xref: /netbsd-src/sys/arch/sparc/sparc/vm_machdep.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: vm_machdep.c,v 1.74 2003/06/23 11:01:42 martin Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  *	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *	This product includes software developed by Harvard University.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by Harvard University.
30  *	This product includes software developed by the University of
31  *	California, Berkeley and its contributors.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	@(#)vm_machdep.c	8.2 (Berkeley) 9/23/93
49  */
50 
51 #include "opt_multiprocessor.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/proc.h>
56 #include <sys/user.h>
57 #include <sys/core.h>
58 #include <sys/malloc.h>
59 #include <sys/buf.h>
60 #include <sys/exec.h>
61 #include <sys/vnode.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/frame.h>
67 #include <machine/trap.h>
68 
69 #include <sparc/sparc/cpuvar.h>
70 
71 /*
72  * Move pages from one kernel virtual address to another.
73  */
74 void
75 pagemove(from, to, size)
76 	caddr_t from, to;
77 	size_t size;
78 {
79 	paddr_t pa;
80 
81 	if (size & PGOFSET || (int)from & PGOFSET || (int)to & PGOFSET)
82 		panic("pagemove 1");
83 	while (size > 0) {
84 		if (pmap_extract(pmap_kernel(), (vaddr_t)from, &pa) == FALSE)
85 			panic("pagemove 2");
86 		pmap_kremove((vaddr_t)from, PAGE_SIZE);
87 		pmap_kenter_pa((vaddr_t)to, pa, VM_PROT_READ | VM_PROT_WRITE);
88 		from += PAGE_SIZE;
89 		to += PAGE_SIZE;
90 		size -= PAGE_SIZE;
91 	}
92 	pmap_update(pmap_kernel());
93 }
94 
95 
96 /*
97  * Map a user I/O request into kernel virtual address space.
98  * Note: the pages are already locked by uvm_vslock(), so we
99  * do not need to pass an access_type to pmap_enter().
100  */
101 void
102 vmapbuf(bp, len)
103 	struct buf *bp;
104 	vsize_t len;
105 {
106 	struct pmap *upmap, *kpmap;
107 	vaddr_t uva;	/* User VA (map from) */
108 	vaddr_t kva;	/* Kernel VA (new to) */
109 	paddr_t pa; 	/* physical address */
110 	vsize_t off;
111 
112 	if ((bp->b_flags & B_PHYS) == 0)
113 		panic("vmapbuf");
114 
115 	/*
116 	 * XXX:  It might be better to round/trunc to a
117 	 * segment boundary to avoid VAC problems!
118 	 */
119 	bp->b_saveaddr = bp->b_data;
120 	uva = trunc_page((vaddr_t)bp->b_data);
121 	off = (vaddr_t)bp->b_data - uva;
122 	len = round_page(off + len);
123 	kva = uvm_km_valloc_wait(kernel_map, len);
124 	bp->b_data = (caddr_t)(kva + off);
125 
126 	/*
127 	 * We have to flush any write-back cache on the
128 	 * user-space mappings so our new mappings will
129 	 * have the correct contents.
130 	 */
131 	if (CACHEINFO.c_vactype != VAC_NONE)
132 		cache_flush((caddr_t)uva, len);
133 
134 	upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
135 	kpmap = vm_map_pmap(kernel_map);
136 	do {
137 		if (pmap_extract(upmap, uva, &pa) == FALSE)
138 			panic("vmapbuf: null page frame");
139 		/* Now map the page into kernel space. */
140 		pmap_enter(kpmap, kva, pa,
141 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
142 		uva += PAGE_SIZE;
143 		kva += PAGE_SIZE;
144 		len -= PAGE_SIZE;
145 	} while (len);
146 	pmap_update(kpmap);
147 }
148 
149 /*
150  * Unmap a previously-mapped user I/O request.
151  */
152 void
153 vunmapbuf(bp, len)
154 	struct buf *bp;
155 	vsize_t len;
156 {
157 	vaddr_t kva;
158 	vsize_t off;
159 
160 	if ((bp->b_flags & B_PHYS) == 0)
161 		panic("vunmapbuf");
162 
163 	kva = trunc_page((vaddr_t)bp->b_data);
164 	off = (vaddr_t)bp->b_data - kva;
165 	len = round_page(off + len);
166 	pmap_remove(vm_map_pmap(kernel_map), kva, kva + len);
167 	pmap_update(vm_map_pmap(kernel_map));
168 	uvm_km_free_wakeup(kernel_map, kva, len);
169 	bp->b_data = bp->b_saveaddr;
170 	bp->b_saveaddr = NULL;
171 
172 #if 0	/* XXX: The flush above is sufficient, right? */
173 	if (CACHEINFO.c_vactype != VAC_NONE)
174 		cpuinfo.cache_flush(bp->b_data, len);
175 #endif
176 }
177 
178 
179 /*
180  * The offset of the topmost frame in the kernel stack.
181  */
182 #define	TOPFRAMEOFF (USPACE-sizeof(struct trapframe)-sizeof(struct frame))
183 
184 /*
185  * Finish a fork operation, with process l2 nearly set up.
186  * Copy and update the pcb and trap frame, making the child ready to run.
187  *
188  * Rig the child's kernel stack so that it will start out in
189  * proc_trampoline() and call child_return() with l2 as an
190  * argument. This causes the newly-created child process to go
191  * directly to user level with an apparent return value of 0 from
192  * fork(), while the parent process returns normally.
193  *
194  * l1 is the process being forked; if l1 == &lwp0, we are creating
195  * a kernel thread, and the return path and argument are specified with
196  * `func' and `arg'.
197  *
198  * If an alternate user-level stack is requested (with non-zero values
199  * in both the stack and stacksize args), set up the user stack pointer
200  * accordingly.
201  */
202 void
203 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg)
204 	struct lwp *l1, *l2;
205 	void *stack;
206 	size_t stacksize;
207 	void (*func) __P((void *));
208 	void *arg;
209 {
210 	struct pcb *opcb = &l1->l_addr->u_pcb;
211 	struct pcb *npcb = &l2->l_addr->u_pcb;
212 	struct trapframe *tf2;
213 	struct rwindow *rp;
214 
215 	/*
216 	 * Save all user registers to l1's stack or, in the case of
217 	 * user registers and invalid stack pointers, to opcb.
218 	 * We then copy the whole pcb to p2; when switch() selects p2
219 	 * to run, it will run at the `proc_trampoline' stub, rather
220 	 * than returning at the copying code below.
221 	 *
222 	 * If process l1 has an FPU state, we must copy it.  If it is
223 	 * the FPU user, we must save the FPU state first.
224 	 */
225 
226 	if (l1 == curlwp) {
227 		write_user_windows();
228 		opcb->pcb_psr = getpsr();
229 	}
230 #ifdef DIAGNOSTIC
231 	else if (l1 != &lwp0)
232 		panic("cpu_lwp_fork: curlwp");
233 #endif
234 
235 	bcopy((caddr_t)opcb, (caddr_t)npcb, sizeof(struct pcb));
236 	if (l1->l_md.md_fpstate != NULL) {
237 		struct cpu_info *cpi;
238 		int s;
239 
240 		l2->l_md.md_fpstate = malloc(sizeof(struct fpstate),
241 		    M_SUBPROC, M_WAITOK);
242 
243 		FPU_LOCK(s);
244 		if ((cpi = l1->l_md.md_fpu) != NULL) {
245 			if (cpi->fplwp != l1)
246 				panic("FPU(%d): fplwp %p",
247 					cpi->ci_cpuid, cpi->fplwp);
248 			if (l1 == cpuinfo.fplwp)
249 				savefpstate(l1->l_md.md_fpstate);
250 #if defined(MULTIPROCESSOR)
251 			else
252 				XCALL1(savefpstate, l1->l_md.md_fpstate,
253 					1 << cpi->ci_cpuid);
254 #endif
255 		}
256 		bcopy(l1->l_md.md_fpstate, l2->l_md.md_fpstate,
257 		    sizeof(struct fpstate));
258 		FPU_UNLOCK(s);
259 	} else
260 		l2->l_md.md_fpstate = NULL;
261 
262 	l2->l_md.md_fpu = NULL;
263 
264 	/*
265 	 * Setup (kernel) stack frame that will by-pass the child
266 	 * out of the kernel. (The trap frame invariably resides at
267 	 * the tippity-top of the u. area.)
268 	 */
269 	tf2 = l2->l_md.md_tf = (struct trapframe *)
270 			((int)npcb + USPACE - sizeof(*tf2));
271 
272 	/* Copy parent's trapframe */
273 	*tf2 = *(struct trapframe *)((int)opcb + USPACE - sizeof(*tf2));
274 
275 	/*
276 	 * If specified, give the child a different stack.
277 	 */
278 	if (stack != NULL)
279 		tf2->tf_out[6] = (u_int)stack + stacksize;
280 
281 	/*
282 	 * The fork system call always uses the old system call
283 	 * convention; clear carry and skip trap instruction as
284 	 * in syscall().
285 	 * note: proc_trampoline() sets a fresh psr when returning
286 	 * to user mode.
287 	 */
288 	/*tf2->tf_psr &= ~PSR_C;   -* success */
289 	tf2->tf_pc = tf2->tf_npc;
290 	tf2->tf_npc = tf2->tf_pc + 4;
291 
292 	/* Set return values in child mode */
293 	tf2->tf_out[0] = 0;
294 	tf2->tf_out[1] = 1;
295 
296 	/* Construct kernel frame to return to in cpu_switch() */
297 	rp = (struct rwindow *)((u_int)npcb + TOPFRAMEOFF);
298 	rp->rw_local[0] = (int)func;		/* Function to call */
299 	rp->rw_local[1] = (int)arg;		/* and its argument */
300 
301 	npcb->pcb_pc = (int)proc_trampoline - 8;
302 	npcb->pcb_sp = (int)rp;
303 	npcb->pcb_psr &= ~PSR_CWP;	/* Run in window #0 */
304 	npcb->pcb_wim = 1;		/* Fence at window #1 */
305 }
306 
307 /*
308  * cpu_exit is called as the last action during exit.
309  *
310  * We clean up the FPU state and then call switchexit() with the old proc
311  * as an argument.  switchexit() switches to the idle context, schedules
312  * the old vmspace and stack to be freed, then selects a new process to
313  * run.
314  *
315  * If proc==0, we're an exiting lwp and arrange to call lwp_exit2() instead
316  * of exit2().
317  */
318 void
319 cpu_exit(l, proc)
320 	struct lwp *l;
321 	int proc;
322 {
323 	struct fpstate *fs;
324 
325 	if ((fs = l->l_md.md_fpstate) != NULL) {
326 		struct cpu_info *cpi;
327 		int s;
328 
329 		FPU_LOCK(s);
330 		if ((cpi = l->l_md.md_fpu) != NULL) {
331 			if (cpi->fplwp != l)
332 				panic("FPU(%d): fplwp %p",
333 					cpi->ci_cpuid, cpi->fplwp);
334 			if (l == cpuinfo.fplwp)
335 				savefpstate(fs);
336 #if defined(MULTIPROCESSOR)
337 			else
338 				XCALL1(savefpstate, fs, 1 << cpi->ci_cpuid);
339 #endif
340 			cpi->fplwp = NULL;
341 		}
342 		l->l_md.md_fpu = NULL;
343 		FPU_UNLOCK(s);
344 		l->l_md.md_fpstate = NULL;
345 		free((void *)fs, M_SUBPROC);
346 	}
347 	switchexit(l, proc ? exit2 : lwp_exit2);
348 	/* NOTREACHED */
349 }
350 
351 void
352 cpu_setfunc(l, func, arg)
353 	struct lwp *l;
354 	void (*func) __P((void *));
355 	void *arg;
356 {
357 	struct pcb *pcb = &l->l_addr->u_pcb;
358 	/*struct trapframe *tf = l->l_md.md_tf;*/
359 	struct rwindow *rp;
360 
361 	/* Construct kernel frame to return to in cpu_switch() */
362 	rp = (struct rwindow *)((u_int)pcb + TOPFRAMEOFF);
363 	rp->rw_local[0] = (int)func;		/* Function to call */
364 	rp->rw_local[1] = (int)arg;		/* and its argument */
365 
366 	pcb->pcb_pc = (int)proc_trampoline - 8;
367 	pcb->pcb_sp = (int)rp;
368 	pcb->pcb_psr &= ~PSR_CWP;	/* Run in window #0 */
369 	pcb->pcb_wim = 1;		/* Fence at window #1 */
370 }
371 
372 /*
373  * cpu_coredump is called to write a core dump header.
374  * (should this be defined elsewhere?  machdep.c?)
375  */
376 int
377 cpu_coredump(l, vp, cred, chdr)
378 	struct lwp *l;
379 	struct vnode *vp;
380 	struct ucred *cred;
381 	struct core *chdr;
382 {
383 	int error;
384 	struct md_coredump md_core;
385 	struct coreseg cseg;
386 	struct proc *p;
387 
388 	p = l->l_proc;
389 
390 	CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
391 	chdr->c_hdrsize = ALIGN(sizeof(*chdr));
392 	chdr->c_seghdrsize = ALIGN(sizeof(cseg));
393 	chdr->c_cpusize = sizeof(md_core);
394 
395 	md_core.md_tf = *l->l_md.md_tf;
396 	if (l->l_md.md_fpstate) {
397 		if (l == cpuinfo.fplwp)
398 			savefpstate(l->l_md.md_fpstate);
399 		md_core.md_fpstate = *l->l_md.md_fpstate;
400 	} else
401 		bzero((caddr_t)&md_core.md_fpstate, sizeof(struct fpstate));
402 
403 	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
404 	cseg.c_addr = 0;
405 	cseg.c_size = chdr->c_cpusize;
406 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
407 	    (off_t)chdr->c_hdrsize, UIO_SYSSPACE,
408 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
409 	if (error)
410 		return error;
411 
412 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
413 	    (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
414 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
415 	if (!error)
416 		chdr->c_nseg++;
417 
418 	return error;
419 }
420