xref: /netbsd-src/sys/arch/sparc/fpu/fpu_mul.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: fpu_mul.c,v 1.4 2003/08/07 16:29:37 agc Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * Perform an FPU multiply (return x * y).
45  */
46 
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.4 2003/08/07 16:29:37 agc Exp $");
49 
50 #include <sys/types.h>
51 
52 #include <machine/reg.h>
53 
54 #include <sparc/fpu/fpu_arith.h>
55 #include <sparc/fpu/fpu_emu.h>
56 
57 /*
58  * The multiplication algorithm for normal numbers is as follows:
59  *
60  * The fraction of the product is built in the usual stepwise fashion.
61  * Each step consists of shifting the accumulator right one bit
62  * (maintaining any guard bits) and, if the next bit in y is set,
63  * adding the multiplicand (x) to the accumulator.  Then, in any case,
64  * we advance one bit leftward in y.  Algorithmically:
65  *
66  *	A = 0;
67  *	for (bit = 0; bit < FP_NMANT; bit++) {
68  *		sticky |= A & 1, A >>= 1;
69  *		if (Y & (1 << bit))
70  *			A += X;
71  *	}
72  *
73  * (X and Y here represent the mantissas of x and y respectively.)
74  * The resultant accumulator (A) is the product's mantissa.  It may
75  * be as large as 11.11111... in binary and hence may need to be
76  * shifted right, but at most one bit.
77  *
78  * Since we do not have efficient multiword arithmetic, we code the
79  * accumulator as four separate words, just like any other mantissa.
80  * We use local `register' variables in the hope that this is faster
81  * than memory.  We keep x->fp_mant in locals for the same reason.
82  *
83  * In the algorithm above, the bits in y are inspected one at a time.
84  * We will pick them up 32 at a time and then deal with those 32, one
85  * at a time.  Note, however, that we know several things about y:
86  *
87  *    - the guard and round bits at the bottom are sure to be zero;
88  *
89  *    - often many low bits are zero (y is often from a single or double
90  *	precision source);
91  *
92  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
93  *
94  * We can also test for 32-zero-bits swiftly.  In this case, the center
95  * part of the loop---setting sticky, shifting A, and not adding---will
96  * run 32 times without adding X to A.  We can do a 32-bit shift faster
97  * by simply moving words.  Since zeros are common, we optimize this case.
98  * Furthermore, since A is initially zero, we can omit the shift as well
99  * until we reach a nonzero word.
100  */
101 struct fpn *
102 fpu_mul(fe)
103 	register struct fpemu *fe;
104 {
105 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
106 	register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
107 	register int sticky;
108 	FPU_DECL_CARRY
109 
110 	/*
111 	 * Put the `heavier' operand on the right (see fpu_emu.h).
112 	 * Then we will have one of the following cases, taken in the
113 	 * following order:
114 	 *
115 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
116 	 *	The result is y.
117 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
118 	 *    case was taken care of earlier).
119 	 *	If x = 0, the result is NaN.  Otherwise the result
120 	 *	is y, with its sign reversed if x is negative.
121 	 *  - x = 0.  Implied: y is 0 or number.
122 	 *	The result is 0 (with XORed sign as usual).
123 	 *  - other.  Implied: both x and y are numbers.
124 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
125 	 */
126 	ORDER(x, y);
127 	if (ISNAN(y)) {
128 		y->fp_sign ^= x->fp_sign;
129 		return (y);
130 	}
131 	if (ISINF(y)) {
132 		if (ISZERO(x))
133 			return (fpu_newnan(fe));
134 		y->fp_sign ^= x->fp_sign;
135 		return (y);
136 	}
137 	if (ISZERO(x)) {
138 		x->fp_sign ^= y->fp_sign;
139 		return (x);
140 	}
141 
142 	/*
143 	 * Setup.  In the code below, the mask `m' will hold the current
144 	 * mantissa byte from y.  The variable `bit' denotes the bit
145 	 * within m.  We also define some macros to deal with everything.
146 	 */
147 	x3 = x->fp_mant[3];
148 	x2 = x->fp_mant[2];
149 	x1 = x->fp_mant[1];
150 	x0 = x->fp_mant[0];
151 	sticky = a3 = a2 = a1 = a0 = 0;
152 
153 #define	ADD	/* A += X */ \
154 	FPU_ADDS(a3, a3, x3); \
155 	FPU_ADDCS(a2, a2, x2); \
156 	FPU_ADDCS(a1, a1, x1); \
157 	FPU_ADDC(a0, a0, x0)
158 
159 #define	SHR1	/* A >>= 1, with sticky */ \
160 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
161 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
162 
163 #define	SHR32	/* A >>= 32, with sticky */ \
164 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
165 
166 #define	STEP	/* each 1-bit step of the multiplication */ \
167 	SHR1; if (bit & m) { ADD; }; bit <<= 1
168 
169 	/*
170 	 * We are ready to begin.  The multiply loop runs once for each
171 	 * of the four 32-bit words.  Some words, however, are special.
172 	 * As noted above, the low order bits of Y are often zero.  Even
173 	 * if not, the first loop can certainly skip the guard bits.
174 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
175 	 * so we stop the loop when we move past that bit.
176 	 */
177 	if ((m = y->fp_mant[3]) == 0) {
178 		/* SHR32; */			/* unneeded since A==0 */
179 	} else {
180 		bit = 1 << FP_NG;
181 		do {
182 			STEP;
183 		} while (bit != 0);
184 	}
185 	if ((m = y->fp_mant[2]) == 0) {
186 		SHR32;
187 	} else {
188 		bit = 1;
189 		do {
190 			STEP;
191 		} while (bit != 0);
192 	}
193 	if ((m = y->fp_mant[1]) == 0) {
194 		SHR32;
195 	} else {
196 		bit = 1;
197 		do {
198 			STEP;
199 		} while (bit != 0);
200 	}
201 	m = y->fp_mant[0];		/* definitely != 0 */
202 	bit = 1;
203 	do {
204 		STEP;
205 	} while (bit <= m);
206 
207 	/*
208 	 * Done with mantissa calculation.  Get exponent and handle
209 	 * 11.111...1 case, then put result in place.  We reuse x since
210 	 * it already has the right class (FP_NUM).
211 	 */
212 	m = x->fp_exp + y->fp_exp;
213 	if (a0 >= FP_2) {
214 		SHR1;
215 		m++;
216 	}
217 	x->fp_sign ^= y->fp_sign;
218 	x->fp_exp = m;
219 	x->fp_sticky = sticky;
220 	x->fp_mant[3] = a3;
221 	x->fp_mant[2] = a2;
222 	x->fp_mant[1] = a1;
223 	x->fp_mant[0] = a0;
224 	return (x);
225 }
226