xref: /netbsd-src/sys/arch/sparc/fpu/fpu_div.c (revision da5f4674a3fc214be3572d358b66af40ab9401e7)
1 /*	$NetBSD: fpu_div.c,v 1.4 2003/08/07 16:29:37 agc Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * Perform an FPU divide (return x / y).
45  */
46 
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.4 2003/08/07 16:29:37 agc Exp $");
49 
50 #include <sys/types.h>
51 
52 #include <machine/reg.h>
53 
54 #include <sparc/fpu/fpu_arith.h>
55 #include <sparc/fpu/fpu_emu.h>
56 
57 /*
58  * Division of normal numbers is done as follows:
59  *
60  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
61  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
62  *
63  *	q = (X / Y) * 2^((x exponent) - (y exponent))
64  *
65  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
66  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
67  * if X < Y.  In that case, it will have to be shifted left one bit to
68  * become a normal number, and the exponent decremented.  Thus, the
69  * desired exponent is:
70  *
71  *	left_shift = x->fp_mant < y->fp_mant;
72  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
73  *
74  * The quotient mantissa X/Y can then be computed one bit at a time
75  * using the following algorithm:
76  *
77  *	Q = 0;			-- Initial quotient.
78  *	R = X;			-- Initial remainder,
79  *	if (left_shift)		--   but fixed up in advance.
80  *		R *= 2;
81  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
82  *		if (R >= Y) {
83  *			Q |= 1 << bit;
84  *			R -= Y;
85  *		}
86  *	}
87  *
88  * The subtraction R -= Y always removes the uppermost bit from R (and
89  * can sometimes remove additional lower-order 1 bits); this proof is
90  * left to the reader.
91  *
92  * This loop correctly calculates the guard and round bits since they are
93  * included in the expanded internal representation.  The sticky bit
94  * is to be set if and only if any other bits beyond guard and round
95  * would be set.  From the above it is obvious that this is true if and
96  * only if the remainder R is nonzero when the loop terminates.
97  *
98  * Examining the loop above, we can see that the quotient Q is built
99  * one bit at a time ``from the top down''.  This means that we can
100  * dispense with the multi-word arithmetic and just build it one word
101  * at a time, writing each result word when it is done.
102  *
103  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
104  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
105  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
106  * set, and R can be set initially to either X - Y (when X >= Y) or
107  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
108  * so we will simply calculate R - Y and see if that underflows.
109  * This leads to the following revised version of the algorithm:
110  *
111  *	R = X;
112  *	bit = FP_1;
113  *	D = R - Y;
114  *	if (D >= 0) {
115  *		result_exp = x->fp_exp - y->fp_exp;
116  *		R = D;
117  *		q = bit;
118  *		bit >>= 1;
119  *	} else {
120  *		result_exp = x->fp_exp - y->fp_exp - 1;
121  *		q = 0;
122  *	}
123  *	R <<= 1;
124  *	do  {
125  *		D = R - Y;
126  *		if (D >= 0) {
127  *			q |= bit;
128  *			R = D;
129  *		}
130  *		R <<= 1;
131  *	} while ((bit >>= 1) != 0);
132  *	Q[0] = q;
133  *	for (i = 1; i < 4; i++) {
134  *		q = 0, bit = 1 << 31;
135  *		do {
136  *			D = R - Y;
137  *			if (D >= 0) {
138  *				q |= bit;
139  *				R = D;
140  *			}
141  *			R <<= 1;
142  *		} while ((bit >>= 1) != 0);
143  *		Q[i] = q;
144  *	}
145  *
146  * This can be refined just a bit further by moving the `R <<= 1'
147  * calculations to the front of the do-loops and eliding the first one.
148  * The process can be terminated immediately whenever R becomes 0, but
149  * this is relatively rare, and we do not bother.
150  */
151 
152 struct fpn *
153 fpu_div(fe)
154 	register struct fpemu *fe;
155 {
156 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
157 	register u_int q, bit;
158 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
159 	FPU_DECL_CARRY
160 
161 	/*
162 	 * Since divide is not commutative, we cannot just use ORDER.
163 	 * Check either operand for NaN first; if there is at least one,
164 	 * order the signalling one (if only one) onto the right, then
165 	 * return it.  Otherwise we have the following cases:
166 	 *
167 	 *	Inf / Inf = NaN, plus NV exception
168 	 *	Inf / num = Inf [i.e., return x]
169 	 *	Inf / 0   = Inf [i.e., return x]
170 	 *	0 / Inf = 0 [i.e., return x]
171 	 *	0 / num = 0 [i.e., return x]
172 	 *	0 / 0   = NaN, plus NV exception
173 	 *	num / Inf = 0
174 	 *	num / num = num (do the divide)
175 	 *	num / 0   = Inf, plus DZ exception
176 	 */
177 	if (ISNAN(x) || ISNAN(y)) {
178 		ORDER(x, y);
179 		return (y);
180 	}
181 	if (ISINF(x) || ISZERO(x)) {
182 		if (x->fp_class == y->fp_class)
183 			return (fpu_newnan(fe));
184 		return (x);
185 	}
186 
187 	/* all results at this point use XOR of operand signs */
188 	x->fp_sign ^= y->fp_sign;
189 	if (ISINF(y)) {
190 		x->fp_class = FPC_ZERO;
191 		return (x);
192 	}
193 	if (ISZERO(y)) {
194 		fe->fe_cx = FSR_DZ;
195 		x->fp_class = FPC_INF;
196 		return (x);
197 	}
198 
199 	/*
200 	 * Macros for the divide.  See comments at top for algorithm.
201 	 * Note that we expand R, D, and Y here.
202 	 */
203 
204 #define	SUBTRACT		/* D = R - Y */ \
205 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
206 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
207 
208 #define	NONNEGATIVE		/* D >= 0 */ \
209 	((int)d0 >= 0)
210 
211 #ifdef FPU_SHL1_BY_ADD
212 #define	SHL1			/* R <<= 1 */ \
213 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
214 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
215 #else
216 #define	SHL1 \
217 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
218 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
219 #endif
220 
221 #define	LOOP			/* do ... while (bit >>= 1) */ \
222 	do { \
223 		SHL1; \
224 		SUBTRACT; \
225 		if (NONNEGATIVE) { \
226 			q |= bit; \
227 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
228 		} \
229 	} while ((bit >>= 1) != 0)
230 
231 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
232 	q = 0; \
233 	bit = 1 << 31; \
234 	LOOP; \
235 	(x)->fp_mant[i] = q
236 
237 	/* Setup.  Note that we put our result in x. */
238 	r0 = x->fp_mant[0];
239 	r1 = x->fp_mant[1];
240 	r2 = x->fp_mant[2];
241 	r3 = x->fp_mant[3];
242 	y0 = y->fp_mant[0];
243 	y1 = y->fp_mant[1];
244 	y2 = y->fp_mant[2];
245 	y3 = y->fp_mant[3];
246 
247 	bit = FP_1;
248 	SUBTRACT;
249 	if (NONNEGATIVE) {
250 		x->fp_exp -= y->fp_exp;
251 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
252 		q = bit;
253 		bit >>= 1;
254 	} else {
255 		x->fp_exp -= y->fp_exp + 1;
256 		q = 0;
257 	}
258 	LOOP;
259 	x->fp_mant[0] = q;
260 	WORD(x, 1);
261 	WORD(x, 2);
262 	WORD(x, 3);
263 	x->fp_sticky = r0 | r1 | r2 | r3;
264 
265 	return (x);
266 }
267