1 /* $NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93 41 */ 42 43 /* 44 * FPU subroutines: `explode' the machine's `packed binary' format numbers 45 * into our internal format. 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $"); 50 51 #if defined(_KERNEL_OPT) 52 #include "opt_sparc_arch.h" 53 #endif 54 55 #include <sys/types.h> 56 #include <sys/systm.h> 57 58 #include <machine/ieee.h> 59 #include <machine/instr.h> 60 #include <machine/reg.h> 61 62 #include <sparc/fpu/fpu_arith.h> 63 #include <sparc/fpu/fpu_emu.h> 64 #include <sparc/fpu/fpu_extern.h> 65 66 /* 67 * N.B.: in all of the following, we assume the FP format is 68 * 69 * --------------------------- 70 * | s | exponent | fraction | 71 * --------------------------- 72 * 73 * (which represents -1**s * 1.fraction * 2**exponent), so that the 74 * sign bit is way at the top (bit 31), the exponent is next, and 75 * then the remaining bits mark the fraction. A zero exponent means 76 * zero or denormalized (0.fraction rather than 1.fraction), and the 77 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN. 78 * 79 * Since the sign bit is always the topmost bit---this holds even for 80 * integers---we set that outside all the *tof functions. Each function 81 * returns the class code for the new number (but note that we use 82 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate). 83 */ 84 85 /* 86 * int -> fpn. 87 */ 88 int 89 fpu_itof(fp, i) 90 register struct fpn *fp; 91 register u_int i; 92 { 93 94 if (i == 0) 95 return (FPC_ZERO); 96 /* 97 * The value FP_1 represents 2^FP_LG, so set the exponent 98 * there and let normalization fix it up. Convert negative 99 * numbers to sign-and-magnitude. Note that this relies on 100 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 101 */ 102 fp->fp_exp = FP_LG; 103 fp->fp_mant[0] = (int)i < 0 ? -i : i; 104 fp->fp_mant[1] = 0; 105 fp->fp_mant[2] = 0; 106 fp->fp_mant[3] = 0; 107 fpu_norm(fp); 108 return (FPC_NUM); 109 } 110 111 #ifdef SUN4U 112 /* 113 * 64-bit int -> fpn. 114 */ 115 int 116 fpu_xtof(fp, i) 117 register struct fpn *fp; 118 register u_int64_t i; 119 { 120 121 if (i == 0) 122 return (FPC_ZERO); 123 /* 124 * The value FP_1 represents 2^FP_LG, so set the exponent 125 * there and let normalization fix it up. Convert negative 126 * numbers to sign-and-magnitude. Note that this relies on 127 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 128 */ 129 fp->fp_exp = FP_LG2; 130 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i; 131 fp->fp_mant[2] = 0; 132 fp->fp_mant[3] = 0; 133 fpu_norm(fp); 134 return (FPC_NUM); 135 } 136 #endif /* SUN4U */ 137 138 #define mask(nbits) ((1L << (nbits)) - 1) 139 140 /* 141 * All external floating formats convert to internal in the same manner, 142 * as defined here. Note that only normals get an implied 1.0 inserted. 143 */ 144 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \ 145 if (exp == 0) { \ 146 if (allfrac == 0) \ 147 return (FPC_ZERO); \ 148 fp->fp_exp = 1 - expbias; \ 149 fp->fp_mant[0] = f0; \ 150 fp->fp_mant[1] = f1; \ 151 fp->fp_mant[2] = f2; \ 152 fp->fp_mant[3] = f3; \ 153 fpu_norm(fp); \ 154 return (FPC_NUM); \ 155 } \ 156 if (exp == (2 * expbias + 1)) { \ 157 if (allfrac == 0) \ 158 return (FPC_INF); \ 159 fp->fp_mant[0] = f0; \ 160 fp->fp_mant[1] = f1; \ 161 fp->fp_mant[2] = f2; \ 162 fp->fp_mant[3] = f3; \ 163 return (FPC_QNAN); \ 164 } \ 165 fp->fp_exp = exp - expbias; \ 166 fp->fp_mant[0] = FP_1 | f0; \ 167 fp->fp_mant[1] = f1; \ 168 fp->fp_mant[2] = f2; \ 169 fp->fp_mant[3] = f3; \ 170 return (FPC_NUM) 171 172 /* 173 * 32-bit single precision -> fpn. 174 * We assume a single occupies at most (64-FP_LG) bits in the internal 175 * format: i.e., needs at most fp_mant[0] and fp_mant[1]. 176 */ 177 int 178 fpu_stof(fp, i) 179 register struct fpn *fp; 180 register u_int i; 181 { 182 register int exp; 183 register u_int frac, f0, f1; 184 #define SNG_SHIFT (SNG_FRACBITS - FP_LG) 185 186 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS); 187 frac = i & mask(SNG_FRACBITS); 188 f0 = frac >> SNG_SHIFT; 189 f1 = frac << (32 - SNG_SHIFT); 190 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0); 191 } 192 193 /* 194 * 64-bit double -> fpn. 195 * We assume this uses at most (96-FP_LG) bits. 196 */ 197 int 198 fpu_dtof(fp, i, j) 199 register struct fpn *fp; 200 register u_int i, j; 201 { 202 register int exp; 203 register u_int frac, f0, f1, f2; 204 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG) 205 206 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS); 207 frac = i & mask(DBL_FRACBITS - 32); 208 f0 = frac >> DBL_SHIFT; 209 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT); 210 f2 = j << (32 - DBL_SHIFT); 211 frac |= j; 212 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0); 213 } 214 215 /* 216 * 128-bit extended -> fpn. 217 */ 218 int 219 fpu_qtof(fp, i, j, k, l) 220 register struct fpn *fp; 221 register u_int i, j, k, l; 222 { 223 register int exp; 224 register u_int frac, f0, f1, f2, f3; 225 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */ 226 227 /* 228 * Note that ext and fpn `line up', hence no shifting needed. 229 */ 230 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS); 231 frac = i & mask(EXT_FRACBITS - 3 * 32); 232 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT)); 233 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT)); 234 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT)); 235 f3 = l << EXT_SHIFT; 236 frac |= j | k | l; 237 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3); 238 } 239 240 /* 241 * Explode the contents of a register / regpair / regquad. 242 * If the input is a signalling NaN, an NV (invalid) exception 243 * will be set. (Note that nothing but NV can occur until ALU 244 * operations are performed.) 245 */ 246 void 247 fpu_explode(fe, fp, type, reg) 248 register struct fpemu *fe; 249 register struct fpn *fp; 250 int type, reg; 251 { 252 register u_int s, *space; 253 #ifdef SUN4U 254 u_int64_t l, *xspace; 255 256 xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1]; 257 l = xspace[0]; 258 #endif /* SUN4U */ 259 space = &fe->fe_fpstate->fs_regs[reg]; 260 s = space[0]; 261 fp->fp_sign = s >> 31; 262 fp->fp_sticky = 0; 263 switch (type) { 264 #ifdef SUN4U 265 case FTYPE_LNG: 266 s = fpu_xtof(fp, l); 267 break; 268 #endif /* SUN4U */ 269 270 case FTYPE_INT: 271 s = fpu_itof(fp, s); 272 break; 273 274 case FTYPE_SNG: 275 s = fpu_stof(fp, s); 276 break; 277 278 case FTYPE_DBL: 279 s = fpu_dtof(fp, s, space[1]); 280 break; 281 282 case FTYPE_EXT: 283 s = fpu_qtof(fp, s, space[1], space[2], space[3]); 284 break; 285 286 default: 287 panic("fpu_explode"); 288 } 289 290 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) { 291 /* 292 * Input is a signalling NaN. All operations that return 293 * an input NaN operand put it through a ``NaN conversion'', 294 * which basically just means ``turn on the quiet bit''. 295 * We do this here so that all NaNs internally look quiet 296 * (we can tell signalling ones by their class). 297 */ 298 fp->fp_mant[0] |= FP_QUIETBIT; 299 fe->fe_cx = FSR_NV; /* assert invalid operand */ 300 s = FPC_SNAN; 301 } 302 fp->fp_class = s; 303 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' : 304 ((type == FTYPE_INT) ? 'i' : 305 ((type == FTYPE_SNG) ? 's' : 306 ((type == FTYPE_DBL) ? 'd' : 307 ((type == FTYPE_EXT) ? 'q' : '?')))), 308 reg)); 309 #ifdef DEBUG 310 if (fpe_debug & FPE_REG) { 311 if (type == FTYPE_INT) printf("%d ", s); 312 #ifdef SUN4U 313 #ifdef _LP64 314 if (type == FTYPE_LNG) printf("%ld ", l); 315 #else 316 if (type == FTYPE_LNG) printf("%lld ", l); 317 #endif 318 #endif /* SUN4U */ 319 } 320 #endif /* DEBUG */ 321 DUMPFPN(FPE_REG, fp); 322 DPRINTF(FPE_REG, ("\n")); 323 } 324