xref: /netbsd-src/sys/arch/sparc/include/pmap.h (revision fdecd6a253f999ae92b139670d9e15cc9df4497c)
1 /*	$NetBSD: pmap.h,v 1.29 1997/07/06 23:57:16 pk Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  * 	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by Aaron Brown and
16  *	Harvard University.
17  *	This product includes software developed by the University of
18  *	California, Lawrence Berkeley Laboratory.
19  *
20  * @InsertRedistribution@
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Aaron Brown and
24  *	Harvard University.
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	@(#)pmap.h	8.1 (Berkeley) 6/11/93
44  */
45 
46 #ifndef	_SPARC_PMAP_H_
47 #define _SPARC_PMAP_H_
48 
49 #include <machine/pte.h>
50 
51 /*
52  * Pmap structure.
53  *
54  * The pmap structure really comes in two variants, one---a single
55  * instance---for kernel virtual memory and the other---up to nproc
56  * instances---for user virtual memory.  Unfortunately, we have to mash
57  * both into the same structure.  Fortunately, they are almost the same.
58  *
59  * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
60  * some of this is not actually used).  Kernel space, including DVMA
61  * space (for now?), is mapped identically into all user contexts.
62  * There is no point in duplicating this mapping in each user process
63  * so they do not appear in the user structures.
64  *
65  * User space begins at 0x00000000 and runs through 0x1fffffff,
66  * then has a `hole', then resumes at 0xe0000000 and runs until it
67  * hits the kernel space at 0xf8000000.  This can be mapped
68  * contiguously by ignorning the top two bits and pretending the
69  * space goes from 0 to 37ffffff.  Typically the lower range is
70  * used for text+data and the upper for stack, but the code here
71  * makes no such distinction.
72  *
73  * Since each virtual segment covers 256 kbytes, the user space
74  * requires 3584 segments, while the kernel (including DVMA) requires
75  * only 512 segments.
76  *
77  *
78  ** FOR THE SUN4/SUN4C
79  *
80  * The segment map entry for virtual segment vseg is offset in
81  * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
82  * NUSEG if it is.  We keep a pointer called pmap->pm_segmap
83  * pre-offset by this value.  pmap->pm_segmap thus contains the
84  * values to be loaded into the user portion of the hardware segment
85  * map so as to reach the proper PMEGs within the MMU.  The kernel
86  * mappings are `set early' and are always valid in every context
87  * (every change is always propagated immediately).
88  *
89  * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
90  * taken away from context `c', the pmap for context c has its
91  * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
92  * map entry is also made invalid at the same time).  Thus
93  * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
94  * the corresponding PTEs are not actually in the MMU.  On the other
95  * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
96  * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
97  * must be loaded in the MMU in order to reach those pages.
98  * pm_npte[vseg] counts the number of valid pages in each vseg.
99  *
100  * XXX performance: faster to count valid bits?
101  *
102  * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
103  * allocate a new virtual segment.  Since kernel mappings are never
104  * `stolen' out of the the MMU, we just keep all its PTEs there, and
105  * have no software copies.  Its mmu entries are nonetheless kept on lists
106  * so that the code that fiddles with mmu lists has something to fiddle.
107  *
108  ** FOR THE SUN4M
109  *
110  * On this architecture, the virtual-to-physical translation (page) tables
111  * are *not* stored within the MMU as they are in the earlier Sun architect-
112  * ures; instead, they are maintained entirely within physical memory (there
113  * is a TLB cache to prevent the high performance hit from keeping all page
114  * tables in core). Thus there is no need to dynamically allocate PMEGs or
115  * SMEGs; only contexts must be shared.
116  *
117  * We maintain two parallel sets of tables: one is the actual MMU-edible
118  * hierarchy of page tables in allocated kernel memory; these tables refer
119  * to each other by physical address pointers in SRMMU format (thus they
120  * are not very useful to the kernel's management routines). The other set
121  * of tables is similar to those used for the Sun4/100's 3-level MMU; it
122  * is a hierarchy of regmap and segmap structures which contain kernel virtual
123  * pointers to each other. These must (unfortunately) be kept in sync.
124  *
125  */
126 #define NKREG	((int)((-(unsigned)KERNBASE) / NBPRG))	/* i.e., 8 */
127 #define NUREG	(256 - NKREG)				/* i.e., 248 */
128 
129 TAILQ_HEAD(mmuhd,mmuentry);
130 
131 /*
132  * data appearing in both user and kernel pmaps
133  *
134  * note: if we want the same binaries to work on the 4/4c and 4m, we have to
135  *       include the fields for both to make sure that the struct kproc
136  * 	 is the same size.
137  */
138 struct pmap {
139 	union	ctxinfo *pm_ctx;	/* current context, if any */
140 	int	pm_ctxnum;		/* current context's number */
141 #if defined(LOCKDEBUG) || NCPUS > 1
142 	simple_lock_data_t pm_lock;	/* spinlock */
143 #endif
144 	int	pm_refcount;		/* just what it says */
145 
146 	struct mmuhd	pm_reglist;	/* MMU regions on this pmap (4/4c) */
147 	struct mmuhd	pm_seglist;	/* MMU segments on this pmap (4/4c) */
148 
149 	void		*pm_regstore;
150 	struct regmap	*pm_regmap;
151 
152 	int		*pm_reg_ptps;	/* SRMMU-edible region table for 4m */
153 	int		pm_reg_ptps_pa;	/* _Physical_ address of pm_reg_ptps */
154 
155 	int		pm_gap_start;	/* Starting with this vreg there's */
156 	int		pm_gap_end;	/* no valid mapping until here */
157 
158 	struct pmap_statistics	pm_stats;	/* pmap statistics */
159 };
160 
161 struct regmap {
162 	struct segmap	*rg_segmap;	/* point to NSGPRG PMEGs */
163 	int		*rg_seg_ptps; 	/* SRMMU-edible segment tables (NULL
164 					 * indicates invalid region (4m) */
165 	smeg_t		rg_smeg;	/* the MMU region number (4c) */
166 	u_char		rg_nsegmap;	/* number of valid PMEGS */
167 };
168 
169 struct segmap {
170 	int	*sg_pte;		/* points to NPTESG PTEs */
171 	pmeg_t	sg_pmeg;		/* the MMU segment number (4c) */
172 	u_char	sg_npte;		/* number of valid PTEs per seg */
173 };
174 
175 typedef struct pmap *pmap_t;
176 
177 #if 0
178 struct kvm_cpustate {
179 	int		kvm_npmemarr;
180 	struct memarr	kvm_pmemarr[MA_SIZE];
181 	int		kvm_seginval;			/* [4,4c] */
182 	struct segmap	kvm_segmap_store[NKREG*NSEGRG];	/* [4,4c] */
183 }/*not yet used*/;
184 #endif
185 
186 #ifdef _KERNEL
187 
188 #define PMAP_NULL	((pmap_t)0)
189 
190 extern struct pmap	kernel_pmap_store;
191 extern vm_offset_t	vm_first_phys, vm_num_phys;
192 
193 /*
194  * Since PTEs also contain type bits, we have to have some way
195  * to tell pmap_enter `this is an IO page' or `this is not to
196  * be cached'.  Since physical addresses are always aligned, we
197  * can do this with the low order bits.
198  *
199  * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
200  * exactly the PG_NC and PG_TYPE bits.
201  */
202 #define	PMAP_OBIO	1		/* tells pmap_enter to use PG_OBIO */
203 #define	PMAP_VME16	2		/* etc */
204 #define	PMAP_VME32	3		/* etc */
205 #define	PMAP_NC		4		/* tells pmap_enter to set PG_NC */
206 #define	PMAP_TNC_4	7		/* mask to get PG_TYPE & PG_NC */
207 
208 #define PMAP_T2PTE_4(x)		(((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
209 #define PMAP_IOENC_4(io)	(io)
210 
211 /*
212  * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
213  * physical address passed to pmap_enter().
214  */
215 #define PMAP_TYPE_SRMMU		0x78	/* mask to get 4m page type */
216 #define PMAP_PTESHFT_SRMMU	25	/* right shift to put type in pte */
217 #define PMAP_SHFT_SRMMU		3	/* left shift to extract iospace */
218 #define	PMAP_TNC_SRMMU		127	/* mask to get PG_TYPE & PG_NC */
219 
220 /*#define PMAP_IOC      0x00800000      -* IO cacheable, NOT shifted */
221 
222 #define PMAP_T2PTE_SRMMU(x)	(((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
223 #define PMAP_IOENC_SRMMU(io)	((io) << PMAP_SHFT_SRMMU)
224 
225 /* Encode IO space for pmap_enter() */
226 #define PMAP_IOENC(io)	(CPU_ISSUN4M ? PMAP_IOENC_SRMMU(io) : PMAP_IOENC_4(io))
227 
228 #if xxx
229 void		pmap_bootstrap __P((int nmmu, int nctx, int nregion));
230 int		pmap_count_ptes __P((struct pmap *));
231 void		pmap_prefer __P((vm_offset_t, vm_offset_t *));
232 int		pmap_pa_exists __P((vm_offset_t));
233 #endif
234 int             pmap_dumpsize __P((void));
235 int             pmap_dumpmmu __P((int (*)__P((dev_t, daddr_t, caddr_t, size_t)),
236                                  daddr_t));
237 
238 #define	pmap_kernel()	(&kernel_pmap_store)
239 #define	pmap_resident_count(pmap)	pmap_count_ptes(pmap)
240 #define	managed(pa)	((unsigned)((pa) - vm_first_phys) < vm_num_phys)
241 
242 #define PMAP_ACTIVATE(pmap, pcb, iscurproc)
243 #define PMAP_DEACTIVATE(pmap, pcb)
244 #define PMAP_PREFER(fo, ap)		pmap_prefer((fo), (ap))
245 
246 #define PMAP_EXCLUDE_DECLS	/* tells MI pmap.h *not* to include decls */
247 
248 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
249 
250 void		pmap_bootstrap __P((int nmmu, int nctx, int nregion));
251 int		pmap_count_ptes __P((struct pmap *));
252 void		pmap_prefer __P((vm_offset_t, vm_offset_t *));
253 int		pmap_pa_exists __P((vm_offset_t));
254 void		*pmap_bootstrap_alloc __P((int));
255 void            pmap_change_wiring __P((pmap_t, vm_offset_t, boolean_t));
256 void            pmap_collect __P((pmap_t));
257 void            pmap_copy __P((pmap_t,
258 			       pmap_t, vm_offset_t, vm_size_t, vm_offset_t));
259 pmap_t          pmap_create __P((vm_size_t));
260 void            pmap_destroy __P((pmap_t));
261 void            pmap_init __P((void));
262 vm_offset_t     pmap_map __P((vm_offset_t, vm_offset_t, vm_offset_t, int));
263 void            pmap_pageable __P((pmap_t,
264 				   vm_offset_t, vm_offset_t, boolean_t));
265 vm_offset_t     pmap_phys_address __P((int));
266 void            pmap_pinit __P((pmap_t));
267 void            pmap_reference __P((pmap_t));
268 void            pmap_release __P((pmap_t));
269 void            pmap_remove __P((pmap_t, vm_offset_t, vm_offset_t));
270 void            pmap_update __P((void));
271 u_int           pmap_free_pages __P((void));
272 void            pmap_init __P((void));
273 boolean_t       pmap_next_page __P((vm_offset_t *));
274 int		pmap_page_index __P((vm_offset_t));
275 void            pmap_virtual_space __P((vm_offset_t *, vm_offset_t *));
276 void		pmap_redzone __P((void));
277 void		kvm_uncache __P((caddr_t, int));
278 struct user;
279 void		switchexit __P((vm_map_t, struct user *, int));
280 int		mmu_pagein __P((struct pmap *pm, int, int));
281 #ifdef DEBUG
282 int		mmu_pagein4m __P((struct pmap *pm, int, int));
283 #endif
284 
285 
286 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
287 
288 #if defined(SUN4) || defined(SUN4C)
289 void            pmap_clear_modify4_4c __P((vm_offset_t pa));
290 void            pmap_clear_reference4_4c __P((vm_offset_t pa));
291 void            pmap_copy_page4_4c __P((vm_offset_t, vm_offset_t));
292 void            pmap_enter4_4c __P((pmap_t,
293                     vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
294 vm_offset_t     pmap_extract4_4c __P((pmap_t, vm_offset_t));
295 boolean_t       pmap_is_modified4_4c __P((vm_offset_t pa));
296 boolean_t       pmap_is_referenced4_4c __P((vm_offset_t pa));
297 void            pmap_page_protect4_4c __P((vm_offset_t, vm_prot_t));
298 void            pmap_protect4_4c __P((pmap_t,
299                     vm_offset_t, vm_offset_t, vm_prot_t));
300 void            pmap_zero_page4_4c __P((vm_offset_t));
301 void		pmap_changeprot4_4c __P((pmap_t, vm_offset_t, vm_prot_t, int));
302 
303 #endif
304 
305 /* SIMILAR DECLARATIONS FOR SUN4M MODULE */
306 
307 #if defined(SUN4M)
308 void            pmap_clear_modify4m __P((vm_offset_t pa));
309 void            pmap_clear_reference4m __P((vm_offset_t pa));
310 void            pmap_copy_page4m __P((vm_offset_t, vm_offset_t));
311 void            pmap_enter4m __P((pmap_t,
312                     vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
313 vm_offset_t     pmap_extract4m __P((pmap_t, vm_offset_t));
314 boolean_t       pmap_is_modified4m __P((vm_offset_t pa));
315 boolean_t       pmap_is_referenced4m __P((vm_offset_t pa));
316 void            pmap_page_protect4m __P((vm_offset_t, vm_prot_t));
317 void            pmap_protect4m __P((pmap_t,
318                     vm_offset_t, vm_offset_t, vm_prot_t));
319 void            pmap_zero_page4m __P((vm_offset_t));
320 void		pmap_changeprot4m __P((pmap_t, vm_offset_t, vm_prot_t, int));
321 
322 #endif /* defined SUN4M */
323 
324 #if !defined(SUN4M) && (defined(SUN4) || defined(SUN4C))
325 
326 #define	  	pmap_clear_modify	pmap_clear_modify4_4c
327 #define		pmap_clear_reference	pmap_clear_reference4_4c
328 #define		pmap_copy_page		pmap_copy_page4_4c
329 #define		pmap_enter		pmap_enter4_4c
330 #define		pmap_extract		pmap_extract4_4c
331 #define		pmap_is_modified	pmap_is_modified4_4c
332 #define		pmap_is_referenced	pmap_is_referenced4_4c
333 #define		pmap_page_protect	pmap_page_protect4_4c
334 #define		pmap_protect		pmap_protect4_4c
335 #define		pmap_zero_page		pmap_zero_page4_4c
336 #define		pmap_changeprot		pmap_changeprot4_4c
337 
338 #elif defined(SUN4M) && !(defined(SUN4) || defined(SUN4C))
339 
340 #define	  	pmap_clear_modify	pmap_clear_modify4m
341 #define		pmap_clear_reference	pmap_clear_reference4m
342 #define		pmap_copy_page		pmap_copy_page4m
343 #define		pmap_enter		pmap_enter4m
344 #define		pmap_extract		pmap_extract4m
345 #define		pmap_is_modified	pmap_is_modified4m
346 #define		pmap_is_referenced	pmap_is_referenced4m
347 #define		pmap_page_protect	pmap_page_protect4m
348 #define		pmap_protect		pmap_protect4m
349 #define		pmap_zero_page		pmap_zero_page4m
350 #define		pmap_changeprot		pmap_changeprot4m
351 
352 #else  /* must use function pointers */
353 
354 extern void            	(*pmap_clear_modify_p) __P((vm_offset_t pa));
355 extern void            	(*pmap_clear_reference_p) __P((vm_offset_t pa));
356 extern void            	(*pmap_copy_page_p) __P((vm_offset_t, vm_offset_t));
357 extern void            	(*pmap_enter_p) __P((pmap_t,
358 		            vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
359 extern vm_offset_t     	(*pmap_extract_p) __P((pmap_t, vm_offset_t));
360 extern boolean_t       	(*pmap_is_modified_p) __P((vm_offset_t pa));
361 extern boolean_t       	(*pmap_is_referenced_p) __P((vm_offset_t pa));
362 extern void            	(*pmap_page_protect_p) __P((vm_offset_t, vm_prot_t));
363 extern void            	(*pmap_protect_p) __P((pmap_t,
364 		            vm_offset_t, vm_offset_t, vm_prot_t));
365 extern void            	(*pmap_zero_page_p) __P((vm_offset_t));
366 extern void	       	(*pmap_changeprot_p) __P((pmap_t, vm_offset_t,
367 		            vm_prot_t, int));
368 
369 #define	  	pmap_clear_modify	(*pmap_clear_modify_p)
370 #define		pmap_clear_reference	(*pmap_clear_reference_p)
371 #define		pmap_copy_page		(*pmap_copy_page_p)
372 #define		pmap_enter		(*pmap_enter_p)
373 #define		pmap_extract		(*pmap_extract_p)
374 #define		pmap_is_modified	(*pmap_is_modified_p)
375 #define		pmap_is_referenced	(*pmap_is_referenced_p)
376 #define		pmap_page_protect	(*pmap_page_protect_p)
377 #define		pmap_protect		(*pmap_protect_p)
378 #define		pmap_zero_page		(*pmap_zero_page_p)
379 #define		pmap_changeprot		(*pmap_changeprot_p)
380 
381 #endif
382 
383 #endif /* _KERNEL */
384 
385 #endif /* _SPARC_PMAP_H_ */
386