xref: /netbsd-src/sys/arch/sparc/stand/ofwboot/loadfile_machdep.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: loadfile_machdep.c,v 1.13 2014/04/21 18:10:40 palle Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This work is based on the code contributed by Robert Drehmel to the
8  * FreeBSD project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <lib/libsa/stand.h>
33 #include <lib/libkern/libkern.h>
34 
35 #include <machine/pte.h>
36 #include <machine/cpu.h>
37 #include <machine/ctlreg.h>
38 #include <machine/vmparam.h>
39 #include <machine/promlib.h>
40 #include <machine/hypervisor.h>
41 
42 #include "boot.h"
43 #include "openfirm.h"
44 
45 
46 #define MAXSEGNUM	50
47 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
48 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
49 
50 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
51 
52 
53 typedef int phandle_t;
54 
55 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
56 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
57 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
58 extern vaddr_t	itlb_va_to_pa(vaddr_t);
59 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
60 
61 static void	tlb_init(void);
62 static void	tlb_init_sun4u(void);
63 #ifdef SUN4V
64 static void	tlb_init_sun4v(void);
65 #endif
66 void	sparc64_finalize_tlb_sun4u(u_long);
67 #ifdef SUN4V
68 void	sparc64_finalize_tlb_sun4v(u_long);
69 #endif
70 static int	mmu_mapin(vaddr_t, vsize_t);
71 static int	mmu_mapin_sun4u(vaddr_t, vsize_t);
72 #ifdef SUN4V
73 static int	mmu_mapin_sun4v(vaddr_t, vsize_t);
74 #endif
75 static ssize_t	mmu_read(int, void *, size_t);
76 static void*	mmu_memcpy(void *, const void *, size_t);
77 static void*	mmu_memset(void *, int, size_t);
78 static void	mmu_freeall(void);
79 
80 static int	ofw_mapin(vaddr_t, vsize_t);
81 static ssize_t	ofw_read(int, void *, size_t);
82 static void*	ofw_memcpy(void *, const void *, size_t);
83 static void*	ofw_memset(void *, int, size_t);
84 static void	ofw_freeall(void);
85 
86 #if 0
87 static int	nop_mapin(vaddr_t, vsize_t);
88 #endif
89 static ssize_t	nop_read(int, void *, size_t);
90 static void*	nop_memcpy(void *, const void *, size_t);
91 static void*	nop_memset(void *, int, size_t);
92 static void	nop_freeall(void);
93 
94 
95 struct tlb_entry *dtlb_store = 0;
96 struct tlb_entry *itlb_store = 0;
97 
98 int dtlb_slot;
99 int itlb_slot;
100 int dtlb_slot_max;
101 int itlb_slot_max;
102 
103 static struct kvamap {
104 	uint64_t start;
105 	uint64_t end;
106 } kvamap[MAXSEGNUM];
107 
108 static struct memsw {
109 	ssize_t	(* read)(int f, void *addr, size_t size);
110 	void*	(* memcpy)(void *dst, const void *src, size_t size);
111 	void*	(* memset)(void *dst, int c, size_t size);
112 	void	(* freeall)(void);
113 } memswa[] = {
114 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
115 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
116 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
117 };
118 
119 static struct memsw *memsw = &memswa[0];
120 
121 #ifdef SUN4V
122 static int sun4v = 0;
123 #endif
124 
125 /*
126  * Check if a memory region is already mapped. Return length and virtual
127  * address of unmapped sub-region, if any.
128  */
129 static uint64_t
130 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
131 {
132 	int i;
133 
134 	*new_va  = va;
135 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
136 		if (kvamap[i].start == NULL)
137 			break;
138 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
139 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
140 			len = (va_len < len) ? len - va_len : 0;
141 			*new_va = kvamap[i].end;
142 		}
143 	}
144 
145 	return (len);
146 }
147 
148 /*
149  * Record new kernel mapping.
150  */
151 static void
152 kvamap_enter(uint64_t va, uint64_t len)
153 {
154 	int i;
155 
156 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
157 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
158 		if (kvamap[i].start == NULL) {
159 			kvamap[i].start = va;
160 			kvamap[i].end = va + len;
161 			break;
162 		}
163 	}
164 
165 	if (i == MAXSEGNUM) {
166 		panic("Too many allocations requested.");
167 	}
168 }
169 
170 /*
171  * Initialize TLB as required by MMU mapping functions.
172  */
173 static void
174 tlb_init(void)
175 {
176 	phandle_t root;
177 #ifdef SUN4V
178 	char buf[128];
179 #endif
180 
181 	if (dtlb_store != NULL) {
182 		return;
183 	}
184 
185 	if ( (root = prom_findroot()) == -1) {
186 		panic("tlb_init: prom_findroot()");
187 	}
188 #ifdef SUN4V
189 	if (_prom_getprop(root, "compatible", buf, sizeof(buf)) > 0 &&
190 		    strcmp(buf, "sun4v") == 0) {
191 		tlb_init_sun4v();
192 		sun4v = 1;
193 	}
194 	else {
195 #endif
196 		tlb_init_sun4u();
197 #ifdef SUN4V
198 	}
199 #endif
200 
201 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
202 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
203 	if (dtlb_store == NULL || itlb_store == NULL) {
204 		panic("tlb_init: malloc");
205 	}
206 
207 	dtlb_slot = itlb_slot = 0;
208 }
209 
210 /*
211  * Initialize TLB as required by MMU mapping functions - sun4u.
212  */
213 static void
214 tlb_init_sun4u(void)
215 {
216 	phandle_t child;
217 	phandle_t root;
218 	char buf[128];
219 	u_int bootcpu;
220 	u_int cpu;
221 
222 	bootcpu = get_cpuid();
223 
224 	if ( (root = prom_findroot()) == -1) {
225 		panic("tlb_init: prom_findroot()");
226 	}
227 
228 	for (child = prom_firstchild(root); child != 0;
229 			child = prom_nextsibling(child)) {
230 		if (child == -1) {
231 			panic("tlb_init: OF_child");
232 		}
233 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
234 		    strcmp(buf, "cpu") == 0) {
235 			if (_prom_getprop(child, "upa-portid", &cpu,
236 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
237 			    &cpu, sizeof(cpu)) == -1)
238 				panic("tlb_init: prom_getprop");
239 			if (cpu == bootcpu)
240 				break;
241 		}
242 	}
243 	if (cpu != bootcpu)
244 		panic("tlb_init: no node for bootcpu?!?!");
245 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
246 	    sizeof(dtlb_slot_max)) == -1 ||
247 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
248 	    sizeof(itlb_slot_max)) == -1)
249 		panic("tlb_init: prom_getprop");
250 }
251 
252 #ifdef SUN4V
253 /*
254  * Initialize TLB as required by MMU mapping functions - sun4v.
255  */
256 static void
257 tlb_init_sun4v(void)
258 {
259 	psize_t len;
260 	paddr_t pa;
261 	int64_t hv_rc;
262 
263 	hv_mach_desc((paddr_t)NULL, &len); /* Trick to get actual length */
264 	if ( !len ) {
265 		panic("init_tlb: hv_mach_desc() failed");
266 	}
267 	pa = OF_alloc_phys(len, 16);
268 	if ( pa == -1 ) {
269 		panic("OF_alloc_phys() failed");
270 	}
271 	hv_rc = hv_mach_desc(pa, &len);
272 	if (hv_rc != H_EOK) {
273 		panic("hv_mach_desc() failed");
274 	}
275 	/* XXX dig out TLB node info - 64 is ok for loading the kernel */
276 	dtlb_slot_max = itlb_slot_max = 64;
277 }
278 #endif
279 
280 /*
281  * Map requested memory region with permanent 4MB pages.
282  */
283 static int
284 mmu_mapin(vaddr_t rva, vsize_t len)
285 {
286 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
287 	rva &= ~PAGE_MASK_4M;
288 
289 	tlb_init();
290 
291 #if SUN4V
292 	if ( sun4v )
293 		return mmu_mapin_sun4v(rva, len);
294 	else
295 #endif
296 		return mmu_mapin_sun4u(rva, len);
297 }
298 
299 /*
300  * Map requested memory region with permanent 4MB pages - sun4u.
301  */
302 static int
303 mmu_mapin_sun4u(vaddr_t rva, vsize_t len)
304 {
305 	uint64_t data;
306 	paddr_t pa;
307 	vaddr_t va, mva;
308 
309 	for (pa = (paddr_t)-1; len > 0; rva = va) {
310 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
311 			/* The rest is already mapped */
312 			break;
313 		}
314 
315 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
316 		    itlb_va_to_pa(va) == (u_long)-1) {
317 			/* Allocate a physical page, claim the virtual area */
318 			if (pa == (paddr_t)-1) {
319 				pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
320 				if (pa == (paddr_t)-1)
321 					panic("out of memory");
322 				mva = OF_claim_virt(va, PAGE_SIZE_4M);
323 				if (mva != va) {
324 					panic("can't claim virtual page "
325 					    "(wanted %#lx, got %#lx)",
326 					    va, mva);
327 				}
328 				/* The mappings may have changed, be paranoid. */
329 				continue;
330 			}
331 
332 			/*
333 			 * Actually, we can only allocate two pages less at
334 			 * most (depending on the kernel TSB size).
335 			 */
336 			if (dtlb_slot >= dtlb_slot_max)
337 				panic("mmu_mapin: out of dtlb_slots");
338 			if (itlb_slot >= itlb_slot_max)
339 				panic("mmu_mapin: out of itlb_slots");
340 
341 			DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
342 			    hi(pa), lo(pa)));
343 
344 			data = SUN4U_TSB_DATA(0,	/* global */
345 					PGSZ_4M,	/* 4mb page */
346 					pa,		/* phys.address */
347 					1,		/* privileged */
348 					1,		/* write */
349 					1,		/* cache */
350 					1,		/* alias */
351 					1,		/* valid */
352 					0		/* endianness */
353 					);
354 			data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
355 
356 			dtlb_store[dtlb_slot].te_pa = pa;
357 			dtlb_store[dtlb_slot].te_va = va;
358 			dtlb_slot++;
359 			dtlb_enter(va, hi(data), lo(data));
360 			pa = (paddr_t)-1;
361 		}
362 
363 		kvamap_enter(va, PAGE_SIZE_4M);
364 
365 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
366 		va += PAGE_SIZE_4M;
367 	}
368 
369 	if (pa != (paddr_t)-1) {
370 		OF_free_phys(pa, PAGE_SIZE_4M);
371 	}
372 
373 	return (0);
374 }
375 
376 #ifdef SUN4V
377 /*
378  * Map requested memory region with permanent 4MB pages - sun4v.
379  */
380 static int
381 mmu_mapin_sun4v(vaddr_t rva, vsize_t len)
382 {
383 	uint64_t data;
384 	paddr_t pa;
385 	vaddr_t va, mva;
386 	int64_t hv_rc;
387 
388 	for (pa = (paddr_t)-1; len > 0; rva = va) {
389 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
390 			/* The rest is already mapped */
391 			break;
392 		}
393 
394 		/* Allocate a physical page, claim the virtual area */
395 		if (pa == (paddr_t)-1) {
396 			pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
397 			if (pa == (paddr_t)-1)
398 				panic("out of memory");
399 			mva = OF_claim_virt(va, PAGE_SIZE_4M);
400 			if (mva != va) {
401 				panic("can't claim virtual page "
402 				    "(wanted %#lx, got %#lx)",
403 				    va, mva);
404 			}
405 		}
406 
407 		/*
408 		 * Actually, we can only allocate two pages less at
409 		 * most (depending on the kernel TSB size).
410 		 */
411 		if (dtlb_slot >= dtlb_slot_max)
412 			panic("mmu_mapin: out of dtlb_slots");
413 		if (itlb_slot >= itlb_slot_max)
414 			panic("mmu_mapin: out of itlb_slots");
415 
416 		DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
417 		    hi(pa), lo(pa)));
418 
419 		data = SUN4V_TSB_DATA(
420 			0,		/* global */
421 			PGSZ_4M,	/* 4mb page */
422 			pa,		/* phys.address */
423 			1,		/* privileged */
424 			1,		/* write */
425 			1,		/* cache */
426 			1,		/* alias */
427 			1,		/* valid */
428 			0		/* endianness */
429 			);
430 		data |= SUN4V_TLB_CV; /* virt.cache */
431 
432 		dtlb_store[dtlb_slot].te_pa = pa;
433 		dtlb_store[dtlb_slot].te_va = va;
434 		dtlb_slot++;
435 		hv_rc = hv_mmu_map_perm_addr(va, data, MAP_DTLB);
436 		if ( hv_rc != H_EOK ) {
437 			panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
438 		}
439 
440 		kvamap_enter(va, PAGE_SIZE_4M);
441 
442 		pa = (paddr_t)-1;
443 
444 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
445 		va += PAGE_SIZE_4M;
446 	}
447 
448 	if (pa != (paddr_t)-1) {
449 		OF_free_phys(pa, PAGE_SIZE_4M);
450 	}
451 
452 	return (0);
453 }
454 #endif
455 
456 static ssize_t
457 mmu_read(int f, void *addr, size_t size)
458 {
459 	mmu_mapin((vaddr_t)addr, size);
460 	return read(f, addr, size);
461 }
462 
463 static void*
464 mmu_memcpy(void *dst, const void *src, size_t size)
465 {
466 	mmu_mapin((vaddr_t)dst, size);
467 	return memcpy(dst, src, size);
468 }
469 
470 static void*
471 mmu_memset(void *dst, int c, size_t size)
472 {
473 	mmu_mapin((vaddr_t)dst, size);
474 	return memset(dst, c, size);
475 }
476 
477 static void
478 mmu_freeall(void)
479 {
480 	int i;
481 
482 	dtlb_slot = itlb_slot = 0;
483 	for (i = 0; i < MAXSEGNUM; i++) {
484 		/* XXX return all mappings to PROM and unmap the pages! */
485 		kvamap[i].start = kvamap[i].end = 0;
486 	}
487 }
488 
489 /*
490  * Claim requested memory region in OpenFirmware allocation pool.
491  */
492 static int
493 ofw_mapin(vaddr_t rva, vsize_t len)
494 {
495 	vaddr_t va;
496 
497 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
498 	rva &= ~PAGE_MASK_4M;
499 
500 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
501 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
502 			panic("ofw_mapin: Cannot claim memory.");
503 		}
504 		kvamap_enter(va, len);
505 	}
506 
507 	return (0);
508 }
509 
510 static ssize_t
511 ofw_read(int f, void *addr, size_t size)
512 {
513 	ofw_mapin((vaddr_t)addr, size);
514 	return read(f, addr, size);
515 }
516 
517 static void*
518 ofw_memcpy(void *dst, const void *src, size_t size)
519 {
520 	ofw_mapin((vaddr_t)dst, size);
521 	return memcpy(dst, src, size);
522 }
523 
524 static void*
525 ofw_memset(void *dst, int c, size_t size)
526 {
527 	ofw_mapin((vaddr_t)dst, size);
528 	return memset(dst, c, size);
529 }
530 
531 static void
532 ofw_freeall(void)
533 {
534 	int i;
535 
536 	dtlb_slot = itlb_slot = 0;
537 	for (i = 0; i < MAXSEGNUM; i++) {
538 		OF_release((void*)(u_long)kvamap[i].start,
539 				(u_int)(kvamap[i].end - kvamap[i].start));
540 		kvamap[i].start = kvamap[i].end = 0;
541 	}
542 }
543 
544 /*
545  * NOP implementation exists solely for kernel header loading sake. Here
546  * we use alloc() interface to allocate memory and avoid doing some dangerous
547  * things.
548  */
549 static ssize_t
550 nop_read(int f, void *addr, size_t size)
551 {
552 	return read(f, addr, size);
553 }
554 
555 static void*
556 nop_memcpy(void *dst, const void *src, size_t size)
557 {
558 	/*
559 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
560 	 * right after the highest kernel address which will not be mapped with
561 	 * nop_XXX operations.
562 	 */
563 	return (dst);
564 }
565 
566 static void*
567 nop_memset(void *dst, int c, size_t size)
568 {
569 	return memset(dst, c, size);
570 }
571 
572 static void
573 nop_freeall(void)
574 { }
575 
576 /*
577  * loadfile() hooks.
578  */
579 ssize_t
580 sparc64_read(int f, void *addr, size_t size)
581 {
582 	return (*memsw->read)(f, addr, size);
583 }
584 
585 void*
586 sparc64_memcpy(void *dst, const void *src, size_t size)
587 {
588 	return (*memsw->memcpy)(dst, src, size);
589 }
590 
591 void*
592 sparc64_memset(void *dst, int c, size_t size)
593 {
594 	return (*memsw->memset)(dst, c, size);
595 }
596 
597 /*
598  * Remove write permissions from text mappings in the dTLB.
599  * Add entries in the iTLB.
600  */
601 void
602 sparc64_finalize_tlb(u_long data_va)
603 {
604 #ifdef SUN4V
605 	if ( sun4v )
606 		sparc64_finalize_tlb_sun4v(data_va);
607 	else
608 #endif
609 		sparc64_finalize_tlb_sun4u(data_va);
610 }
611 
612 /*
613  * Remove write permissions from text mappings in the dTLB - sun4u.
614  * Add entries in the iTLB.
615  */
616 void
617 sparc64_finalize_tlb_sun4u(u_long data_va)
618 {
619 	int i;
620 	int64_t data;
621 	bool writable_text = false;
622 
623 	for (i = 0; i < dtlb_slot; i++) {
624 		if (dtlb_store[i].te_va >= data_va) {
625 			/*
626 			 * If (for whatever reason) the start of the
627 			 * writable section is right at the start of
628 			 * the kernel, we need to map it into the ITLB
629 			 * nevertheless (and don't make it readonly).
630 			 */
631 			if (i == 0 && dtlb_store[i].te_va == data_va)
632 				writable_text = true;
633 			else
634 				continue;
635 		}
636 
637 		data = SUN4U_TSB_DATA(0,	/* global */
638 				PGSZ_4M,	/* 4mb page */
639 				dtlb_store[i].te_pa,	/* phys.address */
640 				1,		/* privileged */
641 				0,		/* write */
642 				1,		/* cache */
643 				1,		/* alias */
644 				1,		/* valid */
645 				0		/* endianness */
646 				);
647 		data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
648 		if (!writable_text)
649 			dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
650 		itlb_store[itlb_slot] = dtlb_store[i];
651 		itlb_slot++;
652 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
653 	}
654 	if (writable_text)
655 		printf("WARNING: kernel text mapped writable!\n");
656 
657 }
658 
659 #ifdef SUN4V
660 /*
661  * Remove write permissions from text mappings in the dTLB - sun4v.
662  * Add entries in the iTLB.
663  */
664 void
665 sparc64_finalize_tlb_sun4v(u_long data_va)
666 {
667 	int i;
668 	int64_t data;
669 	bool writable_text = false;
670 	int64_t hv_rc;
671 
672 	for (i = 0; i < dtlb_slot; i++) {
673 		if (dtlb_store[i].te_va >= data_va) {
674 			/*
675 			 * If (for whatever reason) the start of the
676 			 * writable section is right at the start of
677 			 * the kernel, we need to map it into the ITLB
678 			 * nevertheless (and don't make it readonly).
679 			 */
680 			if (i == 0 && dtlb_store[i].te_va == data_va)
681 				writable_text = true;
682 			else
683 				continue;
684 		}
685 
686 		data = SUN4V_TSB_DATA(
687 			0,		/* global */
688 			PGSZ_4M,	/* 4mb page */
689 			dtlb_store[i].te_pa,	/* phys.address */
690 			1,		/* privileged */
691 			0,		/* write */
692 			1,		/* cache */
693 			1,		/* alias */
694 			1,		/* valid */
695 			0		/* endianness */
696 			);
697 		data |= SUN4V_TLB_CV|SUN4V_TLB_X; /* virt.cache, executable */
698 		if (!writable_text) {
699 			hv_rc = hv_mmu_unmap_perm_addr(dtlb_store[i].te_va,
700 			                               MAP_DTLB);
701 			if ( hv_rc != H_EOK ) {
702 				panic("hv_mmu_unmap_perm_addr() failed - "
703 				      "rc = %ld", hv_rc);
704 			}
705 			hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
706 			                             MAP_DTLB);
707 			if ( hv_rc != H_EOK ) {
708 				panic("hv_mmu_map_perm_addr() failed - "
709 				      "rc = %ld", hv_rc);
710 			}
711 		}
712 
713 		itlb_store[itlb_slot] = dtlb_store[i];
714 		itlb_slot++;
715 		hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
716 		                             MAP_ITLB);
717 		if ( hv_rc != H_EOK ) {
718 			panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
719 		}
720 	}
721 	if (writable_text)
722 		printf("WARNING: kernel text mapped writable!\n");
723 }
724 #endif
725 
726 /*
727  * Record kernel mappings in bootinfo structure.
728  */
729 void
730 sparc64_bi_add(void)
731 {
732 	int i;
733 	int itlb_size, dtlb_size;
734 	struct btinfo_count bi_count;
735 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
736 
737 	bi_count.count = itlb_slot;
738 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
739 	bi_count.count = dtlb_slot;
740 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
741 
742 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
743 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
744 
745 	bi_itlb = alloc(itlb_size);
746 	bi_dtlb = alloc(dtlb_size);
747 
748 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
749 		panic("Out of memory in sparc64_bi_add.\n");
750 	}
751 
752 	for (i = 0; i < itlb_slot; i++) {
753 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
754 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
755 	}
756 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
757 
758 	for (i = 0; i < dtlb_slot; i++) {
759 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
760 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
761 	}
762 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
763 }
764 
765 /*
766  * Choose kernel image mapping strategy:
767  *
768  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
769  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
770  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
771  */
772 void
773 loadfile_set_allocator(int type)
774 {
775 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
776 		panic("Bad allocator request.\n");
777 	}
778 
779 	/*
780 	 * Release all memory claimed by previous allocator and schedule
781 	 * another allocator for succeeding memory allocation calls.
782 	 */
783 	(*memsw->freeall)();
784 	memsw = &memswa[type];
785 }
786