xref: /netbsd-src/sys/arch/sparc/stand/ofwboot/loadfile_machdep.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: loadfile_machdep.c,v 1.2 2006/03/04 03:03:31 uwe Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This work is based on the code contributed by Robert Drehmel to the
8  * FreeBSD project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <lib/libsa/stand.h>
40 
41 #include <machine/pte.h>
42 #include <machine/cpu.h>
43 #include <machine/ctlreg.h>
44 #include <machine/vmparam.h>
45 #include <machine/promlib.h>
46 
47 #include "boot.h"
48 #include "openfirm.h"
49 
50 
51 #define MAXSEGNUM	50
52 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
53 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
54 
55 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
56 
57 
58 typedef int phandle_t;
59 
60 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
61 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
62 extern vaddr_t	itlb_va_to_pa(vaddr_t);
63 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
64 
65 static void	tlb_init(void);
66 
67 static int	mmu_mapin(vaddr_t, vsize_t);
68 static ssize_t	mmu_read(int, void *, size_t);
69 static void*	mmu_memcpy(void *, const void *, size_t);
70 static void*	mmu_memset(void *, int, size_t);
71 static void	mmu_freeall(void);
72 
73 static int	ofw_mapin(vaddr_t, vsize_t);
74 static ssize_t	ofw_read(int, void *, size_t);
75 static void*	ofw_memcpy(void *, const void *, size_t);
76 static void*	ofw_memset(void *, int, size_t);
77 static void	ofw_freeall(void);
78 
79 static int	nop_mapin(vaddr_t, vsize_t);
80 static ssize_t	nop_read(int, void *, size_t);
81 static void*	nop_memcpy(void *, const void *, size_t);
82 static void*	nop_memset(void *, int, size_t);
83 static void	nop_freeall(void);
84 
85 
86 struct tlb_entry *dtlb_store = 0;
87 struct tlb_entry *itlb_store = 0;
88 
89 int dtlb_slot;
90 int itlb_slot;
91 int dtlb_slot_max;
92 int itlb_slot_max;
93 
94 static struct kvamap {
95 	uint64_t start;
96 	uint64_t end;
97 } kvamap[MAXSEGNUM];
98 
99 static struct memsw {
100 	ssize_t	(* read)(int f, void *addr, size_t size);
101 	void*	(* memcpy)(void *dst, const void *src, size_t size);
102 	void*	(* memset)(void *dst, int c, size_t size);
103 	void	(* freeall)(void);
104 } memswa[] = {
105 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
106 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
107 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
108 };
109 
110 static struct memsw *memsw = &memswa[0];
111 
112 
113 /*
114  * Check if a memory region is already mapped. Return length and virtual
115  * address of unmapped sub-region, if any.
116  */
117 static uint64_t
118 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
119 {
120 	int i;
121 
122 	*new_va  = va;
123 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
124 		if (kvamap[i].start == NULL)
125 			break;
126 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
127 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
128 			len = (va_len < len) ? len - va_len : 0;
129 			*new_va = kvamap[i].end;
130 		}
131 	}
132 
133 	return (len);
134 }
135 
136 /*
137  * Record new kernel mapping.
138  */
139 static void
140 kvamap_enter(uint64_t va, uint64_t len)
141 {
142 	int i;
143 
144 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
145 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
146 		if (kvamap[i].start == NULL) {
147 			kvamap[i].start = va;
148 			kvamap[i].end = va + len;
149 			break;
150 		}
151 	}
152 
153 	if (i == MAXSEGNUM) {
154 		panic("Too many allocations requested.");
155 	}
156 }
157 
158 /*
159  * Initialize TLB as required by MMU mapping functions.
160  */
161 static void
162 tlb_init(void)
163 {
164 	phandle_t child;
165 	phandle_t root;
166 	char buf[128];
167 	u_int bootcpu;
168 	u_int cpu;
169 
170 	if (dtlb_store != NULL) {
171 		return;
172 	}
173 
174 	bootcpu = get_cpuid();
175 
176 	if ( (root = prom_findroot()) == -1) {
177 		panic("tlb_init: prom_findroot()");
178 	}
179 
180 	for (child = prom_firstchild(root); child != 0;
181 			child = prom_nextsibling(child)) {
182 		if (child == -1) {
183 			panic("tlb_init: OF_child");
184 		}
185 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
186 		    strcmp(buf, "cpu") == 0) {
187 			if (_prom_getprop(child, "upa-portid", &cpu,
188 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
189 			    &cpu, sizeof(cpu)) == -1)
190 				panic("main: prom_getprop");
191 			if (cpu == bootcpu)
192 				break;
193 		}
194 	}
195 	if (cpu != bootcpu)
196 		panic("init_tlb: no node for bootcpu?!?!");
197 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
198 	    sizeof(dtlb_slot_max)) == -1 ||
199 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
200 	    sizeof(itlb_slot_max)) == -1)
201 		panic("init_tlb: prom_getprop");
202 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
203 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
204 	if (dtlb_store == NULL || itlb_store == NULL) {
205 		panic("init_tlb: malloc");
206 	}
207 
208 	dtlb_slot = itlb_slot = 0;
209 }
210 
211 /*
212  * Map requested memory region with permanent 4MB pages.
213  */
214 static int
215 mmu_mapin(vaddr_t rva, vsize_t len)
216 {
217 	int64_t data;
218 	vaddr_t va, pa, mva;
219 
220 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
221 	rva &= ~PAGE_MASK_4M;
222 
223 	tlb_init();
224 	for (pa = (vaddr_t)-1; len > 0; rva = va) {
225 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
226 			/* The rest is already mapped */
227 			break;
228 		}
229 
230 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
231 		    itlb_va_to_pa(va) == (u_long)-1) {
232 			/* Allocate a physical page, claim the virtual area */
233 			if (pa == (vaddr_t)-1) {
234 				pa = (vaddr_t)OF_alloc_phys(PAGE_SIZE_4M,
235 				    PAGE_SIZE_4M);
236 				if (pa == (vaddr_t)-1)
237 					panic("out of memory");
238 				mva = (vaddr_t)OF_claim_virt(va,
239 				    PAGE_SIZE_4M, 0);
240 				if (mva != va) {
241 					panic("can't claim virtual page "
242 					    "(wanted %#lx, got %#lx)",
243 					    va, mva);
244 				}
245 				/* The mappings may have changed, be paranoid. */
246 				continue;
247 			}
248 
249 			/*
250 			 * Actually, we can only allocate two pages less at
251 			 * most (depending on the kernel TSB size).
252 			 */
253 			if (dtlb_slot >= dtlb_slot_max)
254 				panic("mmu_mapin: out of dtlb_slots");
255 			if (itlb_slot >= itlb_slot_max)
256 				panic("mmu_mapin: out of itlb_slots");
257 
258 			DPRINTF(("mmu_mapin: %p:%p\n", va, pa));
259 
260 			data = TSB_DATA(0,		/* global */
261 					PGSZ_4M,	/* 4mb page */
262 					pa,		/* phys.address */
263 					1,		/* privileged */
264 					1,		/* write */
265 					1,		/* cache */
266 					1,		/* alias */
267 					1,		/* valid */
268 					0		/* endianness */
269 					);
270 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
271 
272 			dtlb_store[dtlb_slot].te_pa = pa;
273 			dtlb_store[dtlb_slot].te_va = va;
274 			itlb_store[itlb_slot].te_pa = pa;
275 			itlb_store[itlb_slot].te_va = va;
276 			dtlb_slot++;
277 			itlb_slot++;
278 			dtlb_enter(va, hi(data), lo(data));
279 			itlb_enter(va, hi(data), lo(data));
280 			pa = (vaddr_t)-1;
281 		}
282 
283 		kvamap_enter(va, PAGE_SIZE_4M);
284 
285 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
286 		va += PAGE_SIZE_4M;
287 	}
288 
289 	if (pa != (vaddr_t)-1) {
290 		OF_free_phys(pa, PAGE_SIZE_4M);
291 	}
292 
293 	return (0);
294 }
295 
296 static ssize_t
297 mmu_read(int f, void *addr, size_t size)
298 {
299 	mmu_mapin((vaddr_t)addr, size);
300 	return read(f, addr, size);
301 }
302 
303 static void*
304 mmu_memcpy(void *dst, const void *src, size_t size)
305 {
306 	mmu_mapin((vaddr_t)dst, size);
307 	return memcpy(dst, src, size);
308 }
309 
310 static void*
311 mmu_memset(void *dst, int c, size_t size)
312 {
313 	mmu_mapin((vaddr_t)dst, size);
314 	return memset(dst, c, size);
315 }
316 
317 static void
318 mmu_freeall(void)
319 {
320 	int i;
321 
322 	dtlb_slot = itlb_slot = 0;
323 	for (i = 0; i < MAXSEGNUM; i++) {
324 		/* XXX return all mappings to PROM and unmap the pages! */
325 		kvamap[i].start = kvamap[i].end = 0;
326 	}
327 }
328 
329 /*
330  * Claim requested memory region in OpenFirmware allocation pool.
331  */
332 static int
333 ofw_mapin(vaddr_t rva, vsize_t len)
334 {
335 	vaddr_t va;
336 
337 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
338 	rva &= ~PAGE_MASK_4M;
339 
340 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
341 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
342 			panic("ofw_mapin: Cannot claim memory.");
343 		}
344 		kvamap_enter(va, len);
345 	}
346 
347 	return (0);
348 }
349 
350 static ssize_t
351 ofw_read(int f, void *addr, size_t size)
352 {
353 	ofw_mapin((vaddr_t)addr, size);
354 	return read(f, addr, size);
355 }
356 
357 static void*
358 ofw_memcpy(void *dst, const void *src, size_t size)
359 {
360 	ofw_mapin((vaddr_t)dst, size);
361 	return memcpy(dst, src, size);
362 }
363 
364 static void*
365 ofw_memset(void *dst, int c, size_t size)
366 {
367 	ofw_mapin((vaddr_t)dst, size);
368 	return memset(dst, c, size);
369 }
370 
371 static void
372 ofw_freeall(void)
373 {
374 	int i;
375 
376 	dtlb_slot = itlb_slot = 0;
377 	for (i = 0; i < MAXSEGNUM; i++) {
378 		OF_release((void*)(u_long)kvamap[i].start,
379 				(u_int)(kvamap[i].end - kvamap[i].start));
380 		kvamap[i].start = kvamap[i].end = 0;
381 	}
382 }
383 
384 /*
385  * NOP implementation exists solely for kernel header loading sake. Here
386  * we use alloc() interface to allocate memory and avoid doing some dangerous
387  * things.
388  */
389 static ssize_t
390 nop_read(int f, void *addr, size_t size)
391 {
392 	return read(f, addr, size);
393 }
394 
395 static void*
396 nop_memcpy(void *dst, const void *src, size_t size)
397 {
398 	/*
399 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
400 	 * right after the highest kernel address which will not be mapped with
401 	 * nop_XXX operations.
402 	 */
403 	return (dst);
404 }
405 
406 static void*
407 nop_memset(void *dst, int c, size_t size)
408 {
409 	return memset(dst, c, size);
410 }
411 
412 static void
413 nop_freeall(void)
414 { }
415 
416 /*
417  * loadfile() hooks.
418  */
419 ssize_t
420 sparc64_read(int f, void *addr, size_t size)
421 {
422 	return (*memsw->read)(f, addr, size);
423 }
424 
425 void*
426 sparc64_memcpy(void *dst, const void *src, size_t size)
427 {
428 	return (*memsw->memcpy)(dst, src, size);
429 }
430 
431 void*
432 sparc64_memset(void *dst, int c, size_t size)
433 {
434 	return (*memsw->memset)(dst, c, size);
435 }
436 
437 /*
438  * Record kernel mappings in bootinfo structure.
439  */
440 void
441 sparc64_bi_add(void)
442 {
443 	int i;
444 	int itlb_size, dtlb_size;
445 	struct btinfo_count bi_count;
446 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
447 
448 #ifdef LOADER_DEBUG
449 	pmap_print_tlb('i');
450 	pmap_print_tlb('d');
451 #endif
452 
453 	bi_count.count = itlb_slot;
454 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
455 	bi_count.count = dtlb_slot;
456 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
457 
458 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
459 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
460 
461 	bi_itlb = alloc(itlb_size);
462 	bi_dtlb = alloc(dtlb_size);
463 
464 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
465 		panic("Out of memory in sparc64_bi_add.\n");
466 	}
467 
468 	for (i = 0; i < itlb_slot; i++) {
469 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
470 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
471 	}
472 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
473 
474 	for (i = 0; i < dtlb_slot; i++) {
475 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
476 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
477 	}
478 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
479 }
480 
481 /*
482  * Choose kernel image mapping strategy:
483  *
484  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
485  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
486  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
487  */
488 void
489 loadfile_set_allocator(int type)
490 {
491 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
492 		panic("Bad allocator request.\n");
493 	}
494 
495 	/*
496 	 * Release all memory claimed by previous allocator and schedule
497 	 * another allocator for succeeding memory allocation calls.
498 	 */
499 	(*memsw->freeall)();
500 	memsw = &memswa[type];
501 }
502