xref: /netbsd-src/sys/arch/sparc/sparc/vm_machdep.c (revision 4b896b232495b7a9b8b94a1cf1e21873296d53b8)
1 /*	$NetBSD: vm_machdep.c,v 1.79 2004/05/02 11:22:07 pk Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  *	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *	This product includes software developed by Harvard University.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by Harvard University.
30  *	This product includes software developed by the University of
31  *	California, Berkeley and its contributors.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	@(#)vm_machdep.c	8.2 (Berkeley) 9/23/93
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: vm_machdep.c,v 1.79 2004/05/02 11:22:07 pk Exp $");
53 
54 #include "opt_multiprocessor.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/core.h>
61 #include <sys/malloc.h>
62 #include <sys/buf.h>
63 #include <sys/exec.h>
64 #include <sys/vnode.h>
65 
66 #include <uvm/uvm_extern.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/frame.h>
70 #include <machine/trap.h>
71 
72 #include <sparc/sparc/cpuvar.h>
73 
74 /*
75  * Move pages from one kernel virtual address to another.
76  */
77 void
78 pagemove(from, to, size)
79 	caddr_t from, to;
80 	size_t size;
81 {
82 	paddr_t pa;
83 
84 	if (size & PGOFSET || (int)from & PGOFSET || (int)to & PGOFSET)
85 		panic("pagemove 1");
86 	while (size > 0) {
87 		if (pmap_extract(pmap_kernel(), (vaddr_t)from, &pa) == FALSE)
88 			panic("pagemove 2");
89 		pmap_kremove((vaddr_t)from, PAGE_SIZE);
90 		pmap_kenter_pa((vaddr_t)to, pa, VM_PROT_READ | VM_PROT_WRITE);
91 		from += PAGE_SIZE;
92 		to += PAGE_SIZE;
93 		size -= PAGE_SIZE;
94 	}
95 	pmap_update(pmap_kernel());
96 }
97 
98 
99 /*
100  * Map a user I/O request into kernel virtual address space.
101  * Note: the pages are already locked by uvm_vslock(), so we
102  * do not need to pass an access_type to pmap_enter().
103  */
104 void
105 vmapbuf(bp, len)
106 	struct buf *bp;
107 	vsize_t len;
108 {
109 	struct pmap *upmap, *kpmap;
110 	vaddr_t uva;	/* User VA (map from) */
111 	vaddr_t kva;	/* Kernel VA (new to) */
112 	paddr_t pa; 	/* physical address */
113 	vsize_t off;
114 
115 	if ((bp->b_flags & B_PHYS) == 0)
116 		panic("vmapbuf");
117 
118 	/*
119 	 * XXX:  It might be better to round/trunc to a
120 	 * segment boundary to avoid VAC problems!
121 	 */
122 	bp->b_saveaddr = bp->b_data;
123 	uva = trunc_page((vaddr_t)bp->b_data);
124 	off = (vaddr_t)bp->b_data - uva;
125 	len = round_page(off + len);
126 	kva = uvm_km_valloc_wait(kernel_map, len);
127 	bp->b_data = (caddr_t)(kva + off);
128 
129 	/*
130 	 * We have to flush any write-back cache on the
131 	 * user-space mappings so our new mappings will
132 	 * have the correct contents.
133 	 */
134 	if (CACHEINFO.c_vactype != VAC_NONE)
135 		cache_flush((caddr_t)uva, len);
136 
137 	upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
138 	kpmap = vm_map_pmap(kernel_map);
139 	do {
140 		if (pmap_extract(upmap, uva, &pa) == FALSE)
141 			panic("vmapbuf: null page frame");
142 		/* Now map the page into kernel space. */
143 		pmap_enter(kpmap, kva, pa,
144 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
145 		uva += PAGE_SIZE;
146 		kva += PAGE_SIZE;
147 		len -= PAGE_SIZE;
148 	} while (len);
149 	pmap_update(kpmap);
150 }
151 
152 /*
153  * Unmap a previously-mapped user I/O request.
154  */
155 void
156 vunmapbuf(bp, len)
157 	struct buf *bp;
158 	vsize_t len;
159 {
160 	vaddr_t kva;
161 	vsize_t off;
162 
163 	if ((bp->b_flags & B_PHYS) == 0)
164 		panic("vunmapbuf");
165 
166 	kva = trunc_page((vaddr_t)bp->b_data);
167 	off = (vaddr_t)bp->b_data - kva;
168 	len = round_page(off + len);
169 	pmap_remove(vm_map_pmap(kernel_map), kva, kva + len);
170 	pmap_update(vm_map_pmap(kernel_map));
171 	uvm_km_free_wakeup(kernel_map, kva, len);
172 	bp->b_data = bp->b_saveaddr;
173 	bp->b_saveaddr = NULL;
174 
175 #if 0	/* XXX: The flush above is sufficient, right? */
176 	if (CACHEINFO.c_vactype != VAC_NONE)
177 		cpuinfo.cache_flush(bp->b_data, len);
178 #endif
179 }
180 
181 
182 /*
183  * The offset of the topmost frame in the kernel stack.
184  */
185 #define	TOPFRAMEOFF (USPACE-sizeof(struct trapframe)-sizeof(struct frame))
186 
187 /*
188  * Finish a fork operation, with process l2 nearly set up.
189  * Copy and update the pcb and trap frame, making the child ready to run.
190  *
191  * Rig the child's kernel stack so that it will start out in
192  * proc_trampoline() and call child_return() with l2 as an
193  * argument. This causes the newly-created child process to go
194  * directly to user level with an apparent return value of 0 from
195  * fork(), while the parent process returns normally.
196  *
197  * l1 is the process being forked; if l1 == &lwp0, we are creating
198  * a kernel thread, and the return path and argument are specified with
199  * `func' and `arg'.
200  *
201  * If an alternate user-level stack is requested (with non-zero values
202  * in both the stack and stacksize args), set up the user stack pointer
203  * accordingly.
204  */
205 void
206 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg)
207 	struct lwp *l1, *l2;
208 	void *stack;
209 	size_t stacksize;
210 	void (*func) __P((void *));
211 	void *arg;
212 {
213 	struct pcb *opcb = &l1->l_addr->u_pcb;
214 	struct pcb *npcb = &l2->l_addr->u_pcb;
215 	struct trapframe *tf2;
216 	struct rwindow *rp;
217 
218 	/*
219 	 * Save all user registers to l1's stack or, in the case of
220 	 * user registers and invalid stack pointers, to opcb.
221 	 * We then copy the whole pcb to p2; when switch() selects p2
222 	 * to run, it will run at the `proc_trampoline' stub, rather
223 	 * than returning at the copying code below.
224 	 *
225 	 * If process l1 has an FPU state, we must copy it.  If it is
226 	 * the FPU user, we must save the FPU state first.
227 	 */
228 
229 	if (l1 == curlwp) {
230 		write_user_windows();
231 		opcb->pcb_psr = getpsr();
232 	}
233 #ifdef DIAGNOSTIC
234 	else if (l1 != &lwp0)
235 		panic("cpu_lwp_fork: curlwp");
236 #endif
237 
238 	bcopy((caddr_t)opcb, (caddr_t)npcb, sizeof(struct pcb));
239 	if (l1->l_md.md_fpstate != NULL) {
240 		struct cpu_info *cpi;
241 		int s;
242 
243 		l2->l_md.md_fpstate = malloc(sizeof(struct fpstate),
244 		    M_SUBPROC, M_WAITOK);
245 
246 		FPU_LOCK(s);
247 		if ((cpi = l1->l_md.md_fpu) != NULL) {
248 			if (cpi->fplwp != l1)
249 				panic("FPU(%d): fplwp %p",
250 					cpi->ci_cpuid, cpi->fplwp);
251 			if (l1 == cpuinfo.fplwp)
252 				savefpstate(l1->l_md.md_fpstate);
253 #if defined(MULTIPROCESSOR)
254 			else
255 				XCALL1(savefpstate, l1->l_md.md_fpstate,
256 					1 << cpi->ci_cpuid);
257 #endif
258 		}
259 		bcopy(l1->l_md.md_fpstate, l2->l_md.md_fpstate,
260 		    sizeof(struct fpstate));
261 		FPU_UNLOCK(s);
262 	} else
263 		l2->l_md.md_fpstate = NULL;
264 
265 	l2->l_md.md_fpu = NULL;
266 
267 	/*
268 	 * Setup (kernel) stack frame that will by-pass the child
269 	 * out of the kernel. (The trap frame invariably resides at
270 	 * the tippity-top of the u. area.)
271 	 */
272 	tf2 = l2->l_md.md_tf = (struct trapframe *)
273 			((int)npcb + USPACE - sizeof(*tf2));
274 
275 	/* Copy parent's trapframe */
276 	*tf2 = *(struct trapframe *)((int)opcb + USPACE - sizeof(*tf2));
277 
278 	/*
279 	 * If specified, give the child a different stack.
280 	 */
281 	if (stack != NULL)
282 		tf2->tf_out[6] = (u_int)stack + stacksize;
283 
284 	/*
285 	 * The fork system call always uses the old system call
286 	 * convention; clear carry and skip trap instruction as
287 	 * in syscall().
288 	 * note: proc_trampoline() sets a fresh psr when returning
289 	 * to user mode.
290 	 */
291 	/*tf2->tf_psr &= ~PSR_C;   -* success */
292 	tf2->tf_pc = tf2->tf_npc;
293 	tf2->tf_npc = tf2->tf_pc + 4;
294 
295 	/* Set return values in child mode */
296 	tf2->tf_out[0] = 0;
297 	tf2->tf_out[1] = 1;
298 
299 	/* Construct kernel frame to return to in cpu_switch() */
300 	rp = (struct rwindow *)((u_int)npcb + TOPFRAMEOFF);
301 	rp->rw_local[0] = (int)func;		/* Function to call */
302 	rp->rw_local[1] = (int)arg;		/* and its argument */
303 
304 	npcb->pcb_pc = (int)proc_trampoline - 8;
305 	npcb->pcb_sp = (int)rp;
306 	npcb->pcb_psr &= ~PSR_CWP;	/* Run in window #0 */
307 	npcb->pcb_wim = 1;		/* Fence at window #1 */
308 }
309 
310 /*
311  * Cleanup FPU state.
312  */
313 void
314 cpu_lwp_free(struct lwp *l, int proc)
315 {
316 	struct fpstate *fs;
317 
318 	if ((fs = l->l_md.md_fpstate) != NULL) {
319 		struct cpu_info *cpi;
320 		int s;
321 
322 		FPU_LOCK(s);
323 		if ((cpi = l->l_md.md_fpu) != NULL) {
324 			if (cpi->fplwp != l)
325 				panic("FPU(%d): fplwp %p",
326 					cpi->ci_cpuid, cpi->fplwp);
327 			if (l == cpuinfo.fplwp)
328 				savefpstate(fs);
329 #if defined(MULTIPROCESSOR)
330 			else
331 				XCALL1(savefpstate, fs, 1 << cpi->ci_cpuid);
332 #endif
333 			cpi->fplwp = NULL;
334 		}
335 		l->l_md.md_fpu = NULL;
336 		FPU_UNLOCK(s);
337 		l->l_md.md_fpstate = NULL;
338 		free((void *)fs, M_SUBPROC);
339 	}
340 }
341 
342 void
343 cpu_setfunc(l, func, arg)
344 	struct lwp *l;
345 	void (*func) __P((void *));
346 	void *arg;
347 {
348 	struct pcb *pcb = &l->l_addr->u_pcb;
349 	/*struct trapframe *tf = l->l_md.md_tf;*/
350 	struct rwindow *rp;
351 
352 	/* Construct kernel frame to return to in cpu_switch() */
353 	rp = (struct rwindow *)((u_int)pcb + TOPFRAMEOFF);
354 	rp->rw_local[0] = (int)func;		/* Function to call */
355 	rp->rw_local[1] = (int)arg;		/* and its argument */
356 
357 	pcb->pcb_pc = (int)proc_trampoline - 8;
358 	pcb->pcb_sp = (int)rp;
359 	pcb->pcb_psr &= ~PSR_CWP;	/* Run in window #0 */
360 	pcb->pcb_wim = 1;		/* Fence at window #1 */
361 }
362 
363 /*
364  * cpu_coredump is called to write a core dump header.
365  * (should this be defined elsewhere?  machdep.c?)
366  */
367 int
368 cpu_coredump(l, vp, cred, chdr)
369 	struct lwp *l;
370 	struct vnode *vp;
371 	struct ucred *cred;
372 	struct core *chdr;
373 {
374 	int error;
375 	struct md_coredump md_core;
376 	struct coreseg cseg;
377 	struct proc *p;
378 
379 	p = l->l_proc;
380 
381 	CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
382 	chdr->c_hdrsize = ALIGN(sizeof(*chdr));
383 	chdr->c_seghdrsize = ALIGN(sizeof(cseg));
384 	chdr->c_cpusize = sizeof(md_core);
385 
386 	md_core.md_tf = *l->l_md.md_tf;
387 	if (l->l_md.md_fpstate) {
388 		if (l == cpuinfo.fplwp)
389 			savefpstate(l->l_md.md_fpstate);
390 		md_core.md_fpstate = *l->l_md.md_fpstate;
391 	} else
392 		bzero((caddr_t)&md_core.md_fpstate, sizeof(struct fpstate));
393 
394 	CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
395 	cseg.c_addr = 0;
396 	cseg.c_size = chdr->c_cpusize;
397 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
398 	    (off_t)chdr->c_hdrsize, UIO_SYSSPACE,
399 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
400 	if (error)
401 		return error;
402 
403 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
404 	    (off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
405 	    IO_NODELOCKED|IO_UNIT, cred, NULL, p);
406 	if (!error)
407 		chdr->c_nseg++;
408 
409 	return error;
410 }
411