xref: /netbsd-src/sys/arch/sparc/include/pmap.h (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: pmap.h,v 1.57 2001/06/18 15:42:06 mrg Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  * 	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by Aaron Brown and
16  *	Harvard University.
17  *	This product includes software developed by the University of
18  *	California, Lawrence Berkeley Laboratory.
19  *
20  * @InsertRedistribution@
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Aaron Brown and
24  *	Harvard University.
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	@(#)pmap.h	8.1 (Berkeley) 6/11/93
44  */
45 
46 #ifndef	_SPARC_PMAP_H_
47 #define _SPARC_PMAP_H_
48 
49 #include <machine/pte.h>
50 
51 /*
52  * Pmap structure.
53  *
54  * The pmap structure really comes in two variants, one---a single
55  * instance---for kernel virtual memory and the other---up to nproc
56  * instances---for user virtual memory.  Unfortunately, we have to mash
57  * both into the same structure.  Fortunately, they are almost the same.
58  *
59  * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
60  * some of this is not actually used).  Kernel space, including DVMA
61  * space (for now?), is mapped identically into all user contexts.
62  * There is no point in duplicating this mapping in each user process
63  * so they do not appear in the user structures.
64  *
65  * User space begins at 0x00000000 and runs through 0x1fffffff,
66  * then has a `hole', then resumes at 0xe0000000 and runs until it
67  * hits the kernel space at 0xf8000000.  This can be mapped
68  * contiguously by ignorning the top two bits and pretending the
69  * space goes from 0 to 37ffffff.  Typically the lower range is
70  * used for text+data and the upper for stack, but the code here
71  * makes no such distinction.
72  *
73  * Since each virtual segment covers 256 kbytes, the user space
74  * requires 3584 segments, while the kernel (including DVMA) requires
75  * only 512 segments.
76  *
77  *
78  ** FOR THE SUN4/SUN4C
79  *
80  * The segment map entry for virtual segment vseg is offset in
81  * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
82  * NUSEG if it is.  We keep a pointer called pmap->pm_segmap
83  * pre-offset by this value.  pmap->pm_segmap thus contains the
84  * values to be loaded into the user portion of the hardware segment
85  * map so as to reach the proper PMEGs within the MMU.  The kernel
86  * mappings are `set early' and are always valid in every context
87  * (every change is always propagated immediately).
88  *
89  * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
90  * taken away from context `c', the pmap for context c has its
91  * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
92  * map entry is also made invalid at the same time).  Thus
93  * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
94  * the corresponding PTEs are not actually in the MMU.  On the other
95  * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
96  * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
97  * must be loaded in the MMU in order to reach those pages.
98  * pm_npte[vseg] counts the number of valid pages in each vseg.
99  *
100  * XXX performance: faster to count valid bits?
101  *
102  * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
103  * allocate a new virtual segment.  Since kernel mappings are never
104  * `stolen' out of the MMU, we just keep all its PTEs there, and have
105  * no software copies.  Its mmu entries are nonetheless kept on lists
106  * so that the code that fiddles with mmu lists has something to fiddle.
107  *
108  ** FOR THE SUN4M
109  *
110  * On this architecture, the virtual-to-physical translation (page) tables
111  * are *not* stored within the MMU as they are in the earlier Sun architect-
112  * ures; instead, they are maintained entirely within physical memory (there
113  * is a TLB cache to prevent the high performance hit from keeping all page
114  * tables in core). Thus there is no need to dynamically allocate PMEGs or
115  * SMEGs; only contexts must be shared.
116  *
117  * We maintain two parallel sets of tables: one is the actual MMU-edible
118  * hierarchy of page tables in allocated kernel memory; these tables refer
119  * to each other by physical address pointers in SRMMU format (thus they
120  * are not very useful to the kernel's management routines). The other set
121  * of tables is similar to those used for the Sun4/100's 3-level MMU; it
122  * is a hierarchy of regmap and segmap structures which contain kernel virtual
123  * pointers to each other. These must (unfortunately) be kept in sync.
124  *
125  */
126 #define NKREG	((int)((-(unsigned)KERNBASE) / NBPRG))	/* i.e., 8 */
127 #define NUREG	(256 - NKREG)				/* i.e., 248 */
128 
129 TAILQ_HEAD(mmuhd,mmuentry);
130 
131 /*
132  * data appearing in both user and kernel pmaps
133  *
134  * note: if we want the same binaries to work on the 4/4c and 4m, we have to
135  *       include the fields for both to make sure that the struct kproc
136  * 	 is the same size.
137  */
138 struct pmap {
139 	union	ctxinfo *pm_ctx;	/* current context, if any */
140 	int	pm_ctxnum;		/* current context's number */
141 	struct simplelock pm_lock;	/* spinlock */
142 	int	pm_refcount;		/* just what it says */
143 
144 	struct mmuhd	pm_reglist;	/* MMU regions on this pmap (4/4c) */
145 	struct mmuhd	pm_seglist;	/* MMU segments on this pmap (4/4c) */
146 
147 	struct regmap	*pm_regmap;
148 
149 	int		**pm_reg_ptps;	/* SRMMU-edible region tables for 4m */
150 	int		*pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
151 
152 	int		pm_gap_start;	/* Starting with this vreg there's */
153 	int		pm_gap_end;	/* no valid mapping until here */
154 
155 	struct pmap_statistics	pm_stats;	/* pmap statistics */
156 };
157 
158 struct regmap {
159 	struct segmap	*rg_segmap;	/* point to NSGPRG PMEGs */
160 	int		*rg_seg_ptps; 	/* SRMMU-edible segment tables (NULL
161 					 * indicates invalid region (4m) */
162 	smeg_t		rg_smeg;	/* the MMU region number (4c) */
163 	u_char		rg_nsegmap;	/* number of valid PMEGS */
164 };
165 
166 struct segmap {
167 	int	*sg_pte;		/* points to NPTESG PTEs */
168 	pmeg_t	sg_pmeg;		/* the MMU segment number (4c) */
169 	u_char	sg_npte;		/* number of valid PTEs per seg */
170 };
171 
172 typedef struct pmap *pmap_t;
173 
174 #if 0
175 struct kvm_cpustate {
176 	int		kvm_npmemarr;
177 	struct memarr	kvm_pmemarr[MA_SIZE];
178 	int		kvm_seginval;			/* [4,4c] */
179 	struct segmap	kvm_segmap_store[NKREG*NSEGRG];	/* [4,4c] */
180 }/*not yet used*/;
181 #endif
182 
183 #ifdef _KERNEL
184 
185 #define PMAP_NULL	((pmap_t)0)
186 
187 extern struct pmap	kernel_pmap_store;
188 
189 /*
190  * Bounds on managed physical addresses. Used by (MD) users
191  * of uvm_pglistalloc() to provide search hints.
192  */
193 extern paddr_t		vm_first_phys, vm_last_phys;
194 extern psize_t		vm_num_phys;
195 
196 /*
197  * Since PTEs also contain type bits, we have to have some way
198  * to tell pmap_enter `this is an IO page' or `this is not to
199  * be cached'.  Since physical addresses are always aligned, we
200  * can do this with the low order bits.
201  *
202  * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
203  * exactly the PG_NC and PG_TYPE bits.
204  */
205 #define	PMAP_OBIO	1		/* tells pmap_enter to use PG_OBIO */
206 #define	PMAP_VME16	2		/* etc */
207 #define	PMAP_VME32	3		/* etc */
208 #define	PMAP_NC		4		/* tells pmap_enter to set PG_NC */
209 #define	PMAP_TNC_4	7		/* mask to get PG_TYPE & PG_NC */
210 
211 #define	PMAP_T2PTE_4(x)		(((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
212 #define	PMAP_IOENC_4(io)	(io)
213 
214 /*
215  * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
216  * physical address passed to pmap_enter().
217  */
218 #define PMAP_TYPE_SRMMU		0x78	/* mask to get 4m page type */
219 #define PMAP_PTESHFT_SRMMU	25	/* right shift to put type in pte */
220 #define PMAP_SHFT_SRMMU		3	/* left shift to extract iospace */
221 #define	PMAP_TNC_SRMMU		127	/* mask to get PG_TYPE & PG_NC */
222 
223 /*#define PMAP_IOC      0x00800000      -* IO cacheable, NOT shifted */
224 
225 #define PMAP_T2PTE_SRMMU(x)	(((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
226 #define PMAP_IOENC_SRMMU(io)	((io) << PMAP_SHFT_SRMMU)
227 
228 /* Encode IO space for pmap_enter() */
229 #define PMAP_IOENC(io)	(CPU_ISSUN4M ? PMAP_IOENC_SRMMU(io) : PMAP_IOENC_4(io))
230 
231 int             pmap_dumpsize __P((void));
232 int             pmap_dumpmmu __P((int (*)__P((dev_t, daddr_t, caddr_t, size_t)),
233                                  daddr_t));
234 
235 #define	pmap_kernel()	(&kernel_pmap_store)
236 #define	pmap_resident_count(pmap)	pmap_count_ptes(pmap)
237 
238 #define PMAP_PREFER(fo, ap)		pmap_prefer((fo), (ap))
239 
240 #define PMAP_EXCLUDE_DECLS	/* tells MI pmap.h *not* to include decls */
241 
242 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
243 
244 struct proc;
245 void		pmap_activate __P((struct proc *));
246 void		pmap_deactivate __P((struct proc *));
247 void		pmap_bootstrap __P((int nmmu, int nctx, int nregion));
248 int		pmap_count_ptes __P((struct pmap *));
249 void		pmap_prefer __P((vaddr_t, vaddr_t *));
250 int		pmap_pa_exists __P((paddr_t));
251 void		pmap_unwire __P((pmap_t, vaddr_t));
252 void		pmap_collect __P((pmap_t));
253 void		pmap_copy __P((pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t));
254 pmap_t		pmap_create __P((void));
255 void		pmap_destroy __P((pmap_t));
256 void		pmap_init __P((void));
257 vaddr_t		pmap_map __P((vaddr_t, paddr_t, paddr_t, int));
258 paddr_t		pmap_phys_address __P((int));
259 void		pmap_reference __P((pmap_t));
260 void		pmap_remove __P((pmap_t, vaddr_t, vaddr_t));
261 #define		pmap_update()		/* nothing (yet) */
262 void		pmap_virtual_space __P((vaddr_t *, vaddr_t *));
263 void		pmap_redzone __P((void));
264 void		kvm_uncache __P((caddr_t, int));
265 struct user;
266 int		mmu_pagein __P((struct pmap *pm, vaddr_t, int));
267 void		pmap_writetext __P((unsigned char *, int));
268 void		pmap_globalize_boot_cpuinfo __P((struct cpu_info *));
269 
270 
271 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
272 
273 #if defined(SUN4) || defined(SUN4C)
274 boolean_t	pmap_clear_modify4_4c __P((struct vm_page *));
275 boolean_t	pmap_clear_reference4_4c __P((struct vm_page *));
276 void		pmap_copy_page4_4c __P((paddr_t, paddr_t));
277 int		pmap_enter4_4c __P((pmap_t, vaddr_t, paddr_t, vm_prot_t,
278 		    int));
279 boolean_t	pmap_extract4_4c __P((pmap_t, vaddr_t, paddr_t *));
280 boolean_t	pmap_is_modified4_4c __P((struct vm_page *));
281 boolean_t	pmap_is_referenced4_4c __P((struct vm_page *));
282 void		pmap_kenter_pa4_4c __P((vaddr_t, paddr_t, vm_prot_t));
283 void		pmap_kremove4_4c __P((vaddr_t, vsize_t));
284 void		pmap_page_protect4_4c __P((struct vm_page *, vm_prot_t));
285 void		pmap_protect4_4c __P((pmap_t, vaddr_t, vaddr_t, vm_prot_t));
286 void		pmap_zero_page4_4c __P((paddr_t));
287 void		pmap_changeprot4_4c __P((pmap_t, vaddr_t, vm_prot_t, int));
288 
289 #endif
290 
291 /* SIMILAR DECLARATIONS FOR SUN4M MODULE */
292 
293 #if defined(SUN4M)
294 boolean_t	pmap_clear_modify4m __P((struct vm_page *));
295 boolean_t	pmap_clear_reference4m __P((struct vm_page *));
296 void		pmap_copy_page4m __P((paddr_t, paddr_t));
297 void		pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
298 void		pmap_copy_page_hypersparc(paddr_t, paddr_t);
299 int		pmap_enter4m __P((pmap_t, vaddr_t, paddr_t, vm_prot_t,
300 		    int));
301 boolean_t	pmap_extract4m __P((pmap_t, vaddr_t, paddr_t *));
302 boolean_t	pmap_is_modified4m __P((struct vm_page *));
303 boolean_t	pmap_is_referenced4m __P((struct vm_page *));
304 void		pmap_kenter_pa4m __P((vaddr_t, paddr_t, vm_prot_t));
305 void		pmap_kremove4m __P((vaddr_t, vsize_t));
306 void		pmap_page_protect4m __P((struct vm_page *, vm_prot_t));
307 void		pmap_protect4m __P((pmap_t, vaddr_t, vaddr_t, vm_prot_t));
308 void		pmap_zero_page4m __P((paddr_t));
309 void		pmap_zero_page_viking_mxcc(paddr_t);
310 void		pmap_zero_page_hypersparc(paddr_t);
311 void		pmap_changeprot4m __P((pmap_t, vaddr_t, vm_prot_t, int));
312 
313 #endif /* defined SUN4M */
314 
315 #if !defined(SUN4M) && (defined(SUN4) || defined(SUN4C))
316 
317 #define		pmap_clear_modify	pmap_clear_modify4_4c
318 #define		pmap_clear_reference	pmap_clear_reference4_4c
319 #define		pmap_enter		pmap_enter4_4c
320 #define		pmap_extract		pmap_extract4_4c
321 #define		pmap_is_modified	pmap_is_modified4_4c
322 #define		pmap_is_referenced	pmap_is_referenced4_4c
323 #define		pmap_kenter_pa		pmap_kenter_pa4_4c
324 #define		pmap_kremove		pmap_kremove4_4c
325 #define		pmap_page_protect	pmap_page_protect4_4c
326 #define		pmap_protect		pmap_protect4_4c
327 #define		pmap_changeprot		pmap_changeprot4_4c
328 
329 #elif defined(SUN4M) && !(defined(SUN4) || defined(SUN4C))
330 
331 #define		pmap_clear_modify	pmap_clear_modify4m
332 #define		pmap_clear_reference	pmap_clear_reference4m
333 #define		pmap_enter		pmap_enter4m
334 #define		pmap_extract		pmap_extract4m
335 #define		pmap_is_modified	pmap_is_modified4m
336 #define		pmap_is_referenced	pmap_is_referenced4m
337 #define		pmap_kenter_pa		pmap_kenter_pa4m
338 #define		pmap_kremove		pmap_kremove4m
339 #define		pmap_page_protect	pmap_page_protect4m
340 #define		pmap_protect		pmap_protect4m
341 #define		pmap_changeprot		pmap_changeprot4m
342 
343 #else  /* must use function pointers */
344 
345 extern boolean_t(*pmap_clear_modify_p) __P((struct vm_page *));
346 extern boolean_t(*pmap_clear_reference_p) __P((struct vm_page *));
347 extern int	(*pmap_enter_p) __P((pmap_t, vaddr_t, paddr_t, vm_prot_t,
348 		    int));
349 extern boolean_t (*pmap_extract_p) __P((pmap_t, vaddr_t, paddr_t *));
350 extern boolean_t(*pmap_is_modified_p) __P((struct vm_page *));
351 extern boolean_t(*pmap_is_referenced_p) __P((struct vm_page *));
352 extern void	(*pmap_kenter_pa_p) __P((vaddr_t, paddr_t, vm_prot_t));
353 extern void	(*pmap_kremove_p) __P((vaddr_t, vsize_t));
354 extern void	(*pmap_page_protect_p) __P((struct vm_page *, vm_prot_t));
355 extern void	(*pmap_protect_p) __P((pmap_t, vaddr_t, vaddr_t, vm_prot_t));
356 extern void	(*pmap_changeprot_p) __P((pmap_t, vaddr_t, vm_prot_t, int));
357 
358 #define		pmap_clear_modify	(*pmap_clear_modify_p)
359 #define		pmap_clear_reference	(*pmap_clear_reference_p)
360 #define		pmap_enter		(*pmap_enter_p)
361 #define		pmap_extract		(*pmap_extract_p)
362 #define		pmap_is_modified	(*pmap_is_modified_p)
363 #define		pmap_is_referenced	(*pmap_is_referenced_p)
364 #define		pmap_kenter_pa		(*pmap_kenter_pa_p)
365 #define		pmap_kremove		(*pmap_kremove_p)
366 #define		pmap_page_protect	(*pmap_page_protect_p)
367 #define		pmap_protect		(*pmap_protect_p)
368 #define		pmap_changeprot		(*pmap_changeprot_p)
369 
370 #endif
371 
372 /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
373 #define		pmap_zero_page		(*cpuinfo.zero_page)
374 #define		pmap_copy_page		(*cpuinfo.copy_page)
375 
376 #if defined(SUN4M)
377 /*
378  * Macros which implement SRMMU TLB flushing/invalidation
379  */
380 #define tlb_flush_page_real(va)    \
381 	sta(((vaddr_t)(va) & ~0xfff) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
382 
383 #define tlb_flush_segment_real(vr, vs) \
384 	sta(((vr)<<RGSHIFT) | ((vs)<<SGSHIFT) | ASI_SRMMUFP_L2, ASI_SRMMUFP,0)
385 
386 #define tlb_flush_region_real(vr) \
387 	sta(((vr) << RGSHIFT) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
388 
389 #define tlb_flush_context_real()	sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
390 #define tlb_flush_all_real()		sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
391 
392 #endif /* SUN4M */
393 
394 #endif /* _KERNEL */
395 
396 #endif /* _SPARC_PMAP_H_ */
397