xref: /netbsd-src/sys/arch/sparc/stand/ofwboot/loadfile_machdep.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*	$NetBSD: loadfile_machdep.c,v 1.10 2011/05/21 16:32:00 nakayama Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This work is based on the code contributed by Robert Drehmel to the
8  * FreeBSD project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <lib/libsa/stand.h>
33 #include <lib/libkern/libkern.h>
34 
35 #include <machine/pte.h>
36 #include <machine/cpu.h>
37 #include <machine/ctlreg.h>
38 #include <machine/vmparam.h>
39 #include <machine/promlib.h>
40 
41 #include "boot.h"
42 #include "openfirm.h"
43 
44 
45 #define MAXSEGNUM	50
46 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
47 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
48 
49 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
50 
51 
52 typedef int phandle_t;
53 
54 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
55 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
56 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
57 extern vaddr_t	itlb_va_to_pa(vaddr_t);
58 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
59 
60 static void	tlb_init(void);
61 
62 static int	mmu_mapin(vaddr_t, vsize_t);
63 static ssize_t	mmu_read(int, void *, size_t);
64 static void*	mmu_memcpy(void *, const void *, size_t);
65 static void*	mmu_memset(void *, int, size_t);
66 static void	mmu_freeall(void);
67 
68 static int	ofw_mapin(vaddr_t, vsize_t);
69 static ssize_t	ofw_read(int, void *, size_t);
70 static void*	ofw_memcpy(void *, const void *, size_t);
71 static void*	ofw_memset(void *, int, size_t);
72 static void	ofw_freeall(void);
73 
74 #if 0
75 static int	nop_mapin(vaddr_t, vsize_t);
76 #endif
77 static ssize_t	nop_read(int, void *, size_t);
78 static void*	nop_memcpy(void *, const void *, size_t);
79 static void*	nop_memset(void *, int, size_t);
80 static void	nop_freeall(void);
81 
82 
83 struct tlb_entry *dtlb_store = 0;
84 struct tlb_entry *itlb_store = 0;
85 
86 int dtlb_slot;
87 int itlb_slot;
88 int dtlb_slot_max;
89 int itlb_slot_max;
90 
91 static struct kvamap {
92 	uint64_t start;
93 	uint64_t end;
94 } kvamap[MAXSEGNUM];
95 
96 static struct memsw {
97 	ssize_t	(* read)(int f, void *addr, size_t size);
98 	void*	(* memcpy)(void *dst, const void *src, size_t size);
99 	void*	(* memset)(void *dst, int c, size_t size);
100 	void	(* freeall)(void);
101 } memswa[] = {
102 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
103 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
104 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
105 };
106 
107 static struct memsw *memsw = &memswa[0];
108 
109 
110 /*
111  * Check if a memory region is already mapped. Return length and virtual
112  * address of unmapped sub-region, if any.
113  */
114 static uint64_t
115 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
116 {
117 	int i;
118 
119 	*new_va  = va;
120 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
121 		if (kvamap[i].start == NULL)
122 			break;
123 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
124 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
125 			len = (va_len < len) ? len - va_len : 0;
126 			*new_va = kvamap[i].end;
127 		}
128 	}
129 
130 	return (len);
131 }
132 
133 /*
134  * Record new kernel mapping.
135  */
136 static void
137 kvamap_enter(uint64_t va, uint64_t len)
138 {
139 	int i;
140 
141 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
142 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
143 		if (kvamap[i].start == NULL) {
144 			kvamap[i].start = va;
145 			kvamap[i].end = va + len;
146 			break;
147 		}
148 	}
149 
150 	if (i == MAXSEGNUM) {
151 		panic("Too many allocations requested.");
152 	}
153 }
154 
155 /*
156  * Initialize TLB as required by MMU mapping functions.
157  */
158 static void
159 tlb_init(void)
160 {
161 	phandle_t child;
162 	phandle_t root;
163 	char buf[128];
164 	u_int bootcpu;
165 	u_int cpu;
166 
167 	if (dtlb_store != NULL) {
168 		return;
169 	}
170 
171 	bootcpu = get_cpuid();
172 
173 	if ( (root = prom_findroot()) == -1) {
174 		panic("tlb_init: prom_findroot()");
175 	}
176 
177 	for (child = prom_firstchild(root); child != 0;
178 			child = prom_nextsibling(child)) {
179 		if (child == -1) {
180 			panic("tlb_init: OF_child");
181 		}
182 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
183 		    strcmp(buf, "cpu") == 0) {
184 			if (_prom_getprop(child, "upa-portid", &cpu,
185 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
186 			    &cpu, sizeof(cpu)) == -1)
187 				panic("tlb_init: prom_getprop");
188 			if (cpu == bootcpu)
189 				break;
190 		}
191 	}
192 	if (cpu != bootcpu)
193 		panic("tlb_init: no node for bootcpu?!?!");
194 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
195 	    sizeof(dtlb_slot_max)) == -1 ||
196 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
197 	    sizeof(itlb_slot_max)) == -1)
198 		panic("tlb_init: prom_getprop");
199 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
200 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
201 	if (dtlb_store == NULL || itlb_store == NULL) {
202 		panic("tlb_init: malloc");
203 	}
204 
205 	dtlb_slot = itlb_slot = 0;
206 }
207 
208 /*
209  * Map requested memory region with permanent 4MB pages.
210  */
211 static int
212 mmu_mapin(vaddr_t rva, vsize_t len)
213 {
214 	uint64_t data;
215 	paddr_t pa;
216 	vaddr_t va, mva;
217 
218 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
219 	rva &= ~PAGE_MASK_4M;
220 
221 	tlb_init();
222 	for (pa = (paddr_t)-1; len > 0; rva = va) {
223 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
224 			/* The rest is already mapped */
225 			break;
226 		}
227 
228 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
229 		    itlb_va_to_pa(va) == (u_long)-1) {
230 			/* Allocate a physical page, claim the virtual area */
231 			if (pa == (paddr_t)-1) {
232 				pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
233 				if (pa == (paddr_t)-1)
234 					panic("out of memory");
235 				mva = OF_claim_virt(va, PAGE_SIZE_4M);
236 				if (mva != va) {
237 					panic("can't claim virtual page "
238 					    "(wanted %#lx, got %#lx)",
239 					    va, mva);
240 				}
241 				/* The mappings may have changed, be paranoid. */
242 				continue;
243 			}
244 
245 			/*
246 			 * Actually, we can only allocate two pages less at
247 			 * most (depending on the kernel TSB size).
248 			 */
249 			if (dtlb_slot >= dtlb_slot_max)
250 				panic("mmu_mapin: out of dtlb_slots");
251 			if (itlb_slot >= itlb_slot_max)
252 				panic("mmu_mapin: out of itlb_slots");
253 
254 			DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
255 			    hi(pa), lo(pa)));
256 
257 			data = TSB_DATA(0,		/* global */
258 					PGSZ_4M,	/* 4mb page */
259 					pa,		/* phys.address */
260 					1,		/* privileged */
261 					1,		/* write */
262 					1,		/* cache */
263 					1,		/* alias */
264 					1,		/* valid */
265 					0		/* endianness */
266 					);
267 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
268 
269 			dtlb_store[dtlb_slot].te_pa = pa;
270 			dtlb_store[dtlb_slot].te_va = va;
271 			dtlb_slot++;
272 			dtlb_enter(va, hi(data), lo(data));
273 			pa = (paddr_t)-1;
274 		}
275 
276 		kvamap_enter(va, PAGE_SIZE_4M);
277 
278 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
279 		va += PAGE_SIZE_4M;
280 	}
281 
282 	if (pa != (paddr_t)-1) {
283 		OF_free_phys(pa, PAGE_SIZE_4M);
284 	}
285 
286 	return (0);
287 }
288 
289 static ssize_t
290 mmu_read(int f, void *addr, size_t size)
291 {
292 	mmu_mapin((vaddr_t)addr, size);
293 	return read(f, addr, size);
294 }
295 
296 static void*
297 mmu_memcpy(void *dst, const void *src, size_t size)
298 {
299 	mmu_mapin((vaddr_t)dst, size);
300 	return memcpy(dst, src, size);
301 }
302 
303 static void*
304 mmu_memset(void *dst, int c, size_t size)
305 {
306 	mmu_mapin((vaddr_t)dst, size);
307 	return memset(dst, c, size);
308 }
309 
310 static void
311 mmu_freeall(void)
312 {
313 	int i;
314 
315 	dtlb_slot = itlb_slot = 0;
316 	for (i = 0; i < MAXSEGNUM; i++) {
317 		/* XXX return all mappings to PROM and unmap the pages! */
318 		kvamap[i].start = kvamap[i].end = 0;
319 	}
320 }
321 
322 /*
323  * Claim requested memory region in OpenFirmware allocation pool.
324  */
325 static int
326 ofw_mapin(vaddr_t rva, vsize_t len)
327 {
328 	vaddr_t va;
329 
330 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
331 	rva &= ~PAGE_MASK_4M;
332 
333 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
334 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
335 			panic("ofw_mapin: Cannot claim memory.");
336 		}
337 		kvamap_enter(va, len);
338 	}
339 
340 	return (0);
341 }
342 
343 static ssize_t
344 ofw_read(int f, void *addr, size_t size)
345 {
346 	ofw_mapin((vaddr_t)addr, size);
347 	return read(f, addr, size);
348 }
349 
350 static void*
351 ofw_memcpy(void *dst, const void *src, size_t size)
352 {
353 	ofw_mapin((vaddr_t)dst, size);
354 	return memcpy(dst, src, size);
355 }
356 
357 static void*
358 ofw_memset(void *dst, int c, size_t size)
359 {
360 	ofw_mapin((vaddr_t)dst, size);
361 	return memset(dst, c, size);
362 }
363 
364 static void
365 ofw_freeall(void)
366 {
367 	int i;
368 
369 	dtlb_slot = itlb_slot = 0;
370 	for (i = 0; i < MAXSEGNUM; i++) {
371 		OF_release((void*)(u_long)kvamap[i].start,
372 				(u_int)(kvamap[i].end - kvamap[i].start));
373 		kvamap[i].start = kvamap[i].end = 0;
374 	}
375 }
376 
377 /*
378  * NOP implementation exists solely for kernel header loading sake. Here
379  * we use alloc() interface to allocate memory and avoid doing some dangerous
380  * things.
381  */
382 static ssize_t
383 nop_read(int f, void *addr, size_t size)
384 {
385 	return read(f, addr, size);
386 }
387 
388 static void*
389 nop_memcpy(void *dst, const void *src, size_t size)
390 {
391 	/*
392 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
393 	 * right after the highest kernel address which will not be mapped with
394 	 * nop_XXX operations.
395 	 */
396 	return (dst);
397 }
398 
399 static void*
400 nop_memset(void *dst, int c, size_t size)
401 {
402 	return memset(dst, c, size);
403 }
404 
405 static void
406 nop_freeall(void)
407 { }
408 
409 /*
410  * loadfile() hooks.
411  */
412 ssize_t
413 sparc64_read(int f, void *addr, size_t size)
414 {
415 	return (*memsw->read)(f, addr, size);
416 }
417 
418 void*
419 sparc64_memcpy(void *dst, const void *src, size_t size)
420 {
421 	return (*memsw->memcpy)(dst, src, size);
422 }
423 
424 void*
425 sparc64_memset(void *dst, int c, size_t size)
426 {
427 	return (*memsw->memset)(dst, c, size);
428 }
429 
430 /*
431  * Remove write permissions from text mappings in the dTLB.
432  * Add entries in the iTLB.
433  */
434 void
435 sparc64_finalize_tlb(u_long data_va)
436 {
437 	int i;
438 	int64_t data;
439 	bool writable_text = false;
440 
441 	for (i = 0; i < dtlb_slot; i++) {
442 		if (dtlb_store[i].te_va >= data_va) {
443 			/*
444 			 * If (for whatever reason) the start of the
445 			 * writable section is right at the start of
446 			 * the kernel, we need to map it into the ITLB
447 			 * nevertheless (and don't make it readonly).
448 			 */
449 			if (i == 0 && dtlb_store[i].te_va == data_va)
450 				writable_text = true;
451 			else
452 				continue;
453 		}
454 
455 		data = TSB_DATA(0,		/* global */
456 				PGSZ_4M,	/* 4mb page */
457 				dtlb_store[i].te_pa,	/* phys.address */
458 				1,		/* privileged */
459 				0,		/* write */
460 				1,		/* cache */
461 				1,		/* alias */
462 				1,		/* valid */
463 				0		/* endianness */
464 				);
465 		data |= TLB_L | TLB_CV; /* locked, virt.cache */
466 		if (!writable_text)
467 			dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
468 		itlb_store[itlb_slot] = dtlb_store[i];
469 		itlb_slot++;
470 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
471 	}
472 	if (writable_text)
473 		printf("WARNING: kernel text mapped writable!\n");
474 }
475 
476 /*
477  * Record kernel mappings in bootinfo structure.
478  */
479 void
480 sparc64_bi_add(void)
481 {
482 	int i;
483 	int itlb_size, dtlb_size;
484 	struct btinfo_count bi_count;
485 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
486 
487 	bi_count.count = itlb_slot;
488 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
489 	bi_count.count = dtlb_slot;
490 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
491 
492 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
493 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
494 
495 	bi_itlb = alloc(itlb_size);
496 	bi_dtlb = alloc(dtlb_size);
497 
498 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
499 		panic("Out of memory in sparc64_bi_add.\n");
500 	}
501 
502 	for (i = 0; i < itlb_slot; i++) {
503 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
504 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
505 	}
506 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
507 
508 	for (i = 0; i < dtlb_slot; i++) {
509 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
510 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
511 	}
512 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
513 }
514 
515 /*
516  * Choose kernel image mapping strategy:
517  *
518  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
519  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
520  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
521  */
522 void
523 loadfile_set_allocator(int type)
524 {
525 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
526 		panic("Bad allocator request.\n");
527 	}
528 
529 	/*
530 	 * Release all memory claimed by previous allocator and schedule
531 	 * another allocator for succeeding memory allocation calls.
532 	 */
533 	(*memsw->freeall)();
534 	memsw = &memswa[type];
535 }
536