xref: /netbsd-src/sys/arch/sparc64/dev/sbus.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: sbus.c,v 1.83 2008/10/18 03:31:10 nakayama Exp $ */
2 
3 /*
4  * Copyright (c) 1999-2002 Eduardo Horvath
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 
32 /*
33  * Sbus stuff.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.83 2008/10/18 03:31:10 nakayama Exp $");
38 
39 #include "opt_ddb.h"
40 
41 #include <sys/param.h>
42 #include <sys/extent.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/reboot.h>
47 
48 #include <machine/bus.h>
49 #include <machine/openfirm.h>
50 
51 #include <sparc64/dev/iommureg.h>
52 #include <sparc64/dev/iommuvar.h>
53 #include <sparc64/dev/sbusreg.h>
54 #include <dev/sbus/sbusvar.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #include <machine/autoconf.h>
59 #include <machine/cpu.h>
60 #include <machine/sparc64.h>
61 
62 #ifdef DEBUG
63 #define SDB_DVMA	0x1
64 #define SDB_INTR	0x2
65 int sbus_debug = 0;
66 #define DPRINTF(l, s)   do { if (sbus_debug & l) printf s; } while (0)
67 #else
68 #define DPRINTF(l, s)
69 #endif
70 
71 void sbusreset(int);
72 
73 static bus_dma_tag_t sbus_alloc_dmatag(struct sbus_softc *);
74 static int sbus_get_intr(struct sbus_softc *, int, struct openprom_intr **,
75 	int *, int);
76 static int sbus_overtemp(void *);
77 static int _sbus_bus_map(
78 		bus_space_tag_t,
79 		bus_addr_t,		/*offset*/
80 		bus_size_t,		/*size*/
81 		int,			/*flags*/
82 		vaddr_t,			/* XXX unused -- compat w/sparc */
83 		bus_space_handle_t *);
84 static void *sbus_intr_establish(
85 		bus_space_tag_t,
86 		int,			/*`device class' priority*/
87 		int,			/*Sbus interrupt level*/
88 		int (*)(void *),	/*handler*/
89 		void *,			/*handler arg*/
90 		void (*)(void));	/*optional fast trap*/
91 
92 
93 /* autoconfiguration driver */
94 int	sbus_match(struct device *, struct cfdata *, void *);
95 void	sbus_attach(struct device *, struct device *, void *);
96 
97 
98 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
99     sbus_match, sbus_attach, NULL, NULL);
100 
101 extern struct cfdriver sbus_cd;
102 
103 /*
104  * DVMA routines
105  */
106 static int sbus_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t,
107 	bus_size_t, int, bus_dmamap_t *);
108 
109 /*
110  * Child devices receive the Sbus interrupt level in their attach
111  * arguments. We translate these to CPU IPLs using the following
112  * tables. Note: obio bus interrupt levels are identical to the
113  * processor IPL.
114  *
115  * The second set of tables is used when the Sbus interrupt level
116  * cannot be had from the PROM as an `interrupt' property. We then
117  * fall back on the `intr' property which contains the CPU IPL.
118  */
119 
120 /*
121  * This value is or'ed into the attach args' interrupt level cookie
122  * if the interrupt level comes from an `intr' property, i.e. it is
123  * not an Sbus interrupt level.
124  */
125 #define SBUS_INTR_COMPAT	0x80000000
126 
127 
128 /*
129  * Print the location of some sbus-attached device (called just
130  * before attaching that device).  If `sbus' is not NULL, the
131  * device was found but not configured; print the sbus as well.
132  * Return UNCONF (config_find ignores this if the device was configured).
133  */
134 int
135 sbus_print(void *args, const char *busname)
136 {
137 	struct sbus_attach_args *sa = args;
138 	int i;
139 
140 	if (busname)
141 		aprint_normal("%s at %s", sa->sa_name, busname);
142 	aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
143 	       (u_long)sa->sa_offset);
144 	for (i = 0; i < sa->sa_nintr; i++) {
145 		struct openprom_intr *sbi = &sa->sa_intr[i];
146 
147 		aprint_normal(" vector %lx ipl %ld",
148 		       (u_long)sbi->oi_vec,
149 		       (long)INTLEV(sbi->oi_pri));
150 	}
151 	return (UNCONF);
152 }
153 
154 int
155 sbus_match(struct device *parent, struct cfdata *cf, void *aux)
156 {
157 	struct mainbus_attach_args *ma = aux;
158 
159 	return (strcmp(cf->cf_name, ma->ma_name) == 0);
160 }
161 
162 /*
163  * Attach an Sbus.
164  */
165 void
166 sbus_attach(struct device *parent, struct device *self, void *aux)
167 {
168 	struct sbus_softc *sc = device_private(self);
169 	struct mainbus_attach_args *ma = aux;
170 	struct intrhand *ih;
171 	int ipl;
172 	char *name;
173 	int node = ma->ma_node;
174 	int node0, error;
175 	bus_space_tag_t sbt;
176 	struct sbus_attach_args sa;
177 
178 	sc->sc_bustag = ma->ma_bustag;
179 	sc->sc_dmatag = ma->ma_dmatag;
180 	sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
181 
182 	/* XXXX Use sysio PROM mappings for interrupt vector regs. */
183 	sparc_promaddr_to_handle(sc->sc_bustag,	ma->ma_address[0], &sc->sc_bh);
184 	sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
185 		sc->sc_bh);
186 
187 #ifdef _LP64
188 	/*
189 	 * 32-bit kernels use virtual addresses for bus space operations
190 	 * so we may as well use the prom VA.
191 	 *
192 	 * 64-bit kernels use physical addresses for bus space operations
193 	 * so mapping this in again will reduce TLB thrashing.
194 	 */
195 	if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
196 		ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
197 		aprint_error_dev(self, "cannot map registers\n");
198 		return;
199 	}
200 #endif
201 
202 	/*
203 	 * Record clock frequency for synchronous SCSI.
204 	 * IS THIS THE CORRECT DEFAULT??
205 	 */
206 	sc->sc_clockfreq = prom_getpropint(node, "clock-frequency",
207 		25*1000*1000);
208 	printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
209 
210 	sbt = bus_space_tag_alloc(sc->sc_bustag, sc);
211 	sbt->type = SBUS_BUS_SPACE;
212 	sbt->sparc_bus_map = _sbus_bus_map;
213 	sbt->sparc_intr_establish = sbus_intr_establish;
214 
215 	sc->sc_dmatag = sbus_alloc_dmatag(sc);
216 
217 	/*
218 	 * Get the SBus burst transfer size if burst transfers are supported
219 	 */
220 	sc->sc_burst = prom_getpropint(node, "burst-sizes", 0);
221 
222 	/*
223 	 * Collect address translations from the OBP.
224 	 */
225 	error = prom_getprop(node, "ranges", sizeof(struct openprom_range),
226 			 &sbt->nranges, &sbt->ranges);
227 	if (error)
228 		panic("%s: error getting ranges property", device_xname(&sc->sc_dev));
229 
230 	/* initialize the IOMMU */
231 
232 	/* punch in our copies */
233 	sc->sc_is.is_bustag = sc->sc_bustag;
234 	bus_space_subregion(sc->sc_bustag, sc->sc_bh,
235 		(vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
236 		sizeof (struct iommureg), &sc->sc_is.is_iommu);
237 
238 	/* initialize our strbuf_ctl */
239 	sc->sc_is.is_sb[0] = &sc->sc_sb;
240 	sc->sc_sb.sb_is = &sc->sc_is;
241 	bus_space_subregion(sc->sc_bustag, sc->sc_bh,
242 		(vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
243 		sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
244 	/* Point sb_flush to our flush buffer. */
245 	sc->sc_sb.sb_flush = &sc->sc_flush;
246 
247 	/* give us a nice name.. */
248 	name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
249 	if (name == 0)
250 		panic("couldn't malloc iommu name");
251 	snprintf(name, 32, "%s dvma", device_xname(&sc->sc_dev));
252 
253 	iommu_init(name, &sc->sc_is, 0, -1);
254 
255 	/* Enable the over temp intr */
256 	ih = (struct intrhand *)
257 		malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
258 	ih->ih_map = &sc->sc_sysio->therm_int_map;
259 	ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
260 	ih->ih_fun = sbus_overtemp;
261 	ipl = 1;
262 	ih->ih_pil = (1<<ipl);
263 	ih->ih_number = INTVEC(*(ih->ih_map));
264 	intr_establish(ipl, true, ih);
265 	*(ih->ih_map) |= INTMAP_V|(CPU_UPAID << INTMAP_TID_SHIFT);
266 
267 	/*
268 	 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
269 	 * NULL DMA pointer will be translated by the first page of the IOTSB.
270 	 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
271 	 */
272 	{
273 		u_long dummy;
274 
275 		if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
276 		    sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
277 		    PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
278 		    (u_long *)&dummy) != 0)
279 			panic("sbus iommu: can't toss first dvma page");
280 	}
281 
282 	/*
283 	 * Loop through ROM children, fixing any relative addresses
284 	 * and then configuring each device.
285 	 * `specials' is an array of device names that are treated
286 	 * specially:
287 	 */
288 	node0 = OF_child(node);
289 	for (node = node0; node; node = OF_peer(node)) {
290 		char *name1 = prom_getpropstring(node, "name");
291 
292 		if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
293 					   node, &sa) != 0) {
294 			printf("sbus_attach: %s: incomplete\n", name1);
295 			continue;
296 		}
297 		(void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
298 		sbus_destroy_attach_args(&sa);
299 	}
300 }
301 
302 int
303 sbus_setup_attach_args(struct sbus_softc *sc, bus_space_tag_t bustag,
304 	bus_dma_tag_t dmatag, int node, struct sbus_attach_args	*sa)
305 {
306 	/*struct	openprom_addr sbusreg;*/
307 	/*int	base;*/
308 	int	error;
309 	int n;
310 
311 	memset(sa, 0, sizeof(struct sbus_attach_args));
312 	n = 0;
313 	error = prom_getprop(node, "name", 1, &n, &sa->sa_name);
314 	if (error != 0)
315 		return (error);
316 	sa->sa_name[n] = '\0';
317 
318 	sa->sa_bustag = bustag;
319 	sa->sa_dmatag = dmatag;
320 	sa->sa_node = node;
321 	sa->sa_frequency = sc->sc_clockfreq;
322 
323 	error = prom_getprop(node, "reg", sizeof(struct openprom_addr),
324 			 &sa->sa_nreg, &sa->sa_reg);
325 	if (error != 0) {
326 		char buf[32];
327 		if (error != ENOENT ||
328 		    !node_has_property(node, "device_type") ||
329 		    strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf),
330 			   "hierarchical") != 0)
331 			return (error);
332 	}
333 	for (n = 0; n < sa->sa_nreg; n++) {
334 		/* Convert to relative addressing, if necessary */
335 		uint32_t base = sa->sa_reg[n].oa_base;
336 		if (SBUS_ABS(base)) {
337 			sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
338 			sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
339 		}
340 	}
341 
342 	if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
343 	    sa->sa_slot)) != 0)
344 		return (error);
345 
346 	error = prom_getprop(node, "address", sizeof(uint32_t),
347 			 &sa->sa_npromvaddrs, &sa->sa_promvaddrs);
348 	if (error != 0 && error != ENOENT)
349 		return (error);
350 
351 	return (0);
352 }
353 
354 void
355 sbus_destroy_attach_args(struct sbus_attach_args *sa)
356 {
357 	if (sa->sa_name != NULL)
358 		free(sa->sa_name, M_DEVBUF);
359 
360 	if (sa->sa_nreg != 0)
361 		free(sa->sa_reg, M_DEVBUF);
362 
363 	if (sa->sa_intr)
364 		free(sa->sa_intr, M_DEVBUF);
365 
366 	if (sa->sa_promvaddrs)
367 		free((void *)sa->sa_promvaddrs, M_DEVBUF);
368 
369 	memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/
370 }
371 
372 
373 int
374 _sbus_bus_map(bus_space_tag_t t, bus_addr_t addr, bus_size_t size, int flags,
375 	vaddr_t v, bus_space_handle_t *hp)
376 {
377 	int error;
378 
379 	if (t->ranges != NULL) {
380 		if ((error = bus_space_translate_address_generic(
381 				t->ranges, t->nranges, &addr)) != 0)
382 			return (error);
383 	}
384 
385 	return (bus_space_map(t->parent, addr, size, flags, hp));
386 }
387 
388 
389 bus_addr_t
390 sbus_bus_addr(bus_space_tag_t t, u_int btype, u_int offset)
391 {
392 	int slot = btype;
393 	struct openprom_range *rp;
394 	int i;
395 
396 	for (i = 0; i < t->nranges; i++) {
397 		rp = &t->ranges[i];
398 		if (rp->or_child_space != slot)
399 			continue;
400 
401 		return BUS_ADDR(rp->or_parent_space,
402 				rp->or_parent_base + offset);
403 	}
404 
405 	return (0);
406 }
407 
408 
409 /*
410  * Each attached device calls sbus_establish after it initializes
411  * its sbusdev portion.
412  */
413 void
414 sbus_establish(register struct sbusdev *sd, register struct device *dev)
415 {
416 	register struct sbus_softc *sc;
417 	register struct device *curdev;
418 
419 	/*
420 	 * We have to look for the sbus by name, since it is not necessarily
421 	 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
422 	 * We don't just use the device structure of the above-attached
423 	 * sbus, since we might (in the future) support multiple sbus's.
424 	 */
425 	for (curdev = device_parent(dev); ; curdev = device_parent(curdev)) {
426 		if (!curdev || !device_xname(curdev))
427 			panic("sbus_establish: can't find sbus parent for %s",
428 			      device_xname(sd->sd_dev)
429 					? device_xname(sd->sd_dev)
430 					: "<unknown>" );
431 
432 		if (strncmp(device_xname(curdev), "sbus", 4) == 0)
433 			break;
434 	}
435 	sc = (struct sbus_softc *) curdev;
436 
437 	sd->sd_dev = dev;
438 	sd->sd_bchain = sc->sc_sbdev;
439 	sc->sc_sbdev = sd;
440 }
441 
442 /*
443  * Reset the given sbus.
444  */
445 void
446 sbusreset(int sbus)
447 {
448 	register struct sbusdev *sd;
449 	struct sbus_softc *sc = device_lookup_private(&sbus_cd, sbus);
450 	struct device *dev;
451 
452 	printf("reset %s:", device_xname(&sc->sc_dev));
453 	for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
454 		if (sd->sd_reset) {
455 			dev = sd->sd_dev;
456 			(*sd->sd_reset)(dev);
457 			printf(" %s", device_xname(dev));
458 		}
459 	}
460 	/* Reload iommu regs */
461 	iommu_reset(&sc->sc_is);
462 }
463 
464 /*
465  * Handle an overtemp situation.
466  *
467  * SPARCs have temperature sensors which generate interrupts
468  * if the machine's temperature exceeds a certain threshold.
469  * This handles the interrupt and powers off the machine.
470  * The same needs to be done to PCI controller drivers.
471  */
472 int
473 sbus_overtemp(void *arg)
474 {
475 	/* Should try a clean shutdown first */
476 	printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
477 	delay(20);
478 	cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
479 }
480 
481 /*
482  * Get interrupt attributes for an Sbus device.
483  */
484 int
485 sbus_get_intr(struct sbus_softc *sc, int node, struct openprom_intr **ipp,
486 	int *np, int slot)
487 {
488 	int *ipl;
489 	int n, i;
490 	char buf[32];
491 
492 	/*
493 	 * The `interrupts' property contains the Sbus interrupt level.
494 	 */
495 	ipl = NULL;
496 	if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) {
497 		struct openprom_intr *ip;
498 		int pri;
499 
500 		/* Default to interrupt level 2 -- otherwise unused */
501 		pri = INTLEVENCODE(2);
502 
503 		/* Change format to an `struct sbus_intr' array */
504 		ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
505 		    M_NOWAIT);
506 		if (ip == NULL)
507 			return (ENOMEM);
508 
509 		/*
510 		 * Now things get ugly.  We need to take this value which is
511 		 * the interrupt vector number and encode the IPL into it
512 		 * somehow. Luckily, the interrupt vector has lots of free
513 		 * space and we can easily stuff the IPL in there for a while.
514 		 */
515 		prom_getpropstringA(node, "device_type", buf, sizeof buf);
516 		if (buf[0] == '\0')
517 			prom_getpropstringA(node, "name", buf, sizeof buf);
518 
519 		for (i = 0; intrmap[i].in_class; i++)
520 			if (strcmp(intrmap[i].in_class, buf) == 0) {
521 				pri = INTLEVENCODE(intrmap[i].in_lev);
522 				break;
523 			}
524 
525 		/*
526 		 * Sbus card devices need the slot number encoded into
527 		 * the vector as this is generally not done.
528 		 */
529 		if ((ipl[0] & INTMAP_OBIO) == 0)
530 			pri |= slot << 3;
531 
532 		for (n = 0; n < *np; n++) {
533 			/*
534 			 * We encode vector and priority into sbi_pri so we
535 			 * can pass them as a unit.  This will go away if
536 			 * sbus_establish ever takes an sbus_intr instead
537 			 * of an integer level.
538 			 * Stuff the real vector in sbi_vec.
539 			 */
540 
541 			ip[n].oi_pri = pri|ipl[n];
542 			ip[n].oi_vec = ipl[n];
543 		}
544 		free(ipl, M_DEVBUF);
545 		*ipp = ip;
546 	}
547 
548 	return (0);
549 }
550 
551 
552 /*
553  * Install an interrupt handler for an Sbus device.
554  */
555 void *
556 sbus_intr_establish(bus_space_tag_t t, int pri, int level,
557 	int (*handler)(void *), void *arg, void (*fastvec)(void))
558 {
559 	struct sbus_softc *sc = t->cookie;
560 	struct intrhand *ih;
561 	int ipl;
562 	long vec = pri;
563 
564 	ih = (struct intrhand *)
565 		malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
566 	if (ih == NULL)
567 		return (NULL);
568 
569 	if ((vec & SBUS_INTR_COMPAT) != 0)
570 		ipl = vec & ~SBUS_INTR_COMPAT;
571 	else {
572 		/* Decode and remove IPL */
573 		ipl = INTLEV(vec);
574 		vec = INTVEC(vec);
575 		DPRINTF(SDB_INTR,
576 		    ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
577 		    (long)ipl, (long)vec, (u_long)intrlev[vec]));
578 		if ((vec & INTMAP_OBIO) == 0) {
579 			/* We're in an SBUS slot */
580 			/* Register the map and clear intr registers */
581 
582 			int slot = INTSLOT(pri);
583 
584 			ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
585 			ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
586 #ifdef DEBUG
587 			if (sbus_debug & SDB_INTR) {
588 				int64_t imap = *ih->ih_map;
589 
590 				printf("SBUS %lx IRQ as %llx in slot %d\n",
591 				       (long)vec, (long long)imap, slot);
592 				printf("\tmap addr %p clr addr %p\n",
593 				    ih->ih_map, ih->ih_clr);
594 			}
595 #endif
596 			/* Enable the interrupt */
597 			vec |= INTMAP_V | sc->sc_ign |
598 				(CPU_UPAID << INTMAP_TID_SHIFT);
599 			*(ih->ih_map) = vec;
600 		} else {
601 			int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
602 			int64_t imap = 0;
603 			int i;
604 
605 			/* Insert IGN */
606 			vec |= sc->sc_ign;
607 			for (i = 0; &intrptr[i] <=
608 			    (int64_t *)&sc->sc_sysio->reserved_int_map &&
609 			    INTVEC(imap = intrptr[i]) != INTVEC(vec); i++)
610 				;
611 			if (INTVEC(imap) == INTVEC(vec)) {
612 				DPRINTF(SDB_INTR,
613 				    ("OBIO %lx IRQ as %lx in slot %d\n",
614 				    vec, (long)imap, i));
615 				/* Register the map and clear intr registers */
616 				ih->ih_map = &intrptr[i];
617 				intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
618 				ih->ih_clr = &intrptr[i];
619 				/* Enable the interrupt */
620 				imap |= INTMAP_V
621 				    |(CPU_UPAID << INTMAP_TID_SHIFT);
622 				/* XXXX */
623 				*(ih->ih_map) = imap;
624 			} else
625 				panic("IRQ not found!");
626 		}
627 	}
628 #ifdef DEBUG
629 	if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
630 #endif
631 
632 	ih->ih_fun = handler;
633 	ih->ih_arg = arg;
634 	ih->ih_number = vec;
635 	ih->ih_pil = (1<<ipl);
636 	intr_establish(ipl, level != IPL_VM, ih);
637 	return (ih);
638 }
639 
640 static bus_dma_tag_t
641 sbus_alloc_dmatag(struct sbus_softc *sc)
642 {
643 	bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
644 
645 	sdt = (bus_dma_tag_t)
646 		malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
647 	if (sdt == NULL)
648 		/* Panic? */
649 		return (psdt);
650 
651 	sdt->_cookie = sc;
652 	sdt->_parent = psdt;
653 #define PCOPY(x)	sdt->x = psdt->x
654 	sdt->_dmamap_create = sbus_dmamap_create;
655 	PCOPY(_dmamap_destroy);
656 	sdt->_dmamap_load = iommu_dvmamap_load;
657 	PCOPY(_dmamap_load_mbuf);
658 	PCOPY(_dmamap_load_uio);
659 	sdt->_dmamap_load_raw = iommu_dvmamap_load_raw;
660 	sdt->_dmamap_unload = iommu_dvmamap_unload;
661 	sdt->_dmamap_sync = iommu_dvmamap_sync;
662 	sdt->_dmamem_alloc = iommu_dvmamem_alloc;
663 	sdt->_dmamem_free = iommu_dvmamem_free;
664 	sdt->_dmamem_map = iommu_dvmamem_map;
665 	sdt->_dmamem_unmap = iommu_dvmamem_unmap;
666 	PCOPY(_dmamem_mmap);
667 #undef	PCOPY
668 	sc->sc_dmatag = sdt;
669 	return (sdt);
670 }
671 
672 static int
673 sbus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
674 	bus_size_t maxsegsz, bus_size_t boundary, int flags,
675 	bus_dmamap_t *dmamp)
676 {
677 	struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
678 	int error;
679 
680 	error = bus_dmamap_create(t->_parent, size, nsegments, maxsegsz,
681 				  boundary, flags, dmamp);
682 	if (error == 0)
683 		(*dmamp)->_dm_cookie = &sc->sc_sb;
684 	return error;
685 }
686