1 /* $NetBSD: sbus.c,v 1.78 2007/03/04 06:00:49 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1999-2002 Eduardo Horvath 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 32 /* 33 * Sbus stuff. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.78 2007/03/04 06:00:49 christos Exp $"); 38 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/extent.h> 43 #include <sys/malloc.h> 44 #include <sys/systm.h> 45 #include <sys/device.h> 46 #include <sys/reboot.h> 47 48 #include <machine/bus.h> 49 #include <machine/openfirm.h> 50 51 #include <sparc64/sparc64/cache.h> 52 #include <sparc64/dev/iommureg.h> 53 #include <sparc64/dev/iommuvar.h> 54 #include <sparc64/dev/sbusreg.h> 55 #include <dev/sbus/sbusvar.h> 56 57 #include <uvm/uvm_extern.h> 58 59 #include <machine/autoconf.h> 60 #include <machine/cpu.h> 61 #include <machine/sparc64.h> 62 63 #ifdef DEBUG 64 #define SDB_DVMA 0x1 65 #define SDB_INTR 0x2 66 int sbus_debug = 0; 67 #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0) 68 #else 69 #define DPRINTF(l, s) 70 #endif 71 72 void sbusreset(int); 73 74 static bus_dma_tag_t sbus_alloc_dmatag(struct sbus_softc *); 75 static int sbus_get_intr(struct sbus_softc *, int, struct openprom_intr **, 76 int *, int); 77 static int sbus_overtemp(void *); 78 static int _sbus_bus_map( 79 bus_space_tag_t, 80 bus_addr_t, /*offset*/ 81 bus_size_t, /*size*/ 82 int, /*flags*/ 83 vaddr_t, /* XXX unused -- compat w/sparc */ 84 bus_space_handle_t *); 85 static void *sbus_intr_establish( 86 bus_space_tag_t, 87 int, /*`device class' priority*/ 88 int, /*Sbus interrupt level*/ 89 int (*)(void *), /*handler*/ 90 void *, /*handler arg*/ 91 void (*)(void)); /*optional fast trap*/ 92 93 94 /* autoconfiguration driver */ 95 int sbus_match(struct device *, struct cfdata *, void *); 96 void sbus_attach(struct device *, struct device *, void *); 97 98 99 CFATTACH_DECL(sbus, sizeof(struct sbus_softc), 100 sbus_match, sbus_attach, NULL, NULL); 101 102 extern struct cfdriver sbus_cd; 103 104 /* 105 * DVMA routines 106 */ 107 int sbus_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, 108 struct proc *, int); 109 void sbus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t); 110 int sbus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, 111 int, bus_size_t, int); 112 void sbus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, 113 int); 114 int sbus_dmamem_alloc(bus_dma_tag_t tag, bus_size_t size, 115 bus_size_t alignment, bus_size_t boundary, 116 bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags); 117 void sbus_dmamem_free(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs); 118 int sbus_dmamem_map(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, 119 size_t size, void **kvap, int flags); 120 void sbus_dmamem_unmap(bus_dma_tag_t tag, void *kva, size_t size); 121 122 /* 123 * Child devices receive the Sbus interrupt level in their attach 124 * arguments. We translate these to CPU IPLs using the following 125 * tables. Note: obio bus interrupt levels are identical to the 126 * processor IPL. 127 * 128 * The second set of tables is used when the Sbus interrupt level 129 * cannot be had from the PROM as an `interrupt' property. We then 130 * fall back on the `intr' property which contains the CPU IPL. 131 */ 132 133 /* 134 * This value is or'ed into the attach args' interrupt level cookie 135 * if the interrupt level comes from an `intr' property, i.e. it is 136 * not an Sbus interrupt level. 137 */ 138 #define SBUS_INTR_COMPAT 0x80000000 139 140 141 /* 142 * Print the location of some sbus-attached device (called just 143 * before attaching that device). If `sbus' is not NULL, the 144 * device was found but not configured; print the sbus as well. 145 * Return UNCONF (config_find ignores this if the device was configured). 146 */ 147 int 148 sbus_print(void *args, const char *busname) 149 { 150 struct sbus_attach_args *sa = args; 151 int i; 152 153 if (busname) 154 aprint_normal("%s at %s", sa->sa_name, busname); 155 aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot, 156 (u_long)sa->sa_offset); 157 for (i = 0; i < sa->sa_nintr; i++) { 158 struct openprom_intr *sbi = &sa->sa_intr[i]; 159 160 aprint_normal(" vector %lx ipl %ld", 161 (u_long)sbi->oi_vec, 162 (long)INTLEV(sbi->oi_pri)); 163 } 164 return (UNCONF); 165 } 166 167 int 168 sbus_match(struct device *parent, struct cfdata *cf, void *aux) 169 { 170 struct mainbus_attach_args *ma = aux; 171 172 return (strcmp(cf->cf_name, ma->ma_name) == 0); 173 } 174 175 /* 176 * Attach an Sbus. 177 */ 178 void 179 sbus_attach(struct device *parent, struct device *self, void *aux) 180 { 181 struct sbus_softc *sc = (struct sbus_softc *)self; 182 struct mainbus_attach_args *ma = aux; 183 struct intrhand *ih; 184 int ipl; 185 char *name; 186 int node = ma->ma_node; 187 int node0, error; 188 bus_space_tag_t sbt; 189 struct sbus_attach_args sa; 190 191 sc->sc_bustag = ma->ma_bustag; 192 sc->sc_dmatag = ma->ma_dmatag; 193 sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN; 194 195 /* XXXX Use sysio PROM mappings for interrupt vector regs. */ 196 sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh); 197 sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag, 198 sc->sc_bh); 199 200 #ifdef _LP64 201 /* 202 * 32-bit kernels use virtual addresses for bus space operations 203 * so we may as well use the prom VA. 204 * 205 * 64-bit kernels use physical addresses for bus space operations 206 * so mapping this in again will reduce TLB thrashing. 207 */ 208 if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr, 209 ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) { 210 printf("%s: cannot map registers\n", self->dv_xname); 211 return; 212 } 213 #endif 214 215 /* 216 * Record clock frequency for synchronous SCSI. 217 * IS THIS THE CORRECT DEFAULT?? 218 */ 219 sc->sc_clockfreq = prom_getpropint(node, "clock-frequency", 220 25*1000*1000); 221 printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq)); 222 223 sbt = bus_space_tag_alloc(sc->sc_bustag, sc); 224 sbt->type = SBUS_BUS_SPACE; 225 sbt->sparc_bus_map = _sbus_bus_map; 226 sbt->sparc_intr_establish = sbus_intr_establish; 227 228 sc->sc_dmatag = sbus_alloc_dmatag(sc); 229 230 /* 231 * Get the SBus burst transfer size if burst transfers are supported 232 */ 233 sc->sc_burst = prom_getpropint(node, "burst-sizes", 0); 234 235 /* 236 * Collect address translations from the OBP. 237 */ 238 error = prom_getprop(node, "ranges", sizeof(struct openprom_range), 239 &sbt->nranges, &sbt->ranges); 240 if (error) 241 panic("%s: error getting ranges property", sc->sc_dev.dv_xname); 242 243 /* initialize the IOMMU */ 244 245 /* punch in our copies */ 246 sc->sc_is.is_bustag = sc->sc_bustag; 247 bus_space_subregion(sc->sc_bustag, sc->sc_bh, 248 (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu, 249 sizeof (struct iommureg), &sc->sc_is.is_iommu); 250 251 /* initialize our strbuf_ctl */ 252 sc->sc_is.is_sb[0] = &sc->sc_sb; 253 sc->sc_sb.sb_is = &sc->sc_is; 254 bus_space_subregion(sc->sc_bustag, sc->sc_bh, 255 (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf, 256 sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb); 257 /* Point sb_flush to our flush buffer. */ 258 sc->sc_sb.sb_flush = &sc->sc_flush; 259 260 /* give us a nice name.. */ 261 name = (char *)malloc(32, M_DEVBUF, M_NOWAIT); 262 if (name == 0) 263 panic("couldn't malloc iommu name"); 264 snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname); 265 266 iommu_init(name, &sc->sc_is, 0, -1); 267 268 /* Enable the over temp intr */ 269 ih = (struct intrhand *) 270 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT); 271 ih->ih_map = &sc->sc_sysio->therm_int_map; 272 ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */ 273 ih->ih_fun = sbus_overtemp; 274 ipl = 1; 275 ih->ih_pil = (1<<ipl); 276 ih->ih_number = INTVEC(*(ih->ih_map)); 277 intr_establish(ipl, ih); 278 *(ih->ih_map) |= INTMAP_V|(CPU_UPAID << INTMAP_TID_SHIFT); 279 280 /* 281 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a 282 * NULL DMA pointer will be translated by the first page of the IOTSB. 283 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB. 284 */ 285 { 286 u_long dummy; 287 288 if (extent_alloc_subregion(sc->sc_is.is_dvmamap, 289 sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE, 290 PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO, 291 (u_long *)&dummy) != 0) 292 panic("sbus iommu: can't toss first dvma page"); 293 } 294 295 /* 296 * Loop through ROM children, fixing any relative addresses 297 * and then configuring each device. 298 * `specials' is an array of device names that are treated 299 * specially: 300 */ 301 node0 = OF_child(node); 302 for (node = node0; node; node = OF_peer(node)) { 303 char *name1 = prom_getpropstring(node, "name"); 304 305 if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag, 306 node, &sa) != 0) { 307 printf("sbus_attach: %s: incomplete\n", name1); 308 continue; 309 } 310 (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print); 311 sbus_destroy_attach_args(&sa); 312 } 313 } 314 315 int 316 sbus_setup_attach_args(struct sbus_softc *sc, bus_space_tag_t bustag, 317 bus_dma_tag_t dmatag, int node, struct sbus_attach_args *sa) 318 { 319 /*struct openprom_addr sbusreg;*/ 320 /*int base;*/ 321 int error; 322 int n; 323 324 memset(sa, 0, sizeof(struct sbus_attach_args)); 325 n = 0; 326 error = prom_getprop(node, "name", 1, &n, &sa->sa_name); 327 if (error != 0) 328 return (error); 329 sa->sa_name[n] = '\0'; 330 331 sa->sa_bustag = bustag; 332 sa->sa_dmatag = dmatag; 333 sa->sa_node = node; 334 sa->sa_frequency = sc->sc_clockfreq; 335 336 error = prom_getprop(node, "reg", sizeof(struct openprom_addr), 337 &sa->sa_nreg, &sa->sa_reg); 338 if (error != 0) { 339 char buf[32]; 340 if (error != ENOENT || 341 !node_has_property(node, "device_type") || 342 strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf), 343 "hierarchical") != 0) 344 return (error); 345 } 346 for (n = 0; n < sa->sa_nreg; n++) { 347 /* Convert to relative addressing, if necessary */ 348 uint32_t base = sa->sa_reg[n].oa_base; 349 if (SBUS_ABS(base)) { 350 sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base); 351 sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base); 352 } 353 } 354 355 if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr, 356 sa->sa_slot)) != 0) 357 return (error); 358 359 error = prom_getprop(node, "address", sizeof(uint32_t), 360 &sa->sa_npromvaddrs, &sa->sa_promvaddrs); 361 if (error != 0 && error != ENOENT) 362 return (error); 363 364 return (0); 365 } 366 367 void 368 sbus_destroy_attach_args(struct sbus_attach_args *sa) 369 { 370 if (sa->sa_name != NULL) 371 free(sa->sa_name, M_DEVBUF); 372 373 if (sa->sa_nreg != 0) 374 free(sa->sa_reg, M_DEVBUF); 375 376 if (sa->sa_intr) 377 free(sa->sa_intr, M_DEVBUF); 378 379 if (sa->sa_promvaddrs) 380 free((void *)sa->sa_promvaddrs, M_DEVBUF); 381 382 memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/ 383 } 384 385 386 int 387 _sbus_bus_map(bus_space_tag_t t, bus_addr_t addr, bus_size_t size, int flags, 388 vaddr_t v, bus_space_handle_t *hp) 389 { 390 int error; 391 392 if (t->ranges != NULL) { 393 if ((error = bus_space_translate_address_generic( 394 t->ranges, t->nranges, &addr)) != 0) 395 return (error); 396 } 397 398 return (bus_space_map(t->parent, addr, size, flags, hp)); 399 } 400 401 402 bus_addr_t 403 sbus_bus_addr(bus_space_tag_t t, u_int btype, u_int offset) 404 { 405 int slot = btype; 406 struct openprom_range *rp; 407 int i; 408 409 for (i = 0; i < t->nranges; i++) { 410 rp = &t->ranges[i]; 411 if (rp->or_child_space != slot) 412 continue; 413 414 return BUS_ADDR(rp->or_parent_space, 415 rp->or_parent_base + offset); 416 } 417 418 return (0); 419 } 420 421 422 /* 423 * Each attached device calls sbus_establish after it initializes 424 * its sbusdev portion. 425 */ 426 void 427 sbus_establish(register struct sbusdev *sd, register struct device *dev) 428 { 429 register struct sbus_softc *sc; 430 register struct device *curdev; 431 432 /* 433 * We have to look for the sbus by name, since it is not necessarily 434 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp) 435 * We don't just use the device structure of the above-attached 436 * sbus, since we might (in the future) support multiple sbus's. 437 */ 438 for (curdev = device_parent(dev); ; curdev = device_parent(curdev)) { 439 if (!curdev || !curdev->dv_xname) 440 panic("sbus_establish: can't find sbus parent for %s", 441 sd->sd_dev->dv_xname 442 ? sd->sd_dev->dv_xname 443 : "<unknown>" ); 444 445 if (strncmp(curdev->dv_xname, "sbus", 4) == 0) 446 break; 447 } 448 sc = (struct sbus_softc *) curdev; 449 450 sd->sd_dev = dev; 451 sd->sd_bchain = sc->sc_sbdev; 452 sc->sc_sbdev = sd; 453 } 454 455 /* 456 * Reset the given sbus. 457 */ 458 void 459 sbusreset(int sbus) 460 { 461 register struct sbusdev *sd; 462 struct sbus_softc *sc = sbus_cd.cd_devs[sbus]; 463 struct device *dev; 464 465 printf("reset %s:", sc->sc_dev.dv_xname); 466 for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) { 467 if (sd->sd_reset) { 468 dev = sd->sd_dev; 469 (*sd->sd_reset)(dev); 470 printf(" %s", dev->dv_xname); 471 } 472 } 473 /* Reload iommu regs */ 474 iommu_reset(&sc->sc_is); 475 } 476 477 /* 478 * Handle an overtemp situation. 479 * 480 * SPARCs have temperature sensors which generate interrupts 481 * if the machine's temperature exceeds a certain threshold. 482 * This handles the interrupt and powers off the machine. 483 * The same needs to be done to PCI controller drivers. 484 */ 485 int 486 sbus_overtemp(void *arg) 487 { 488 /* Should try a clean shutdown first */ 489 printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n"); 490 delay(20); 491 cpu_reboot(RB_POWERDOWN|RB_HALT, NULL); 492 } 493 494 /* 495 * Get interrupt attributes for an Sbus device. 496 */ 497 int 498 sbus_get_intr(struct sbus_softc *sc, int node, struct openprom_intr **ipp, 499 int *np, int slot) 500 { 501 int *ipl; 502 int n, i; 503 char buf[32]; 504 505 /* 506 * The `interrupts' property contains the Sbus interrupt level. 507 */ 508 ipl = NULL; 509 if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) { 510 struct openprom_intr *ip; 511 int pri; 512 513 /* Default to interrupt level 2 -- otherwise unused */ 514 pri = INTLEVENCODE(2); 515 516 /* Change format to an `struct sbus_intr' array */ 517 ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF, 518 M_NOWAIT); 519 if (ip == NULL) 520 return (ENOMEM); 521 522 /* 523 * Now things get ugly. We need to take this value which is 524 * the interrupt vector number and encode the IPL into it 525 * somehow. Luckily, the interrupt vector has lots of free 526 * space and we can easily stuff the IPL in there for a while. 527 */ 528 prom_getpropstringA(node, "device_type", buf, sizeof buf); 529 if (buf[0] == '\0') 530 prom_getpropstringA(node, "name", buf, sizeof buf); 531 532 for (i = 0; intrmap[i].in_class; i++) 533 if (strcmp(intrmap[i].in_class, buf) == 0) { 534 pri = INTLEVENCODE(intrmap[i].in_lev); 535 break; 536 } 537 538 /* 539 * Sbus card devices need the slot number encoded into 540 * the vector as this is generally not done. 541 */ 542 if ((ipl[0] & INTMAP_OBIO) == 0) 543 pri |= slot << 3; 544 545 for (n = 0; n < *np; n++) { 546 /* 547 * We encode vector and priority into sbi_pri so we 548 * can pass them as a unit. This will go away if 549 * sbus_establish ever takes an sbus_intr instead 550 * of an integer level. 551 * Stuff the real vector in sbi_vec. 552 */ 553 554 ip[n].oi_pri = pri|ipl[n]; 555 ip[n].oi_vec = ipl[n]; 556 } 557 free(ipl, M_DEVBUF); 558 *ipp = ip; 559 } 560 561 return (0); 562 } 563 564 565 /* 566 * Install an interrupt handler for an Sbus device. 567 */ 568 void * 569 sbus_intr_establish(bus_space_tag_t t, int pri, int level, 570 int (*handler)(void *), void *arg, void (*fastvec)(void)) 571 { 572 struct sbus_softc *sc = t->cookie; 573 struct intrhand *ih; 574 int ipl; 575 long vec = pri; 576 577 ih = (struct intrhand *) 578 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT); 579 if (ih == NULL) 580 return (NULL); 581 582 if ((vec & SBUS_INTR_COMPAT) != 0) 583 ipl = vec & ~SBUS_INTR_COMPAT; 584 else { 585 /* Decode and remove IPL */ 586 ipl = INTLEV(vec); 587 vec = INTVEC(vec); 588 DPRINTF(SDB_INTR, 589 ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n", 590 (long)ipl, (long)vec, (u_long)intrlev[vec])); 591 if ((vec & INTMAP_OBIO) == 0) { 592 /* We're in an SBUS slot */ 593 /* Register the map and clear intr registers */ 594 595 int slot = INTSLOT(pri); 596 597 ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot]; 598 ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec]; 599 #ifdef DEBUG 600 if (sbus_debug & SDB_INTR) { 601 int64_t imap = *ih->ih_map; 602 603 printf("SBUS %lx IRQ as %llx in slot %d\n", 604 (long)vec, (long long)imap, slot); 605 printf("\tmap addr %p clr addr %p\n", 606 ih->ih_map, ih->ih_clr); 607 } 608 #endif 609 /* Enable the interrupt */ 610 vec |= INTMAP_V | sc->sc_ign | 611 (CPU_UPAID << INTMAP_TID_SHIFT); 612 *(ih->ih_map) = vec; 613 } else { 614 int64_t *intrptr = &sc->sc_sysio->scsi_int_map; 615 int64_t imap = 0; 616 int i; 617 618 /* Insert IGN */ 619 vec |= sc->sc_ign; 620 for (i = 0; &intrptr[i] <= 621 (int64_t *)&sc->sc_sysio->reserved_int_map && 622 INTVEC(imap = intrptr[i]) != INTVEC(vec); i++) 623 ; 624 if (INTVEC(imap) == INTVEC(vec)) { 625 DPRINTF(SDB_INTR, 626 ("OBIO %lx IRQ as %lx in slot %d\n", 627 vec, (long)imap, i)); 628 /* Register the map and clear intr registers */ 629 ih->ih_map = &intrptr[i]; 630 intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int; 631 ih->ih_clr = &intrptr[i]; 632 /* Enable the interrupt */ 633 imap |= INTMAP_V 634 |(CPU_UPAID << INTMAP_TID_SHIFT); 635 /* XXXX */ 636 *(ih->ih_map) = imap; 637 } else 638 panic("IRQ not found!"); 639 } 640 } 641 #ifdef DEBUG 642 if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); } 643 #endif 644 645 ih->ih_fun = handler; 646 ih->ih_arg = arg; 647 ih->ih_number = vec; 648 ih->ih_pil = (1<<ipl); 649 intr_establish(ipl, ih); 650 return (ih); 651 } 652 653 static bus_dma_tag_t 654 sbus_alloc_dmatag(struct sbus_softc *sc) 655 { 656 bus_dma_tag_t sdt, psdt = sc->sc_dmatag; 657 658 sdt = (bus_dma_tag_t) 659 malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT); 660 if (sdt == NULL) 661 /* Panic? */ 662 return (psdt); 663 664 sdt->_cookie = sc; 665 sdt->_parent = psdt; 666 #define PCOPY(x) sdt->x = psdt->x 667 PCOPY(_dmamap_create); 668 PCOPY(_dmamap_destroy); 669 sdt->_dmamap_load = sbus_dmamap_load; 670 PCOPY(_dmamap_load_mbuf); 671 PCOPY(_dmamap_load_uio); 672 sdt->_dmamap_load_raw = sbus_dmamap_load_raw; 673 sdt->_dmamap_unload = sbus_dmamap_unload; 674 sdt->_dmamap_sync = sbus_dmamap_sync; 675 sdt->_dmamem_alloc = sbus_dmamem_alloc; 676 sdt->_dmamem_free = sbus_dmamem_free; 677 sdt->_dmamem_map = sbus_dmamem_map; 678 sdt->_dmamem_unmap = sbus_dmamem_unmap; 679 PCOPY(_dmamem_mmap); 680 #undef PCOPY 681 sc->sc_dmatag = sdt; 682 return (sdt); 683 } 684 685 int 686 sbus_dmamap_load(bus_dma_tag_t tag, bus_dmamap_t map, void *buf, 687 bus_size_t buflen, struct proc *p, int flags) 688 { 689 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 690 691 return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags)); 692 } 693 694 int 695 sbus_dmamap_load_raw(bus_dma_tag_t tag, bus_dmamap_t map, 696 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags) 697 { 698 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 699 700 return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size)); 701 } 702 703 void 704 sbus_dmamap_unload(bus_dma_tag_t tag, bus_dmamap_t map) 705 { 706 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 707 708 iommu_dvmamap_unload(tag, &sc->sc_sb, map); 709 } 710 711 void 712 sbus_dmamap_sync(bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t offset, 713 bus_size_t len, int ops) 714 { 715 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 716 717 if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) { 718 /* Flush the CPU then the IOMMU */ 719 bus_dmamap_sync(tag->_parent, map, offset, len, ops); 720 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops); 721 } 722 if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) { 723 /* Flush the IOMMU then the CPU */ 724 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops); 725 bus_dmamap_sync(tag->_parent, map, offset, len, ops); 726 } 727 } 728 729 int 730 sbus_dmamem_alloc(bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, 731 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, 732 int flags) 733 { 734 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 735 736 return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary, 737 segs, nsegs, rsegs, flags)); 738 } 739 740 void 741 sbus_dmamem_free(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs) 742 { 743 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 744 745 iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs); 746 } 747 748 int 749 sbus_dmamem_map(bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, 750 size_t size, void **kvap, int flags) 751 { 752 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 753 754 return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags)); 755 } 756 757 void 758 sbus_dmamem_unmap(bus_dma_tag_t tag, void *kva, size_t size) 759 { 760 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie; 761 762 iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size); 763 } 764