSWR5_DTR; 571 cs->cs_rr0_cts = ZSRR0_DCD; 572 } else { 573 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 574 cs->cs_wr5_rts = 0; 575 cs->cs_rr0_cts = 0; 576 } 577 splx(s); 578 579 /* Caller will stuff the pending registers. */ 580 return (0); 581 } 582 583 584 /* 585 * Read or write the chip with suitable delays. 586 */ 587 588 u_char 589 zs_read_reg(struct zs_chanstate *cs, u_char reg) 590 { 591 u_char val; 592 593 *cs->cs_reg_csr = reg; 594 ZS_DELAY(); 595 val = *cs->cs_reg_csr; 596 ZS_DELAY(); 597 return (val); 598 } 599 600 void 601 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val) 602 { 603 *cs->cs_reg_csr = reg; 604 ZS_DELAY(); 605 *cs->cs_reg_csr = val; 606 ZS_DELAY(); 607 } 608 609 u_char 610 zs_read_csr(struct zs_chanstate *cs) 611 { 612 u_char val; 613 614 val = *cs->cs_reg_csr; 615 ZS_DELAY(); 616 return (val); 617 } 618 619 void 620 zs_write_csr(struct zs_chanstate *cs, u_char val) 621 { 622 *cs->cs_reg_csr = val; 623 ZS_DELAY(); 624 } 625 626 u_char 627 zs_read_data(struct zs_chanstate *cs) 628 { 629 u_char val; 630 631 val = *cs->cs_reg_data; 632 ZS_DELAY(); 633 return (val); 634 } 635 636 void 637 zs_write_data(struct zs_chanstate *cs, u_char val) 638 { 639 *cs->cs_reg_data = val; 640 ZS_DELAY(); 641 } 642 643 /**************************************************************** 644 * Console support functions (Sun specific!) 645 * Note: this code is allowed to know about the layout of 646 * the chip registers, and uses that to keep things simple. 647 * XXX - I think I like the mvme167 code better. -gwr 648 ****************************************************************/ 649 650 extern void Debugger(void); 651 652 /* 653 * Handle user request to enter kernel debugger. 654 */ 655 void 656 zs_abort(struct zs_chanstate *cs) 657 { 658 volatile struct zschan *zc = zs_conschan_get; 659 int rr0; 660 661 /* Wait for end of break to avoid PROM abort. */ 662 /* XXX - Limit the wait? */ 663 do { 664 rr0 = zc->zc_csr; 665 ZS_DELAY(); 666 } while (rr0 & ZSRR0_BREAK); 667 668 #if defined(KGDB) 669 zskgdb(cs); 670 #elif defined(DDB) 671 { 672 extern int db_active; 673 674 if (!db_active) 675 Debugger(); 676 else 677 /* Debugger is probably hozed */ 678 callrom(); 679 } 680 #else 681 printf("stopping on keyboard abort\n"); 682 callrom(); 683 #endif 684 } 685 686 687 /* 688 * Polled input char. 689 */ 690 int 691 zs_getc(void *arg) 692 { 693 volatile struct zschan *zc = arg; 694 int s, c, rr0; 695 696 s = splhigh(); 697 /* Wait for a character to arrive. */ 698 do { 699 rr0 = zc->zc_csr; 700 ZS_DELAY(); 701 } while ((rr0 & ZSRR0_RX_READY) == 0); 702 703 c = zc->zc_data; 704 ZS_DELAY(); 705 splx(s); 706 707 /* 708 * This is used by the kd driver to read scan codes, 709 * so don't translate '\r' ==> '\n' here... 710 */ 711 return (c); 712 } 713 714 /* 715 * Polled output char. 716 */ 717 void 718 zs_putc(void *arg, int c) 719 { 720 volatile struct zschan *zc = arg; 721 int s, rr0; 722 723 s = splhigh(); 724 725 /* Wait for transmitter to become ready. */ 726 do { 727 rr0 = zc->zc_csr; 728 ZS_DELAY(); 729 } while ((rr0 & ZSRR0_TX_READY) == 0); 730 731 /* 732 * Send the next character. 733 * Now you'd think that this could be followed by a ZS_DELAY() 734 * just like all the other chip accesses, but it turns out that 735 * the `transmit-ready' interrupt isn't de-asserted until 736 * some period of time after the register write completes 737 * (more than a couple instructions). So to avoid stray 738 * interrupts we put in the 2us delay regardless of CPU model. 739 */ 740 zc->zc_data = c; 741 delay(2); 742 743 splx(s); 744 } 745 746 /*****************************************************************/ 747 748 749 750 751 /* 752 * Polled console input putchar. 753 */ 754 static int 755 zscngetc(dev_t dev) 756 { 757 return (zs_getc(zs_conschan_get)); 758 } 759 760 /* 761 * Polled console output putchar. 762 */ 763 static void 764 zscnputc(dev_t dev, int c) 765 { 766 zs_putc(zs_conschan_put, c); 767 } 768 769 int swallow_zsintrs; 770 771 static void 772 zscnpollc(dev_t dev, int on) 773 { 774 /* 775 * Need to tell zs driver to acknowledge all interrupts or we get 776 * annoying spurious interrupt messages. This is because mucking 777 * with spl() levels during polling does not prevent interrupts from 778 * being generated. 779 */ 780 781 if (on) swallow_zsintrs++; 782 else swallow_zsintrs--; 783 } 784 785 int 786 zs_console_flags(int promunit, int node, int channel) 787 { 788 int cookie, flags = 0; 789 char buf[255]; 790 791 /* 792 * We'll just do the OBP grovelling down here since that's 793 * the only type of firmware we support. 794 */ 795 796 /* Default to channel 0 if there are no explicit prom args */ 797 cookie = 0; 798 if (node == prom_instance_to_package(prom_stdin())) { 799 if (prom_getoption("input-device", buf, sizeof buf) == 0 && 800 strcmp("ttyb", buf) == 0) 801 cookie = 1; 802 803 if (channel == cookie) 804 flags |= ZS_HWFLAG_CONSOLE_INPUT; 805 } 806 807 if (node == prom_instance_to_package(prom_stdout())) { 808 if (prom_getoption("output-device", buf, sizeof buf) == 0 && 809 strcmp("ttyb", buf) == 0) 810 cookie = 1; 811 812 if (channel == cookie) 813 flags |= ZS_HWFLAG_CONSOLE_OUTPUT; 814 } 815 816 return (flags); 817 } 818 819