xref: /netbsd-src/sys/arch/sparc64/dev/sbus.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: sbus.c,v 1.60 2003/05/17 01:38:39 nakayama Exp $ */
2 
3 /*
4  * Copyright (c) 1999-2002 Eduardo Horvath
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 
32 /*
33  * Sbus stuff.
34  */
35 #include "opt_ddb.h"
36 
37 #include <sys/param.h>
38 #include <sys/extent.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/reboot.h>
43 
44 #include <machine/bus.h>
45 #include <machine/openfirm.h>
46 
47 #include <sparc64/sparc64/cache.h>
48 #include <sparc64/dev/iommureg.h>
49 #include <sparc64/dev/iommuvar.h>
50 #include <sparc64/dev/sbusreg.h>
51 #include <dev/sbus/sbusvar.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <machine/autoconf.h>
56 #include <machine/cpu.h>
57 #include <machine/sparc64.h>
58 
59 #ifdef DEBUG
60 #define SDB_DVMA	0x1
61 #define SDB_INTR	0x2
62 int sbus_debug = 0;
63 #define DPRINTF(l, s)   do { if (sbus_debug & l) printf s; } while (0)
64 #else
65 #define DPRINTF(l, s)
66 #endif
67 
68 void sbusreset __P((int));
69 
70 static bus_space_tag_t sbus_alloc_bustag __P((struct sbus_softc *));
71 static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
72 static int sbus_get_intr __P((struct sbus_softc *, int,
73 			      struct openprom_intr **, int *, int));
74 static int sbus_overtemp __P((void *));
75 static int _sbus_bus_map __P((
76 		bus_space_tag_t,
77 		bus_addr_t,		/*offset*/
78 		bus_size_t,		/*size*/
79 		int,			/*flags*/
80 		vaddr_t,			/* XXX unused -- compat w/sparc */
81 		bus_space_handle_t *));
82 static void *sbus_intr_establish __P((
83 		bus_space_tag_t,
84 		int,			/*Sbus interrupt level*/
85 		int,			/*`device class' priority*/
86 		int (*) __P((void *)),	/*handler*/
87 		void *,			/*handler arg*/
88 		void (*) __P((void))));	/*optional fast trap*/
89 
90 
91 /* autoconfiguration driver */
92 int	sbus_match __P((struct device *, struct cfdata *, void *));
93 void	sbus_attach __P((struct device *, struct device *, void *));
94 
95 
96 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
97     sbus_match, sbus_attach, NULL, NULL);
98 
99 extern struct cfdriver sbus_cd;
100 
101 /*
102  * DVMA routines
103  */
104 int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
105 			  bus_size_t, struct proc *, int));
106 void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
107 int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
108 		    bus_dma_segment_t *, int, bus_size_t, int));
109 void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
110 			   bus_size_t, int));
111 int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
112 			   bus_size_t alignment, bus_size_t boundary,
113 			   bus_dma_segment_t *segs, int nsegs, int *rsegs,
114 			   int flags));
115 void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
116 			   int nsegs));
117 int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
118 			 int nsegs, size_t size, caddr_t *kvap, int flags));
119 void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
120 			    size_t size));
121 
122 /*
123  * Child devices receive the Sbus interrupt level in their attach
124  * arguments. We translate these to CPU IPLs using the following
125  * tables. Note: obio bus interrupt levels are identical to the
126  * processor IPL.
127  *
128  * The second set of tables is used when the Sbus interrupt level
129  * cannot be had from the PROM as an `interrupt' property. We then
130  * fall back on the `intr' property which contains the CPU IPL.
131  */
132 
133 /*
134  * This value is or'ed into the attach args' interrupt level cookie
135  * if the interrupt level comes from an `intr' property, i.e. it is
136  * not an Sbus interrupt level.
137  */
138 #define SBUS_INTR_COMPAT	0x80000000
139 
140 
141 /*
142  * Print the location of some sbus-attached device (called just
143  * before attaching that device).  If `sbus' is not NULL, the
144  * device was found but not configured; print the sbus as well.
145  * Return UNCONF (config_find ignores this if the device was configured).
146  */
147 int
148 sbus_print(args, busname)
149 	void *args;
150 	const char *busname;
151 {
152 	struct sbus_attach_args *sa = args;
153 	int i;
154 
155 	if (busname)
156 		aprint_normal("%s at %s", sa->sa_name, busname);
157 	aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
158 	       (u_long)sa->sa_offset);
159 	for (i = 0; i < sa->sa_nintr; i++) {
160 		struct openprom_intr *sbi = &sa->sa_intr[i];
161 
162 		aprint_normal(" vector %lx ipl %ld",
163 		       (u_long)sbi->oi_vec,
164 		       (long)INTLEV(sbi->oi_pri));
165 	}
166 	return (UNCONF);
167 }
168 
169 int
170 sbus_match(parent, cf, aux)
171 	struct device *parent;
172 	struct cfdata *cf;
173 	void *aux;
174 {
175 	struct mainbus_attach_args *ma = aux;
176 
177 	return (strcmp(cf->cf_name, ma->ma_name) == 0);
178 }
179 
180 /*
181  * Attach an Sbus.
182  */
183 void
184 sbus_attach(parent, self, aux)
185 	struct device *parent;
186 	struct device *self;
187 	void *aux;
188 {
189 	struct sbus_softc *sc = (struct sbus_softc *)self;
190 	struct mainbus_attach_args *ma = aux;
191 	struct intrhand *ih;
192 	int ipl;
193 	char *name;
194 	int node = ma->ma_node;
195 	int node0, error;
196 	bus_space_tag_t sbt;
197 	struct sbus_attach_args sa;
198 
199 	sc->sc_bustag = ma->ma_bustag;
200 	sc->sc_dmatag = ma->ma_dmatag;
201 	sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
202 
203 	/* XXXX Use sysio PROM mappings for interrupt vector regs. */
204 	sparc_promaddr_to_handle(sc->sc_bustag,	ma->ma_address[0], &sc->sc_bh);
205 	sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
206 		sc->sc_bh);
207 
208 #ifdef _LP64
209 	/*
210 	 * 32-bit kernels use virtual addresses for bus space operations
211 	 * so we may as well use the prom VA.
212 	 *
213 	 * 64-bit kernels use physical addresses for bus space operations
214 	 * so mapping this in again will reduce TLB thrashing.
215 	 */
216 	if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
217 		ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
218 		printf("%s: cannot map registers\n", self->dv_xname);
219 		return;
220 	}
221 #endif
222 
223 	/*
224 	 * Record clock frequency for synchronous SCSI.
225 	 * IS THIS THE CORRECT DEFAULT??
226 	 */
227 	sc->sc_clockfreq = PROM_getpropint(node, "clock-frequency",
228 		25*1000*1000);
229 	printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
230 
231 	sbt = sbus_alloc_bustag(sc);
232 	sc->sc_dmatag = sbus_alloc_dmatag(sc);
233 
234 	/*
235 	 * Get the SBus burst transfer size if burst transfers are supported
236 	 */
237 	sc->sc_burst = PROM_getpropint(node, "burst-sizes", 0);
238 
239 	/*
240 	 * Collect address translations from the OBP.
241 	 */
242 	error = PROM_getprop(node, "ranges", sizeof(struct openprom_range),
243 			 &sc->sc_nrange, (void **)&sc->sc_range);
244 	if (error)
245 		panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
246 
247 	/* initialize the IOMMU */
248 
249 	/* punch in our copies */
250 	sc->sc_is.is_bustag = sc->sc_bustag;
251 	bus_space_subregion(sc->sc_bustag, sc->sc_bh,
252 		(vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
253 		sizeof (struct iommureg), &sc->sc_is.is_iommu);
254 
255 	/* initialize our strbuf_ctl */
256 	sc->sc_is.is_sb[0] = &sc->sc_sb;
257 	sc->sc_sb.sb_is = &sc->sc_is;
258 	bus_space_subregion(sc->sc_bustag, sc->sc_bh,
259 		(vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
260 		sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
261 	/* Point sb_flush to our flush buffer. */
262 	sc->sc_sb.sb_flush = &sc->sc_flush;
263 
264 	/* give us a nice name.. */
265 	name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
266 	if (name == 0)
267 		panic("couldn't malloc iommu name");
268 	snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
269 
270 	iommu_init(name, &sc->sc_is, 0, -1);
271 
272 	/* Enable the over temp intr */
273 	ih = (struct intrhand *)
274 		malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
275 	ih->ih_map = &sc->sc_sysio->therm_int_map;
276 	ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
277 	ih->ih_fun = sbus_overtemp;
278 	ipl = 1;
279 	ih->ih_pil = (1<<ipl);
280 	ih->ih_number = INTVEC(*(ih->ih_map));
281 	intr_establish(ipl, ih);
282 	*(ih->ih_map) |= INTMAP_V;
283 
284 	/*
285 	 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
286 	 * NULL DMA pointer will be translated by the first page of the IOTSB.
287 	 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
288 	 */
289 	{
290 		u_long dummy;
291 
292 		if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
293 		    sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
294 		    PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
295 		    (u_long *)&dummy) != 0)
296 			panic("sbus iommu: can't toss first dvma page");
297 	}
298 
299 	/*
300 	 * Loop through ROM children, fixing any relative addresses
301 	 * and then configuring each device.
302 	 * `specials' is an array of device names that are treated
303 	 * specially:
304 	 */
305 	node0 = OF_child(node);
306 	for (node = node0; node; node = OF_peer(node)) {
307 		char *name = PROM_getpropstring(node, "name");
308 
309 		if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
310 					   node, &sa) != 0) {
311 			printf("sbus_attach: %s: incomplete\n", name);
312 			continue;
313 		}
314 		(void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
315 		sbus_destroy_attach_args(&sa);
316 	}
317 }
318 
319 int
320 sbus_setup_attach_args(sc, bustag, dmatag, node, sa)
321 	struct sbus_softc	*sc;
322 	bus_space_tag_t		bustag;
323 	bus_dma_tag_t		dmatag;
324 	int			node;
325 	struct sbus_attach_args	*sa;
326 {
327 	/*struct	openprom_addr sbusreg;*/
328 	/*int	base;*/
329 	int	error;
330 	int n;
331 
332 	bzero(sa, sizeof(struct sbus_attach_args));
333 	error = PROM_getprop(node, "name", 1, &n, (void **)&sa->sa_name);
334 	if (error != 0)
335 		return (error);
336 	sa->sa_name[n] = '\0';
337 
338 	sa->sa_bustag = bustag;
339 	sa->sa_dmatag = dmatag;
340 	sa->sa_node = node;
341 	sa->sa_frequency = sc->sc_clockfreq;
342 
343 	error = PROM_getprop(node, "reg", sizeof(struct openprom_addr),
344 			 &sa->sa_nreg, (void **)&sa->sa_reg);
345 	if (error != 0) {
346 		char buf[32];
347 		if (error != ENOENT ||
348 		    !node_has_property(node, "device_type") ||
349 		    strcmp(PROM_getpropstringA(node, "device_type", buf),
350 			   "hierarchical") != 0)
351 			return (error);
352 	}
353 	for (n = 0; n < sa->sa_nreg; n++) {
354 		/* Convert to relative addressing, if necessary */
355 		u_int32_t base = sa->sa_reg[n].oa_base;
356 		if (SBUS_ABS(base)) {
357 			sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
358 			sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
359 		}
360 	}
361 
362 	if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
363 	    sa->sa_slot)) != 0)
364 		return (error);
365 
366 	error = PROM_getprop(node, "address", sizeof(u_int32_t),
367 			 &sa->sa_npromvaddrs, (void **)&sa->sa_promvaddrs);
368 	if (error != 0 && error != ENOENT)
369 		return (error);
370 
371 	return (0);
372 }
373 
374 void
375 sbus_destroy_attach_args(sa)
376 	struct sbus_attach_args	*sa;
377 {
378 	if (sa->sa_name != NULL)
379 		free(sa->sa_name, M_DEVBUF);
380 
381 	if (sa->sa_nreg != 0)
382 		free(sa->sa_reg, M_DEVBUF);
383 
384 	if (sa->sa_intr)
385 		free(sa->sa_intr, M_DEVBUF);
386 
387 	if (sa->sa_promvaddrs)
388 		free((void *)sa->sa_promvaddrs, M_DEVBUF);
389 
390 	bzero(sa, sizeof(struct sbus_attach_args)); /*DEBUG*/
391 }
392 
393 
394 int
395 _sbus_bus_map(t, addr, size, flags, v, hp)
396 	bus_space_tag_t t;
397 	bus_addr_t addr;
398 	bus_size_t size;
399 	int	flags;
400 	vaddr_t v;
401 	bus_space_handle_t *hp;
402 {
403 	struct sbus_softc *sc = t->cookie;
404 	int64_t slot = BUS_ADDR_IOSPACE(addr);
405 	int64_t offset = BUS_ADDR_PADDR(addr);
406 	int i;
407 
408 	for (i = 0; i < sc->sc_nrange; i++) {
409 		bus_addr_t paddr;
410 
411 		if (sc->sc_range[i].or_child_space != slot)
412 			continue;
413 
414 		/* We've found the connection to the parent bus */
415 		paddr = sc->sc_range[i].or_parent_base + offset;
416 		paddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
417 		DPRINTF(SDB_DVMA,
418 ("\n_sbus_bus_map: mapping paddr slot %lx offset %lx poffset %lx paddr %lx\n",
419 		    (long)slot, (long)offset,
420 		    (long)sc->sc_range[i].or_parent_base,
421 		    (long)paddr));
422 		return (bus_space_map(sc->sc_bustag, paddr, size, flags, hp));
423 	}
424 
425 	return (EINVAL);
426 }
427 
428 
429 bus_addr_t
430 sbus_bus_addr(t, btype, offset)
431 	bus_space_tag_t t;
432 	u_int btype;
433 	u_int offset;
434 {
435 	bus_addr_t baddr;
436 	int slot = btype;
437 	struct sbus_softc *sc = t->cookie;
438 	int i;
439 
440 	for (i = 0; i < sc->sc_nrange; i++) {
441 		if (sc->sc_range[i].or_child_space != slot)
442 			continue;
443 
444 		baddr = sc->sc_range[i].or_parent_base + offset;
445 		baddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
446 	}
447 
448 	return (baddr);
449 }
450 
451 
452 /*
453  * Each attached device calls sbus_establish after it initializes
454  * its sbusdev portion.
455  */
456 void
457 sbus_establish(sd, dev)
458 	register struct sbusdev *sd;
459 	register struct device *dev;
460 {
461 	register struct sbus_softc *sc;
462 	register struct device *curdev;
463 
464 	/*
465 	 * We have to look for the sbus by name, since it is not necessarily
466 	 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
467 	 * We don't just use the device structure of the above-attached
468 	 * sbus, since we might (in the future) support multiple sbus's.
469 	 */
470 	for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
471 		if (!curdev || !curdev->dv_xname)
472 			panic("sbus_establish: can't find sbus parent for %s",
473 			      sd->sd_dev->dv_xname
474 					? sd->sd_dev->dv_xname
475 					: "<unknown>" );
476 
477 		if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
478 			break;
479 	}
480 	sc = (struct sbus_softc *) curdev;
481 
482 	sd->sd_dev = dev;
483 	sd->sd_bchain = sc->sc_sbdev;
484 	sc->sc_sbdev = sd;
485 }
486 
487 /*
488  * Reset the given sbus.
489  */
490 void
491 sbusreset(sbus)
492 	int sbus;
493 {
494 	register struct sbusdev *sd;
495 	struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
496 	struct device *dev;
497 
498 	printf("reset %s:", sc->sc_dev.dv_xname);
499 	for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
500 		if (sd->sd_reset) {
501 			dev = sd->sd_dev;
502 			(*sd->sd_reset)(dev);
503 			printf(" %s", dev->dv_xname);
504 		}
505 	}
506 	/* Reload iommu regs */
507 	iommu_reset(&sc->sc_is);
508 }
509 
510 /*
511  * Handle an overtemp situation.
512  *
513  * SPARCs have temperature sensors which generate interrupts
514  * if the machine's temperature exceeds a certain threshold.
515  * This handles the interrupt and powers off the machine.
516  * The same needs to be done to PCI controller drivers.
517  */
518 int
519 sbus_overtemp(arg)
520 	void *arg;
521 {
522 	/* Should try a clean shutdown first */
523 	printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
524 	delay(20);
525 	cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
526 }
527 
528 /*
529  * Get interrupt attributes for an Sbus device.
530  */
531 int
532 sbus_get_intr(sc, node, ipp, np, slot)
533 	struct sbus_softc *sc;
534 	int node;
535 	struct openprom_intr **ipp;
536 	int *np;
537 	int slot;
538 {
539 	int *ipl;
540 	int n, i;
541 	char buf[32];
542 
543 	/*
544 	 * The `interrupts' property contains the Sbus interrupt level.
545 	 */
546 	ipl = NULL;
547 	if (PROM_getprop(node, "interrupts", sizeof(int), np, (void *)&ipl) == 0) {
548 		struct openprom_intr *ip;
549 		int pri;
550 
551 		/* Default to interrupt level 2 -- otherwise unused */
552 		pri = INTLEVENCODE(2);
553 
554 		/* Change format to an `struct sbus_intr' array */
555 		ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
556 		    M_NOWAIT);
557 		if (ip == NULL)
558 			return (ENOMEM);
559 
560 		/*
561 		 * Now things get ugly.  We need to take this value which is
562 		 * the interrupt vector number and encode the IPL into it
563 		 * somehow. Luckily, the interrupt vector has lots of free
564 		 * space and we can easily stuff the IPL in there for a while.
565 		 */
566 		PROM_getpropstringA(node, "device_type", buf);
567 		if (!buf[0])
568 			PROM_getpropstringA(node, "name", buf);
569 
570 		for (i = 0; intrmap[i].in_class; i++)
571 			if (strcmp(intrmap[i].in_class, buf) == 0) {
572 				pri = INTLEVENCODE(intrmap[i].in_lev);
573 				break;
574 			}
575 
576 		/*
577 		 * Sbus card devices need the slot number encoded into
578 		 * the vector as this is generally not done.
579 		 */
580 		if ((ipl[0] & INTMAP_OBIO) == 0)
581 			pri |= slot << 3;
582 
583 		for (n = 0; n < *np; n++) {
584 			/*
585 			 * We encode vector and priority into sbi_pri so we
586 			 * can pass them as a unit.  This will go away if
587 			 * sbus_establish ever takes an sbus_intr instead
588 			 * of an integer level.
589 			 * Stuff the real vector in sbi_vec.
590 			 */
591 
592 			ip[n].oi_pri = pri|ipl[n];
593 			ip[n].oi_vec = ipl[n];
594 		}
595 		free(ipl, M_DEVBUF);
596 		*ipp = ip;
597 	}
598 
599 	return (0);
600 }
601 
602 
603 /*
604  * Install an interrupt handler for an Sbus device.
605  */
606 void *
607 sbus_intr_establish(t, pri, level, handler, arg, fastvec)
608 	bus_space_tag_t t;
609 	int pri;
610 	int level;
611 	int (*handler) __P((void *));
612 	void *arg;
613 	void (*fastvec) __P((void));	/* ignored */
614 {
615 	struct sbus_softc *sc = t->cookie;
616 	struct intrhand *ih;
617 	int ipl;
618 	long vec = pri;
619 
620 	ih = (struct intrhand *)
621 		malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
622 	if (ih == NULL)
623 		return (NULL);
624 
625 	if ((vec & SBUS_INTR_COMPAT) != 0)
626 		ipl = vec & ~SBUS_INTR_COMPAT;
627 	else {
628 		/* Decode and remove IPL */
629 		ipl = INTLEV(vec);
630 		vec = INTVEC(vec);
631 		DPRINTF(SDB_INTR,
632 		    ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
633 		    (long)ipl, (long)vec, (u_long)intrlev[vec]));
634 		if ((vec & INTMAP_OBIO) == 0) {
635 			/* We're in an SBUS slot */
636 			/* Register the map and clear intr registers */
637 
638 			int slot = INTSLOT(pri);
639 
640 			ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
641 			ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
642 #ifdef DEBUG
643 			if (sbus_debug & SDB_INTR) {
644 				int64_t intrmap = *ih->ih_map;
645 
646 				printf("SBUS %lx IRQ as %llx in slot %d\n",
647 				       (long)vec, (long long)intrmap, slot);
648 				printf("\tmap addr %p clr addr %p\n",
649 				    ih->ih_map, ih->ih_clr);
650 			}
651 #endif
652 			/* Enable the interrupt */
653 			vec |= INTMAP_V;
654 			/* Insert IGN */
655 			vec |= sc->sc_ign;
656 			/* XXXX */
657 			*(ih->ih_map) = vec;
658 		} else {
659 			int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
660 			int64_t intrmap = 0;
661 			int i;
662 
663 			/* Insert IGN */
664 			vec |= sc->sc_ign;
665 			for (i = 0; &intrptr[i] <=
666 			    (int64_t *)&sc->sc_sysio->reserved_int_map &&
667 			    INTVEC(intrmap = intrptr[i]) != INTVEC(vec); i++)
668 				;
669 			if (INTVEC(intrmap) == INTVEC(vec)) {
670 				DPRINTF(SDB_INTR,
671 				    ("OBIO %lx IRQ as %lx in slot %d\n",
672 				    vec, (long)intrmap, i));
673 				/* Register the map and clear intr registers */
674 				ih->ih_map = &intrptr[i];
675 				intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
676 				ih->ih_clr = &intrptr[i];
677 				/* Enable the interrupt */
678 				intrmap |= INTMAP_V;
679 				/* XXXX */
680 				*(ih->ih_map) = intrmap;
681 			} else
682 				panic("IRQ not found!");
683 		}
684 	}
685 #ifdef DEBUG
686 	if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
687 #endif
688 
689 	ih->ih_fun = handler;
690 	ih->ih_arg = arg;
691 	ih->ih_number = vec;
692 	ih->ih_pil = (1<<ipl);
693 	intr_establish(ipl, ih);
694 	return (ih);
695 }
696 
697 static bus_space_tag_t
698 sbus_alloc_bustag(sc)
699 	struct sbus_softc *sc;
700 {
701 	bus_space_tag_t sbt;
702 
703 	sbt = (bus_space_tag_t)
704 		malloc(sizeof(struct sparc_bus_space_tag), M_DEVBUF, M_NOWAIT);
705 	if (sbt == NULL)
706 		return (NULL);
707 
708 	bzero(sbt, sizeof *sbt);
709 	sbt->cookie = sc;
710 	sbt->parent = sc->sc_bustag;
711 	sbt->type = SBUS_BUS_SPACE;
712 	sbt->sparc_bus_map = _sbus_bus_map;
713 	sbt->sparc_bus_mmap = sc->sc_bustag->sparc_bus_mmap;
714 	sbt->sparc_intr_establish = sbus_intr_establish;
715 	return (sbt);
716 }
717 
718 
719 static bus_dma_tag_t
720 sbus_alloc_dmatag(sc)
721 	struct sbus_softc *sc;
722 {
723 	bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
724 
725 	sdt = (bus_dma_tag_t)
726 		malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
727 	if (sdt == NULL)
728 		/* Panic? */
729 		return (psdt);
730 
731 	sdt->_cookie = sc;
732 	sdt->_parent = psdt;
733 #define PCOPY(x)	sdt->x = psdt->x
734 	PCOPY(_dmamap_create);
735 	PCOPY(_dmamap_destroy);
736 	sdt->_dmamap_load = sbus_dmamap_load;
737 	PCOPY(_dmamap_load_mbuf);
738 	PCOPY(_dmamap_load_uio);
739 	sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
740 	sdt->_dmamap_unload = sbus_dmamap_unload;
741 	sdt->_dmamap_sync = sbus_dmamap_sync;
742 	sdt->_dmamem_alloc = sbus_dmamem_alloc;
743 	sdt->_dmamem_free = sbus_dmamem_free;
744 	sdt->_dmamem_map = sbus_dmamem_map;
745 	sdt->_dmamem_unmap = sbus_dmamem_unmap;
746 	PCOPY(_dmamem_mmap);
747 #undef	PCOPY
748 	sc->sc_dmatag = sdt;
749 	return (sdt);
750 }
751 
752 int
753 sbus_dmamap_load(tag, map, buf, buflen, p, flags)
754 	bus_dma_tag_t tag;
755 	bus_dmamap_t map;
756 	void *buf;
757 	bus_size_t buflen;
758 	struct proc *p;
759 	int flags;
760 {
761 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
762 
763 	return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
764 }
765 
766 int
767 sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags)
768 	bus_dma_tag_t tag;
769 	bus_dmamap_t map;
770 	bus_dma_segment_t *segs;
771 	int nsegs;
772 	bus_size_t size;
773 	int flags;
774 {
775 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
776 
777 	return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
778 }
779 
780 void
781 sbus_dmamap_unload(tag, map)
782 	bus_dma_tag_t tag;
783 	bus_dmamap_t map;
784 {
785 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
786 
787 	iommu_dvmamap_unload(tag, &sc->sc_sb, map);
788 }
789 
790 void
791 sbus_dmamap_sync(tag, map, offset, len, ops)
792 	bus_dma_tag_t tag;
793 	bus_dmamap_t map;
794 	bus_addr_t offset;
795 	bus_size_t len;
796 	int ops;
797 {
798 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
799 
800 	if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
801 		/* Flush the CPU then the IOMMU */
802 		bus_dmamap_sync(tag->_parent, map, offset, len, ops);
803 		iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
804 	}
805 	if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
806 		/* Flush the IOMMU then the CPU */
807 		iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
808 		bus_dmamap_sync(tag->_parent, map, offset, len, ops);
809 	}
810 }
811 
812 int
813 sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags)
814 	bus_dma_tag_t tag;
815 	bus_size_t size;
816 	bus_size_t alignment;
817 	bus_size_t boundary;
818 	bus_dma_segment_t *segs;
819 	int nsegs;
820 	int *rsegs;
821 	int flags;
822 {
823 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
824 
825 	return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
826 	    segs, nsegs, rsegs, flags));
827 }
828 
829 void
830 sbus_dmamem_free(tag, segs, nsegs)
831 	bus_dma_tag_t tag;
832 	bus_dma_segment_t *segs;
833 	int nsegs;
834 {
835 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
836 
837 	iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
838 }
839 
840 int
841 sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags)
842 	bus_dma_tag_t tag;
843 	bus_dma_segment_t *segs;
844 	int nsegs;
845 	size_t size;
846 	caddr_t *kvap;
847 	int flags;
848 {
849 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
850 
851 	return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
852 }
853 
854 void
855 sbus_dmamem_unmap(tag, kva, size)
856 	bus_dma_tag_t tag;
857 	caddr_t kva;
858 	size_t size;
859 {
860 	struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
861 
862 	iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
863 }
864