xref: /netbsd-src/sys/arch/sparc/stand/ofwboot/loadfile_machdep.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: loadfile_machdep.c,v 1.4 2007/10/17 19:57:16 garbled Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This work is based on the code contributed by Robert Drehmel to the
8  * FreeBSD project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <lib/libsa/stand.h>
40 
41 #include <machine/pte.h>
42 #include <machine/cpu.h>
43 #include <machine/ctlreg.h>
44 #include <machine/vmparam.h>
45 #include <machine/promlib.h>
46 
47 #include "boot.h"
48 #include "openfirm.h"
49 
50 
51 #define MAXSEGNUM	50
52 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
53 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
54 
55 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
56 
57 
58 typedef int phandle_t;
59 
60 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
61 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
62 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
63 extern vaddr_t	itlb_va_to_pa(vaddr_t);
64 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
65 
66 static void	tlb_init(void);
67 
68 static int	mmu_mapin(vaddr_t, vsize_t);
69 static ssize_t	mmu_read(int, void *, size_t);
70 static void*	mmu_memcpy(void *, const void *, size_t);
71 static void*	mmu_memset(void *, int, size_t);
72 static void	mmu_freeall(void);
73 
74 static int	ofw_mapin(vaddr_t, vsize_t);
75 static ssize_t	ofw_read(int, void *, size_t);
76 static void*	ofw_memcpy(void *, const void *, size_t);
77 static void*	ofw_memset(void *, int, size_t);
78 static void	ofw_freeall(void);
79 
80 static int	nop_mapin(vaddr_t, vsize_t);
81 static ssize_t	nop_read(int, void *, size_t);
82 static void*	nop_memcpy(void *, const void *, size_t);
83 static void*	nop_memset(void *, int, size_t);
84 static void	nop_freeall(void);
85 
86 
87 struct tlb_entry *dtlb_store = 0;
88 struct tlb_entry *itlb_store = 0;
89 
90 int dtlb_slot;
91 int itlb_slot;
92 int dtlb_slot_max;
93 int itlb_slot_max;
94 
95 static struct kvamap {
96 	uint64_t start;
97 	uint64_t end;
98 } kvamap[MAXSEGNUM];
99 
100 static struct memsw {
101 	ssize_t	(* read)(int f, void *addr, size_t size);
102 	void*	(* memcpy)(void *dst, const void *src, size_t size);
103 	void*	(* memset)(void *dst, int c, size_t size);
104 	void	(* freeall)(void);
105 } memswa[] = {
106 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
107 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
108 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
109 };
110 
111 static struct memsw *memsw = &memswa[0];
112 
113 
114 /*
115  * Check if a memory region is already mapped. Return length and virtual
116  * address of unmapped sub-region, if any.
117  */
118 static uint64_t
119 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
120 {
121 	int i;
122 
123 	*new_va  = va;
124 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
125 		if (kvamap[i].start == NULL)
126 			break;
127 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
128 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
129 			len = (va_len < len) ? len - va_len : 0;
130 			*new_va = kvamap[i].end;
131 		}
132 	}
133 
134 	return (len);
135 }
136 
137 /*
138  * Record new kernel mapping.
139  */
140 static void
141 kvamap_enter(uint64_t va, uint64_t len)
142 {
143 	int i;
144 
145 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
146 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
147 		if (kvamap[i].start == NULL) {
148 			kvamap[i].start = va;
149 			kvamap[i].end = va + len;
150 			break;
151 		}
152 	}
153 
154 	if (i == MAXSEGNUM) {
155 		panic("Too many allocations requested.");
156 	}
157 }
158 
159 /*
160  * Initialize TLB as required by MMU mapping functions.
161  */
162 static void
163 tlb_init(void)
164 {
165 	phandle_t child;
166 	phandle_t root;
167 	char buf[128];
168 	u_int bootcpu;
169 	u_int cpu;
170 
171 	if (dtlb_store != NULL) {
172 		return;
173 	}
174 
175 	bootcpu = get_cpuid();
176 
177 	if ( (root = prom_findroot()) == -1) {
178 		panic("tlb_init: prom_findroot()");
179 	}
180 
181 	for (child = prom_firstchild(root); child != 0;
182 			child = prom_nextsibling(child)) {
183 		if (child == -1) {
184 			panic("tlb_init: OF_child");
185 		}
186 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
187 		    strcmp(buf, "cpu") == 0) {
188 			if (_prom_getprop(child, "upa-portid", &cpu,
189 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
190 			    &cpu, sizeof(cpu)) == -1)
191 				panic("main: prom_getprop");
192 			if (cpu == bootcpu)
193 				break;
194 		}
195 	}
196 	if (cpu != bootcpu)
197 		panic("init_tlb: no node for bootcpu?!?!");
198 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
199 	    sizeof(dtlb_slot_max)) == -1 ||
200 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
201 	    sizeof(itlb_slot_max)) == -1)
202 		panic("init_tlb: prom_getprop");
203 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
204 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
205 	if (dtlb_store == NULL || itlb_store == NULL) {
206 		panic("init_tlb: malloc");
207 	}
208 
209 	dtlb_slot = itlb_slot = 0;
210 }
211 
212 /*
213  * Map requested memory region with permanent 4MB pages.
214  */
215 static int
216 mmu_mapin(vaddr_t rva, vsize_t len)
217 {
218 	int64_t data;
219 	vaddr_t va, pa, mva;
220 
221 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
222 	rva &= ~PAGE_MASK_4M;
223 
224 	tlb_init();
225 	for (pa = (vaddr_t)-1; len > 0; rva = va) {
226 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
227 			/* The rest is already mapped */
228 			break;
229 		}
230 
231 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
232 		    itlb_va_to_pa(va) == (u_long)-1) {
233 			/* Allocate a physical page, claim the virtual area */
234 			if (pa == (vaddr_t)-1) {
235 				pa = (vaddr_t)OF_alloc_phys(PAGE_SIZE_4M,
236 				    PAGE_SIZE_4M);
237 				if (pa == (vaddr_t)-1)
238 					panic("out of memory");
239 				mva = (vaddr_t)OF_claim_virt(va,
240 				    PAGE_SIZE_4M, 0);
241 				if (mva != va) {
242 					panic("can't claim virtual page "
243 					    "(wanted %#lx, got %#lx)",
244 					    va, mva);
245 				}
246 				/* The mappings may have changed, be paranoid. */
247 				continue;
248 			}
249 
250 			/*
251 			 * Actually, we can only allocate two pages less at
252 			 * most (depending on the kernel TSB size).
253 			 */
254 			if (dtlb_slot >= dtlb_slot_max)
255 				panic("mmu_mapin: out of dtlb_slots");
256 			if (itlb_slot >= itlb_slot_max)
257 				panic("mmu_mapin: out of itlb_slots");
258 
259 			DPRINTF(("mmu_mapin: %p:%p\n", va, pa));
260 
261 			data = TSB_DATA(0,		/* global */
262 					PGSZ_4M,	/* 4mb page */
263 					pa,		/* phys.address */
264 					1,		/* privileged */
265 					1,		/* write */
266 					1,		/* cache */
267 					1,		/* alias */
268 					1,		/* valid */
269 					0		/* endianness */
270 					);
271 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
272 
273 			dtlb_store[dtlb_slot].te_pa = pa;
274 			dtlb_store[dtlb_slot].te_va = va;
275 			dtlb_slot++;
276 			dtlb_enter(va, hi(data), lo(data));
277 			pa = (vaddr_t)-1;
278 		}
279 
280 		kvamap_enter(va, PAGE_SIZE_4M);
281 
282 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
283 		va += PAGE_SIZE_4M;
284 	}
285 
286 	if (pa != (vaddr_t)-1) {
287 		OF_free_phys(pa, PAGE_SIZE_4M);
288 	}
289 
290 	return (0);
291 }
292 
293 static ssize_t
294 mmu_read(int f, void *addr, size_t size)
295 {
296 	mmu_mapin((vaddr_t)addr, size);
297 	return read(f, addr, size);
298 }
299 
300 static void*
301 mmu_memcpy(void *dst, const void *src, size_t size)
302 {
303 	mmu_mapin((vaddr_t)dst, size);
304 	return memcpy(dst, src, size);
305 }
306 
307 static void*
308 mmu_memset(void *dst, int c, size_t size)
309 {
310 	mmu_mapin((vaddr_t)dst, size);
311 	return memset(dst, c, size);
312 }
313 
314 static void
315 mmu_freeall(void)
316 {
317 	int i;
318 
319 	dtlb_slot = itlb_slot = 0;
320 	for (i = 0; i < MAXSEGNUM; i++) {
321 		/* XXX return all mappings to PROM and unmap the pages! */
322 		kvamap[i].start = kvamap[i].end = 0;
323 	}
324 }
325 
326 /*
327  * Claim requested memory region in OpenFirmware allocation pool.
328  */
329 static int
330 ofw_mapin(vaddr_t rva, vsize_t len)
331 {
332 	vaddr_t va;
333 
334 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
335 	rva &= ~PAGE_MASK_4M;
336 
337 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
338 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
339 			panic("ofw_mapin: Cannot claim memory.");
340 		}
341 		kvamap_enter(va, len);
342 	}
343 
344 	return (0);
345 }
346 
347 static ssize_t
348 ofw_read(int f, void *addr, size_t size)
349 {
350 	ofw_mapin((vaddr_t)addr, size);
351 	return read(f, addr, size);
352 }
353 
354 static void*
355 ofw_memcpy(void *dst, const void *src, size_t size)
356 {
357 	ofw_mapin((vaddr_t)dst, size);
358 	return memcpy(dst, src, size);
359 }
360 
361 static void*
362 ofw_memset(void *dst, int c, size_t size)
363 {
364 	ofw_mapin((vaddr_t)dst, size);
365 	return memset(dst, c, size);
366 }
367 
368 static void
369 ofw_freeall(void)
370 {
371 	int i;
372 
373 	dtlb_slot = itlb_slot = 0;
374 	for (i = 0; i < MAXSEGNUM; i++) {
375 		OF_release((void*)(u_long)kvamap[i].start,
376 				(u_int)(kvamap[i].end - kvamap[i].start));
377 		kvamap[i].start = kvamap[i].end = 0;
378 	}
379 }
380 
381 /*
382  * NOP implementation exists solely for kernel header loading sake. Here
383  * we use alloc() interface to allocate memory and avoid doing some dangerous
384  * things.
385  */
386 static ssize_t
387 nop_read(int f, void *addr, size_t size)
388 {
389 	return read(f, addr, size);
390 }
391 
392 static void*
393 nop_memcpy(void *dst, const void *src, size_t size)
394 {
395 	/*
396 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
397 	 * right after the highest kernel address which will not be mapped with
398 	 * nop_XXX operations.
399 	 */
400 	return (dst);
401 }
402 
403 static void*
404 nop_memset(void *dst, int c, size_t size)
405 {
406 	return memset(dst, c, size);
407 }
408 
409 static void
410 nop_freeall(void)
411 { }
412 
413 /*
414  * loadfile() hooks.
415  */
416 ssize_t
417 sparc64_read(int f, void *addr, size_t size)
418 {
419 	return (*memsw->read)(f, addr, size);
420 }
421 
422 void*
423 sparc64_memcpy(void *dst, const void *src, size_t size)
424 {
425 	return (*memsw->memcpy)(dst, src, size);
426 }
427 
428 void*
429 sparc64_memset(void *dst, int c, size_t size)
430 {
431 	return (*memsw->memset)(dst, c, size);
432 }
433 
434 /*
435  * Remove write permissions from text mappings in the dTLB.
436  * Add entries in the iTLB.
437  */
438 void
439 sparc64_finalize_tlb(u_long data_va)
440 {
441 	int i;
442 	int64_t data;
443 
444 	for (i = 0; i < dtlb_slot; i++) {
445 		if (dtlb_store[i].te_va >= data_va)
446 			continue;
447 
448 		data = TSB_DATA(0,		/* global */
449 				PGSZ_4M,	/* 4mb page */
450 				dtlb_store[i].te_pa,	/* phys.address */
451 				1,		/* privileged */
452 				0,		/* write */
453 				1,		/* cache */
454 				1,		/* alias */
455 				1,		/* valid */
456 				0		/* endianness */
457 				);
458 		data |= TLB_L | TLB_CV; /* locked, virt.cache */
459 		dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
460 		itlb_store[itlb_slot] = dtlb_store[i];
461 		itlb_slot++;
462 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
463 	}
464 }
465 
466 /*
467  * Record kernel mappings in bootinfo structure.
468  */
469 void
470 sparc64_bi_add(void)
471 {
472 	int i;
473 	int itlb_size, dtlb_size;
474 	struct btinfo_count bi_count;
475 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
476 
477 	bi_count.count = itlb_slot;
478 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
479 	bi_count.count = dtlb_slot;
480 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
481 
482 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
483 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
484 
485 	bi_itlb = alloc(itlb_size);
486 	bi_dtlb = alloc(dtlb_size);
487 
488 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
489 		panic("Out of memory in sparc64_bi_add.\n");
490 	}
491 
492 	for (i = 0; i < itlb_slot; i++) {
493 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
494 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
495 	}
496 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
497 
498 	for (i = 0; i < dtlb_slot; i++) {
499 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
500 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
501 	}
502 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
503 }
504 
505 /*
506  * Choose kernel image mapping strategy:
507  *
508  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
509  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
510  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
511  */
512 void
513 loadfile_set_allocator(int type)
514 {
515 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
516 		panic("Bad allocator request.\n");
517 	}
518 
519 	/*
520 	 * Release all memory claimed by previous allocator and schedule
521 	 * another allocator for succeeding memory allocation calls.
522 	 */
523 	(*memsw->freeall)();
524 	memsw = &memswa[type];
525 }
526