xref: /netbsd-src/sys/arch/sparc/fpu/fpu_sqrt.c (revision a93ea220fcb3e34cdfdcd4d7a5d391e0b2b4f2ba)
1 /*	$NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * Perform an FPU square root (return sqrt(x)).
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $");
53 
54 #include <sys/types.h>
55 
56 #include <machine/reg.h>
57 
58 #include <sparc/fpu/fpu_arith.h>
59 #include <sparc/fpu/fpu_emu.h>
60 
61 /*
62  * Our task is to calculate the square root of a floating point number x0.
63  * This number x normally has the form:
64  *
65  *		    exp
66  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
67  *
68  * This can be left as it stands, or the mantissa can be doubled and the
69  * exponent decremented:
70  *
71  *			  exp-1
72  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
73  *
74  * If the exponent `exp' is even, the square root of the number is best
75  * handled using the first form, and is by definition equal to:
76  *
77  *				exp/2
78  *	sqrt(x) = sqrt(mant) * 2
79  *
80  * If exp is odd, on the other hand, it is convenient to use the second
81  * form, giving:
82  *
83  *				    (exp-1)/2
84  *	sqrt(x) = sqrt(2 * mant) * 2
85  *
86  * In the first case, we have
87  *
88  *	1 <= mant < 2
89  *
90  * and therefore
91  *
92  *	sqrt(1) <= sqrt(mant) < sqrt(2)
93  *
94  * while in the second case we have
95  *
96  *	2 <= 2*mant < 4
97  *
98  * and therefore
99  *
100  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
101  *
102  * so that in any case, we are sure that
103  *
104  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
105  *
106  * or
107  *
108  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
109  *
110  * This root is therefore a properly formed mantissa for a floating
111  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
112  * as above.  This leaves us with the problem of finding the square root
113  * of a fixed-point number in the range [1..4).
114  *
115  * Though it may not be instantly obvious, the following square root
116  * algorithm works for any integer x of an even number of bits, provided
117  * that no overflows occur:
118  *
119  *	let q = 0
120  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
121  *		x *= 2			-- multiply by radix, for next digit
122  *		if x >= 2q + 2^k then	-- if adding 2^k does not
123  *			x -= 2q + 2^k	-- exceed the correct root,
124  *			q += 2^k	-- add 2^k and adjust x
125  *		fi
126  *	done
127  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
128  *
129  * If NBITS is odd (so that k is initially even), we can just add another
130  * zero bit at the top of x.  Doing so means that q is not going to acquire
131  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
132  * final value in x is not needed, or can be off by a factor of 2, this is
133  * equivalant to moving the `x *= 2' step to the bottom of the loop:
134  *
135  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
136  *
137  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
138  * (Since the algorithm is destructive on x, we will call x's initial
139  * value, for which q is some power of two times its square root, x0.)
140  *
141  * If we insert a loop invariant y = 2q, we can then rewrite this using
142  * C notation as:
143  *
144  *	q = y = 0; x = x0;
145  *	for (k = NBITS; --k >= 0;) {
146  * #if (NBITS is even)
147  *		x *= 2;
148  * #endif
149  *		t = y + (1 << k);
150  *		if (x >= t) {
151  *			x -= t;
152  *			q += 1 << k;
153  *			y += 1 << (k + 1);
154  *		}
155  * #if (NBITS is odd)
156  *		x *= 2;
157  * #endif
158  *	}
159  *
160  * If x0 is fixed point, rather than an integer, we can simply alter the
161  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
162  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
163  *
164  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
165  * integers, which adds some complication.  But note that q is built one
166  * bit at a time, from the top down, and is not used itself in the loop
167  * (we use 2q as held in y instead).  This means we can build our answer
168  * in an integer, one word at a time, which saves a bit of work.  Also,
169  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
170  * `new' bits in y and we can set them with an `or' operation rather than
171  * a full-blown multiword add.
172  *
173  * We are almost done, except for one snag.  We must prove that none of our
174  * intermediate calculations can overflow.  We know that x0 is in [1..4)
175  * and therefore the square root in q will be in [1..2), but what about x,
176  * y, and t?
177  *
178  * We know that y = 2q at the beginning of each loop.  (The relation only
179  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
180  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
181  * Furthermore, we can prove with a bit of work that x never exceeds y by
182  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
183  * an exercise to the reader, mostly because I have become tired of working
184  * on this comment.)
185  *
186  * If our floating point mantissas (which are of the form 1.frac) occupy
187  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
188  * In fact, we want even one more bit (for a carry, to avoid compares), or
189  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
190  * this, so we have some justification in assuming it.
191  */
192 struct fpn *
193 fpu_sqrt(fe)
194 	struct fpemu *fe;
195 {
196 	register struct fpn *x = &fe->fe_f1;
197 	register u_int bit, q, tt;
198 	register u_int x0, x1, x2, x3;
199 	register u_int y0, y1, y2, y3;
200 	register u_int d0, d1, d2, d3;
201 	register int e;
202 
203 	/*
204 	 * Take care of special cases first.  In order:
205 	 *
206 	 *	sqrt(NaN) = NaN
207 	 *	sqrt(+0) = +0
208 	 *	sqrt(-0) = -0
209 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
210 	 *	sqrt(+Inf) = +Inf
211 	 *
212 	 * Then all that remains are numbers with mantissas in [1..2).
213 	 */
214 	if (ISNAN(x) || ISZERO(x))
215 		return (x);
216 	if (x->fp_sign)
217 		return (fpu_newnan(fe));
218 	if (ISINF(x))
219 		return (x);
220 
221 	/*
222 	 * Calculate result exponent.  As noted above, this may involve
223 	 * doubling the mantissa.  We will also need to double x each
224 	 * time around the loop, so we define a macro for this here, and
225 	 * we break out the multiword mantissa.
226 	 */
227 #ifdef FPU_SHL1_BY_ADD
228 #define	DOUBLE_X { \
229 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
230 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
231 }
232 #else
233 #define	DOUBLE_X { \
234 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
235 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
236 }
237 #endif
238 #if (FP_NMANT & 1) != 0
239 # define ODD_DOUBLE	DOUBLE_X
240 # define EVEN_DOUBLE	/* nothing */
241 #else
242 # define ODD_DOUBLE	/* nothing */
243 # define EVEN_DOUBLE	DOUBLE_X
244 #endif
245 	x0 = x->fp_mant[0];
246 	x1 = x->fp_mant[1];
247 	x2 = x->fp_mant[2];
248 	x3 = x->fp_mant[3];
249 	e = x->fp_exp;
250 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
251 		DOUBLE_X;
252 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
253 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
254 
255 	/*
256 	 * Now calculate the mantissa root.  Since x is now in [1..4),
257 	 * we know that the first trip around the loop will definitely
258 	 * set the top bit in q, so we can do that manually and start
259 	 * the loop at the next bit down instead.  We must be sure to
260 	 * double x correctly while doing the `known q=1.0'.
261 	 *
262 	 * We do this one mantissa-word at a time, as noted above, to
263 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
264 	 * outside of each per-word loop.
265 	 *
266 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
267 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
268 	 * is always a `new' one, this means that three of the `t?'s are
269 	 * just the corresponding `y?'; we use `#define's here for this.
270 	 * The variable `tt' holds the actual `t?' variable.
271 	 */
272 
273 	/* calculate q0 */
274 #define	t0 tt
275 	bit = FP_1;
276 	EVEN_DOUBLE;
277 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
278 		q = bit;
279 		x0 -= bit;
280 		y0 = bit << 1;
281 	/* } */
282 	ODD_DOUBLE;
283 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
284 		EVEN_DOUBLE;
285 		t0 = y0 | bit;		/* t = y + bit */
286 		if (x0 >= t0) {		/* if x >= t then */
287 			x0 -= t0;	/*	x -= t */
288 			q |= bit;	/*	q += bit */
289 			y0 |= bit << 1;	/*	y += bit << 1 */
290 		}
291 		ODD_DOUBLE;
292 	}
293 	x->fp_mant[0] = q;
294 #undef t0
295 
296 	/* calculate q1.  note (y0&1)==0. */
297 #define t0 y0
298 #define t1 tt
299 	q = 0;
300 	y1 = 0;
301 	bit = 1 << 31;
302 	EVEN_DOUBLE;
303 	t1 = bit;
304 	FPU_SUBS(d1, x1, t1);
305 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
306 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
307 		x0 = d0, x1 = d1;	/*	x -= t */
308 		q = bit;		/*	q += bit */
309 		y0 |= 1;		/*	y += bit << 1 */
310 	}
311 	ODD_DOUBLE;
312 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
313 		EVEN_DOUBLE;		/* as before */
314 		t1 = y1 | bit;
315 		FPU_SUBS(d1, x1, t1);
316 		FPU_SUBC(d0, x0, t0);
317 		if ((int)d0 >= 0) {
318 			x0 = d0, x1 = d1;
319 			q |= bit;
320 			y1 |= bit << 1;
321 		}
322 		ODD_DOUBLE;
323 	}
324 	x->fp_mant[1] = q;
325 #undef t1
326 
327 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
328 #define t1 y1
329 #define t2 tt
330 	q = 0;
331 	y2 = 0;
332 	bit = 1 << 31;
333 	EVEN_DOUBLE;
334 	t2 = bit;
335 	FPU_SUBS(d2, x2, t2);
336 	FPU_SUBCS(d1, x1, t1);
337 	FPU_SUBC(d0, x0, t0);
338 	if ((int)d0 >= 0) {
339 		x0 = d0, x1 = d1, x2 = d2;
340 		q |= bit;
341 		y1 |= 1;		/* now t1, y1 are set in concrete */
342 	}
343 	ODD_DOUBLE;
344 	while ((bit >>= 1) != 0) {
345 		EVEN_DOUBLE;
346 		t2 = y2 | bit;
347 		FPU_SUBS(d2, x2, t2);
348 		FPU_SUBCS(d1, x1, t1);
349 		FPU_SUBC(d0, x0, t0);
350 		if ((int)d0 >= 0) {
351 			x0 = d0, x1 = d1, x2 = d2;
352 			q |= bit;
353 			y2 |= bit << 1;
354 		}
355 		ODD_DOUBLE;
356 	}
357 	x->fp_mant[2] = q;
358 #undef t2
359 
360 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
361 #define t2 y2
362 #define t3 tt
363 	q = 0;
364 	y3 = 0;
365 	bit = 1 << 31;
366 	EVEN_DOUBLE;
367 	t3 = bit;
368 	FPU_SUBS(d3, x3, t3);
369 	FPU_SUBCS(d2, x2, t2);
370 	FPU_SUBCS(d1, x1, t1);
371 	FPU_SUBC(d0, x0, t0);
372 	ODD_DOUBLE;
373 	if ((int)d0 >= 0) {
374 		x0 = d0, x1 = d1, x2 = d2;
375 		q |= bit;
376 		y2 |= 1;
377 	}
378 	while ((bit >>= 1) != 0) {
379 		EVEN_DOUBLE;
380 		t3 = y3 | bit;
381 		FPU_SUBS(d3, x3, t3);
382 		FPU_SUBCS(d2, x2, t2);
383 		FPU_SUBCS(d1, x1, t1);
384 		FPU_SUBC(d0, x0, t0);
385 		if ((int)d0 >= 0) {
386 			x0 = d0, x1 = d1, x2 = d2;
387 			q |= bit;
388 			y3 |= bit << 1;
389 		}
390 		ODD_DOUBLE;
391 	}
392 	x->fp_mant[3] = q;
393 
394 	/*
395 	 * The result, which includes guard and round bits, is exact iff
396 	 * x is now zero; any nonzero bits in x represent sticky bits.
397 	 */
398 	x->fp_sticky = x0 | x1 | x2 | x3;
399 	return (x);
400 }
401