xref: /netbsd-src/sys/arch/sparc/stand/ofwboot/loadfile_machdep.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: loadfile_machdep.c,v 1.15 2016/08/15 08:29:34 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This work is based on the code contributed by Robert Drehmel to the
8  * FreeBSD project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <lib/libsa/stand.h>
33 #include <lib/libkern/libkern.h>
34 
35 #include <machine/pte.h>
36 #include <machine/cpu.h>
37 #include <machine/ctlreg.h>
38 #include <machine/vmparam.h>
39 #include <machine/promlib.h>
40 #include <machine/hypervisor.h>
41 
42 #include "boot.h"
43 #include "openfirm.h"
44 
45 
46 #define MAXSEGNUM	50
47 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
48 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
49 
50 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
51 
52 
53 typedef int phandle_t;
54 
55 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
56 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
57 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
58 extern vaddr_t	itlb_va_to_pa(vaddr_t);
59 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
60 
61 static void	tlb_init(void);
62 static void	tlb_init_sun4u(void);
63 #ifdef SUN4V
64 static void	tlb_init_sun4v(void);
65 #endif
66 void	sparc64_finalize_tlb_sun4u(u_long);
67 #ifdef SUN4V
68 void	sparc64_finalize_tlb_sun4v(u_long);
69 #endif
70 static int	mmu_mapin(vaddr_t, vsize_t);
71 static int	mmu_mapin_sun4u(vaddr_t, vsize_t);
72 #ifdef SUN4V
73 static int	mmu_mapin_sun4v(vaddr_t, vsize_t);
74 #endif
75 static ssize_t	mmu_read(int, void *, size_t);
76 static void*	mmu_memcpy(void *, const void *, size_t);
77 static void*	mmu_memset(void *, int, size_t);
78 static void	mmu_freeall(void);
79 
80 static int	ofw_mapin(vaddr_t, vsize_t);
81 static ssize_t	ofw_read(int, void *, size_t);
82 static void*	ofw_memcpy(void *, const void *, size_t);
83 static void*	ofw_memset(void *, int, size_t);
84 static void	ofw_freeall(void);
85 
86 #if 0
87 static int	nop_mapin(vaddr_t, vsize_t);
88 #endif
89 static ssize_t	nop_read(int, void *, size_t);
90 static void*	nop_memcpy(void *, const void *, size_t);
91 static void*	nop_memset(void *, int, size_t);
92 static void	nop_freeall(void);
93 
94 
95 struct tlb_entry *dtlb_store = 0;
96 struct tlb_entry *itlb_store = 0;
97 
98 int dtlb_slot;
99 int itlb_slot;
100 int dtlb_slot_max;
101 int itlb_slot_max;
102 
103 static struct kvamap {
104 	uint64_t start;
105 	uint64_t end;
106 } kvamap[MAXSEGNUM];
107 
108 static struct memsw {
109 	ssize_t	(* read)(int f, void *addr, size_t size);
110 	void*	(* memcpy)(void *dst, const void *src, size_t size);
111 	void*	(* memset)(void *dst, int c, size_t size);
112 	void	(* freeall)(void);
113 } memswa[] = {
114 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
115 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
116 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
117 };
118 
119 static struct memsw *memsw = &memswa[0];
120 
121 #ifdef SUN4V
122 static int sun4v = 0;
123 #endif
124 
125 /*
126  * Check if a memory region is already mapped. Return length and virtual
127  * address of unmapped sub-region, if any.
128  */
129 static uint64_t
130 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
131 {
132 	int i;
133 
134 	*new_va  = va;
135 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
136 		if (kvamap[i].start == NULL)
137 			break;
138 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
139 			uint64_t va_len = kvamap[i].end - va;
140 			len = (va_len < len) ? len - va_len : 0;
141 			*new_va = kvamap[i].end;
142 		}
143 	}
144 
145 	return len;
146 }
147 
148 /*
149  * Record new kernel mapping.
150  */
151 static void
152 kvamap_enter(uint64_t va, uint64_t len)
153 {
154 	int i;
155 
156 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
157 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
158 		if (kvamap[i].start == NULL) {
159 			kvamap[i].start = va;
160 			kvamap[i].end = va + len;
161 			break;
162 		}
163 	}
164 
165 	if (i == MAXSEGNUM) {
166 		panic("Too many allocations requested.");
167 	}
168 }
169 
170 /*
171  * Initialize TLB as required by MMU mapping functions.
172  */
173 static void
174 tlb_init(void)
175 {
176 	phandle_t root;
177 #ifdef SUN4V
178 	char buf[128];
179 #endif
180 
181 	if (dtlb_store != NULL) {
182 		return;
183 	}
184 
185 	if ( (root = prom_findroot()) == -1) {
186 		panic("tlb_init: prom_findroot()");
187 	}
188 #ifdef SUN4V
189 	if (_prom_getprop(root, "compatible", buf, sizeof(buf)) > 0 &&
190 		    strcmp(buf, "sun4v") == 0) {
191 		tlb_init_sun4v();
192 		sun4v = 1;
193 	}
194 	else {
195 #endif
196 		tlb_init_sun4u();
197 #ifdef SUN4V
198 	}
199 #endif
200 
201 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
202 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
203 	if (dtlb_store == NULL || itlb_store == NULL) {
204 		panic("tlb_init: malloc");
205 	}
206 
207 	dtlb_slot = itlb_slot = 0;
208 }
209 
210 /*
211  * Initialize TLB as required by MMU mapping functions - sun4u.
212  */
213 static void
214 tlb_init_sun4u(void)
215 {
216 	phandle_t child;
217 	phandle_t root;
218 	char buf[128];
219 	bool foundcpu = false;
220 	u_int bootcpu;
221 	u_int cpu;
222 
223 	bootcpu = get_cpuid();
224 
225 	if ( (root = prom_findroot()) == -1) {
226 		panic("tlb_init: prom_findroot()");
227 	}
228 
229 	for (child = prom_firstchild(root); child != 0;
230 			child = prom_nextsibling(child)) {
231 		if (child == -1) {
232 			panic("tlb_init: OF_child");
233 		}
234 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
235 		    strcmp(buf, "cpu") == 0) {
236 			if (_prom_getprop(child, "upa-portid", &cpu,
237 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
238 			    &cpu, sizeof(cpu)) == -1)
239 				panic("tlb_init: prom_getprop");
240 			foundcpu = true;
241 			if (cpu == bootcpu)
242 				break;
243 		}
244 	}
245 	if (!foundcpu)
246 		panic("tlb_init: no cpu found!");
247 	if (cpu != bootcpu)
248 		panic("tlb_init: no node for bootcpu?!?!");
249 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
250 	    sizeof(dtlb_slot_max)) == -1 ||
251 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
252 	    sizeof(itlb_slot_max)) == -1)
253 		panic("tlb_init: prom_getprop");
254 }
255 
256 #ifdef SUN4V
257 /*
258  * Initialize TLB as required by MMU mapping functions - sun4v.
259  */
260 static void
261 tlb_init_sun4v(void)
262 {
263 	psize_t len;
264 	paddr_t pa;
265 	int64_t hv_rc;
266 
267 	hv_mach_desc((paddr_t)NULL, &len); /* Trick to get actual length */
268 	if ( !len ) {
269 		panic("init_tlb: hv_mach_desc() failed");
270 	}
271 	pa = OF_alloc_phys(len, 16);
272 	if ( pa == -1 ) {
273 		panic("OF_alloc_phys() failed");
274 	}
275 	hv_rc = hv_mach_desc(pa, &len);
276 	if (hv_rc != H_EOK) {
277 		panic("hv_mach_desc() failed");
278 	}
279 	/* XXX dig out TLB node info - 64 is ok for loading the kernel */
280 	dtlb_slot_max = itlb_slot_max = 64;
281 }
282 #endif
283 
284 /*
285  * Map requested memory region with permanent 4MB pages.
286  */
287 static int
288 mmu_mapin(vaddr_t rva, vsize_t len)
289 {
290 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
291 	rva &= ~PAGE_MASK_4M;
292 
293 	tlb_init();
294 
295 #if SUN4V
296 	if ( sun4v )
297 		return mmu_mapin_sun4v(rva, len);
298 	else
299 #endif
300 		return mmu_mapin_sun4u(rva, len);
301 }
302 
303 /*
304  * Map requested memory region with permanent 4MB pages - sun4u.
305  */
306 static int
307 mmu_mapin_sun4u(vaddr_t rva, vsize_t len)
308 {
309 	uint64_t data;
310 	paddr_t pa;
311 	vaddr_t va, mva;
312 
313 	for (pa = (paddr_t)-1; len > 0; rva = va) {
314 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
315 			/* The rest is already mapped */
316 			break;
317 		}
318 
319 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
320 		    itlb_va_to_pa(va) == (u_long)-1) {
321 			/* Allocate a physical page, claim the virtual area */
322 			if (pa == (paddr_t)-1) {
323 				pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
324 				if (pa == (paddr_t)-1)
325 					panic("out of memory");
326 				mva = OF_claim_virt(va, PAGE_SIZE_4M);
327 				if (mva != va) {
328 					panic("can't claim virtual page "
329 					    "(wanted %#lx, got %#lx)",
330 					    va, mva);
331 				}
332 				/* The mappings may have changed, be paranoid. */
333 				continue;
334 			}
335 
336 			/*
337 			 * Actually, we can only allocate two pages less at
338 			 * most (depending on the kernel TSB size).
339 			 */
340 			if (dtlb_slot >= dtlb_slot_max)
341 				panic("mmu_mapin: out of dtlb_slots");
342 			if (itlb_slot >= itlb_slot_max)
343 				panic("mmu_mapin: out of itlb_slots");
344 
345 			DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
346 			    hi(pa), lo(pa)));
347 
348 			data = SUN4U_TSB_DATA(0,	/* global */
349 					PGSZ_4M,	/* 4mb page */
350 					pa,		/* phys.address */
351 					1,		/* privileged */
352 					1,		/* write */
353 					1,		/* cache */
354 					1,		/* alias */
355 					1,		/* valid */
356 					0		/* endianness */
357 					);
358 			data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
359 
360 			dtlb_store[dtlb_slot].te_pa = pa;
361 			dtlb_store[dtlb_slot].te_va = va;
362 			dtlb_slot++;
363 			dtlb_enter(va, hi(data), lo(data));
364 			pa = (paddr_t)-1;
365 		}
366 
367 		kvamap_enter(va, PAGE_SIZE_4M);
368 
369 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
370 		va += PAGE_SIZE_4M;
371 	}
372 
373 	if (pa != (paddr_t)-1) {
374 		OF_free_phys(pa, PAGE_SIZE_4M);
375 	}
376 
377 	return (0);
378 }
379 
380 #ifdef SUN4V
381 /*
382  * Map requested memory region with permanent 4MB pages - sun4v.
383  */
384 static int
385 mmu_mapin_sun4v(vaddr_t rva, vsize_t len)
386 {
387 	uint64_t data;
388 	paddr_t pa;
389 	vaddr_t va, mva;
390 	int64_t hv_rc;
391 
392 	for (pa = (paddr_t)-1; len > 0; rva = va) {
393 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
394 			/* The rest is already mapped */
395 			break;
396 		}
397 
398 		/* Allocate a physical page, claim the virtual area */
399 		if (pa == (paddr_t)-1) {
400 			pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
401 			if (pa == (paddr_t)-1)
402 				panic("out of memory");
403 			mva = OF_claim_virt(va, PAGE_SIZE_4M);
404 			if (mva != va) {
405 				panic("can't claim virtual page "
406 				    "(wanted %#lx, got %#lx)",
407 				    va, mva);
408 			}
409 		}
410 
411 		/*
412 		 * Actually, we can only allocate two pages less at
413 		 * most (depending on the kernel TSB size).
414 		 */
415 		if (dtlb_slot >= dtlb_slot_max)
416 			panic("mmu_mapin: out of dtlb_slots");
417 		if (itlb_slot >= itlb_slot_max)
418 			panic("mmu_mapin: out of itlb_slots");
419 
420 		DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
421 		    hi(pa), lo(pa)));
422 
423 		data = SUN4V_TSB_DATA(
424 			0,		/* global */
425 			PGSZ_4M,	/* 4mb page */
426 			pa,		/* phys.address */
427 			1,		/* privileged */
428 			1,		/* write */
429 			1,		/* cache */
430 			1,		/* alias */
431 			1,		/* valid */
432 			0		/* endianness */
433 			);
434 		data |= SUN4V_TLB_CV; /* virt.cache */
435 
436 		dtlb_store[dtlb_slot].te_pa = pa;
437 		dtlb_store[dtlb_slot].te_va = va;
438 		dtlb_slot++;
439 		hv_rc = hv_mmu_map_perm_addr(va, data, MAP_DTLB);
440 		if ( hv_rc != H_EOK ) {
441 			panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
442 		}
443 
444 		kvamap_enter(va, PAGE_SIZE_4M);
445 
446 		pa = (paddr_t)-1;
447 
448 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
449 		va += PAGE_SIZE_4M;
450 	}
451 
452 	if (pa != (paddr_t)-1) {
453 		OF_free_phys(pa, PAGE_SIZE_4M);
454 	}
455 
456 	return (0);
457 }
458 #endif
459 
460 static ssize_t
461 mmu_read(int f, void *addr, size_t size)
462 {
463 	mmu_mapin((vaddr_t)addr, size);
464 	return read(f, addr, size);
465 }
466 
467 static void*
468 mmu_memcpy(void *dst, const void *src, size_t size)
469 {
470 	mmu_mapin((vaddr_t)dst, size);
471 	return memcpy(dst, src, size);
472 }
473 
474 static void*
475 mmu_memset(void *dst, int c, size_t size)
476 {
477 	mmu_mapin((vaddr_t)dst, size);
478 	return memset(dst, c, size);
479 }
480 
481 static void
482 mmu_freeall(void)
483 {
484 	int i;
485 
486 	dtlb_slot = itlb_slot = 0;
487 	for (i = 0; i < MAXSEGNUM; i++) {
488 		/* XXX return all mappings to PROM and unmap the pages! */
489 		kvamap[i].start = kvamap[i].end = 0;
490 	}
491 }
492 
493 /*
494  * Claim requested memory region in OpenFirmware allocation pool.
495  */
496 static int
497 ofw_mapin(vaddr_t rva, vsize_t len)
498 {
499 	vaddr_t va;
500 
501 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
502 	rva &= ~PAGE_MASK_4M;
503 
504 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
505 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
506 			panic("ofw_mapin: Cannot claim memory.");
507 		}
508 		kvamap_enter(va, len);
509 	}
510 
511 	return (0);
512 }
513 
514 static ssize_t
515 ofw_read(int f, void *addr, size_t size)
516 {
517 	ofw_mapin((vaddr_t)addr, size);
518 	return read(f, addr, size);
519 }
520 
521 static void*
522 ofw_memcpy(void *dst, const void *src, size_t size)
523 {
524 	ofw_mapin((vaddr_t)dst, size);
525 	return memcpy(dst, src, size);
526 }
527 
528 static void*
529 ofw_memset(void *dst, int c, size_t size)
530 {
531 	ofw_mapin((vaddr_t)dst, size);
532 	return memset(dst, c, size);
533 }
534 
535 static void
536 ofw_freeall(void)
537 {
538 	int i;
539 
540 	dtlb_slot = itlb_slot = 0;
541 	for (i = 0; i < MAXSEGNUM; i++) {
542 		OF_release((void*)(u_long)kvamap[i].start,
543 				(u_int)(kvamap[i].end - kvamap[i].start));
544 		kvamap[i].start = kvamap[i].end = 0;
545 	}
546 }
547 
548 /*
549  * NOP implementation exists solely for kernel header loading sake. Here
550  * we use alloc() interface to allocate memory and avoid doing some dangerous
551  * things.
552  */
553 static ssize_t
554 nop_read(int f, void *addr, size_t size)
555 {
556 	return read(f, addr, size);
557 }
558 
559 static void*
560 nop_memcpy(void *dst, const void *src, size_t size)
561 {
562 	/*
563 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
564 	 * right after the highest kernel address which will not be mapped with
565 	 * nop_XXX operations.
566 	 */
567 	return (dst);
568 }
569 
570 static void*
571 nop_memset(void *dst, int c, size_t size)
572 {
573 	return memset(dst, c, size);
574 }
575 
576 static void
577 nop_freeall(void)
578 { }
579 
580 /*
581  * loadfile() hooks.
582  */
583 ssize_t
584 sparc64_read(int f, void *addr, size_t size)
585 {
586 	return (*memsw->read)(f, addr, size);
587 }
588 
589 void*
590 sparc64_memcpy(void *dst, const void *src, size_t size)
591 {
592 	return (*memsw->memcpy)(dst, src, size);
593 }
594 
595 void*
596 sparc64_memset(void *dst, int c, size_t size)
597 {
598 	return (*memsw->memset)(dst, c, size);
599 }
600 
601 /*
602  * Remove write permissions from text mappings in the dTLB.
603  * Add entries in the iTLB.
604  */
605 void
606 sparc64_finalize_tlb(u_long data_va)
607 {
608 #ifdef SUN4V
609 	if ( sun4v )
610 		sparc64_finalize_tlb_sun4v(data_va);
611 	else
612 #endif
613 		sparc64_finalize_tlb_sun4u(data_va);
614 }
615 
616 /*
617  * Remove write permissions from text mappings in the dTLB - sun4u.
618  * Add entries in the iTLB.
619  */
620 void
621 sparc64_finalize_tlb_sun4u(u_long data_va)
622 {
623 	int i;
624 	int64_t data;
625 	bool writable_text = false;
626 
627 	for (i = 0; i < dtlb_slot; i++) {
628 		if (dtlb_store[i].te_va >= data_va) {
629 			/*
630 			 * If (for whatever reason) the start of the
631 			 * writable section is right at the start of
632 			 * the kernel, we need to map it into the ITLB
633 			 * nevertheless (and don't make it readonly).
634 			 */
635 			if (i == 0 && dtlb_store[i].te_va == data_va)
636 				writable_text = true;
637 			else
638 				continue;
639 		}
640 
641 		data = SUN4U_TSB_DATA(0,	/* global */
642 				PGSZ_4M,	/* 4mb page */
643 				dtlb_store[i].te_pa,	/* phys.address */
644 				1,		/* privileged */
645 				0,		/* write */
646 				1,		/* cache */
647 				1,		/* alias */
648 				1,		/* valid */
649 				0		/* endianness */
650 				);
651 		data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
652 		if (!writable_text)
653 			dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
654 		itlb_store[itlb_slot] = dtlb_store[i];
655 		itlb_slot++;
656 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
657 	}
658 	if (writable_text)
659 		printf("WARNING: kernel text mapped writable!\n");
660 
661 }
662 
663 #ifdef SUN4V
664 /*
665  * Remove write permissions from text mappings in the dTLB - sun4v.
666  * Add entries in the iTLB.
667  */
668 void
669 sparc64_finalize_tlb_sun4v(u_long data_va)
670 {
671 	int i;
672 	int64_t data;
673 	bool writable_text = false;
674 	int64_t hv_rc;
675 
676 	for (i = 0; i < dtlb_slot; i++) {
677 		if (dtlb_store[i].te_va >= data_va) {
678 			/*
679 			 * If (for whatever reason) the start of the
680 			 * writable section is right at the start of
681 			 * the kernel, we need to map it into the ITLB
682 			 * nevertheless (and don't make it readonly).
683 			 */
684 			if (i == 0 && dtlb_store[i].te_va == data_va)
685 				writable_text = true;
686 			else
687 				continue;
688 		}
689 
690 		data = SUN4V_TSB_DATA(
691 			0,		/* global */
692 			PGSZ_4M,	/* 4mb page */
693 			dtlb_store[i].te_pa,	/* phys.address */
694 			1,		/* privileged */
695 			0,		/* write */
696 			1,		/* cache */
697 			1,		/* alias */
698 			1,		/* valid */
699 			0		/* endianness */
700 			);
701 		data |= SUN4V_TLB_CV|SUN4V_TLB_X; /* virt.cache, executable */
702 		if (!writable_text) {
703 			hv_rc = hv_mmu_unmap_perm_addr(dtlb_store[i].te_va,
704 			                               MAP_DTLB);
705 			if ( hv_rc != H_EOK ) {
706 				panic("hv_mmu_unmap_perm_addr() failed - "
707 				      "rc = %ld", hv_rc);
708 			}
709 			hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
710 			                             MAP_DTLB);
711 			if ( hv_rc != H_EOK ) {
712 				panic("hv_mmu_map_perm_addr() failed - "
713 				      "rc = %ld", hv_rc);
714 			}
715 		}
716 
717 		itlb_store[itlb_slot] = dtlb_store[i];
718 		itlb_slot++;
719 		hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
720 		                             MAP_ITLB);
721 		if ( hv_rc != H_EOK ) {
722 			panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
723 		}
724 	}
725 	if (writable_text)
726 		printf("WARNING: kernel text mapped writable!\n");
727 }
728 #endif
729 
730 /*
731  * Record kernel mappings in bootinfo structure.
732  */
733 void
734 sparc64_bi_add(void)
735 {
736 	int i;
737 	int itlb_size, dtlb_size;
738 	struct btinfo_count bi_count;
739 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
740 
741 	bi_count.count = itlb_slot;
742 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
743 	bi_count.count = dtlb_slot;
744 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
745 
746 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
747 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
748 
749 	bi_itlb = alloc(itlb_size);
750 	bi_dtlb = alloc(dtlb_size);
751 
752 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
753 		panic("Out of memory in sparc64_bi_add.\n");
754 	}
755 
756 	for (i = 0; i < itlb_slot; i++) {
757 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
758 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
759 	}
760 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
761 
762 	for (i = 0; i < dtlb_slot; i++) {
763 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
764 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
765 	}
766 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
767 }
768 
769 /*
770  * Choose kernel image mapping strategy:
771  *
772  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
773  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
774  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
775  */
776 void
777 loadfile_set_allocator(int type)
778 {
779 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
780 		panic("Bad allocator request.\n");
781 	}
782 
783 	/*
784 	 * Release all memory claimed by previous allocator and schedule
785 	 * another allocator for succeeding memory allocation calls.
786 	 */
787 	(*memsw->freeall)();
788 	memsw = &memswa[type];
789 }
790