xref: /netbsd-src/sys/arch/sparc/fpu/fpu_div.c (revision 4b30c543a0b21e3ba94f2c569e9a82b4fdb2075f)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
43  *
44  * from: Header: fpu_div.c,v 1.3 92/11/26 01:39:47 torek Exp
45  * $Id: fpu_div.c,v 1.1 1993/10/02 10:22:54 deraadt Exp $
46  */
47 
48 /*
49  * Perform an FPU divide (return x / y).
50  */
51 
52 #include <sys/types.h>
53 
54 #include <machine/reg.h>
55 
56 #include <sparc/fpu/fpu_arith.h>
57 #include <sparc/fpu/fpu_emu.h>
58 
59 /*
60  * Division of normal numbers is done as follows:
61  *
62  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
63  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
64  *
65  *	q = (X / Y) * 2^((x exponent) - (y exponent))
66  *
67  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
68  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
69  * if X < Y.  In that case, it will have to be shifted left one bit to
70  * become a normal number, and the exponent decremented.  Thus, the
71  * desired exponent is:
72  *
73  *	left_shift = x->fp_mant < y->fp_mant;
74  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
75  *
76  * The quotient mantissa X/Y can then be computed one bit at a time
77  * using the following algorithm:
78  *
79  *	Q = 0;			-- Initial quotient.
80  *	R = X;			-- Initial remainder,
81  *	if (left_shift)		--   but fixed up in advance.
82  *		R *= 2;
83  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
84  *		if (R >= Y) {
85  *			Q |= 1 << bit;
86  *			R -= Y;
87  *		}
88  *	}
89  *
90  * The subtraction R -= Y always removes the uppermost bit from R (and
91  * can sometimes remove additional lower-order 1 bits); this proof is
92  * left to the reader.
93  *
94  * This loop correctly calculates the guard and round bits since they are
95  * included in the expanded internal representation.  The sticky bit
96  * is to be set if and only if any other bits beyond guard and round
97  * would be set.  From the above it is obvious that this is true if and
98  * only if the remainder R is nonzero when the loop terminates.
99  *
100  * Examining the loop above, we can see that the quotient Q is built
101  * one bit at a time ``from the top down''.  This means that we can
102  * dispense with the multi-word arithmetic and just build it one word
103  * at a time, writing each result word when it is done.
104  *
105  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
106  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
107  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
108  * set, and R can be set initially to either X - Y (when X >= Y) or
109  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
110  * so we will simply calculate R - Y and see if that underflows.
111  * This leads to the following revised version of the algorithm:
112  *
113  *	R = X;
114  *	bit = FP_1;
115  *	D = R - Y;
116  *	if (D >= 0) {
117  *		result_exp = x->fp_exp - y->fp_exp;
118  *		R = D;
119  *		q = bit;
120  *		bit >>= 1;
121  *	} else {
122  *		result_exp = x->fp_exp - y->fp_exp - 1;
123  *		q = 0;
124  *	}
125  *	R <<= 1;
126  *	do  {
127  *		D = R - Y;
128  *		if (D >= 0) {
129  *			q |= bit;
130  *			R = D;
131  *		}
132  *		R <<= 1;
133  *	} while ((bit >>= 1) != 0);
134  *	Q[0] = q;
135  *	for (i = 1; i < 4; i++) {
136  *		q = 0, bit = 1 << 31;
137  *		do {
138  *			D = R - Y;
139  *			if (D >= 0) {
140  *				q |= bit;
141  *				R = D;
142  *			}
143  *			R <<= 1;
144  *		} while ((bit >>= 1) != 0);
145  *		Q[i] = q;
146  *	}
147  *
148  * This can be refined just a bit further by moving the `R <<= 1'
149  * calculations to the front of the do-loops and eliding the first one.
150  * The process can be terminated immediately whenever R becomes 0, but
151  * this is relatively rare, and we do not bother.
152  */
153 
154 struct fpn *
155 fpu_div(fe)
156 	register struct fpemu *fe;
157 {
158 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
159 	register u_int q, bit;
160 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
161 	FPU_DECL_CARRY
162 
163 	/*
164 	 * Since divide is not commutative, we cannot just use ORDER.
165 	 * Check either operand for NaN first; if there is at least one,
166 	 * order the signalling one (if only one) onto the right, then
167 	 * return it.  Otherwise we have the following cases:
168 	 *
169 	 *	Inf / Inf = NaN, plus NV exception
170 	 *	Inf / num = Inf [i.e., return x]
171 	 *	Inf / 0   = Inf [i.e., return x]
172 	 *	0 / Inf = 0 [i.e., return x]
173 	 *	0 / num = 0 [i.e., return x]
174 	 *	0 / 0   = NaN, plus NV exception
175 	 *	num / Inf = 0
176 	 *	num / num = num (do the divide)
177 	 *	num / 0   = Inf, plus DZ exception
178 	 */
179 	if (ISNAN(x) || ISNAN(y)) {
180 		ORDER(x, y);
181 		return (y);
182 	}
183 	if (ISINF(x) || ISZERO(x)) {
184 		if (x->fp_class == y->fp_class)
185 			return (fpu_newnan(fe));
186 		return (x);
187 	}
188 
189 	/* all results at this point use XOR of operand signs */
190 	x->fp_sign ^= y->fp_sign;
191 	if (ISINF(y)) {
192 		x->fp_class = FPC_ZERO;
193 		return (x);
194 	}
195 	if (ISZERO(y)) {
196 		fe->fe_cx = FSR_DZ;
197 		x->fp_class = FPC_INF;
198 		return (x);
199 	}
200 
201 	/*
202 	 * Macros for the divide.  See comments at top for algorithm.
203 	 * Note that we expand R, D, and Y here.
204 	 */
205 
206 #define	SUBTRACT		/* D = R - Y */ \
207 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
208 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
209 
210 #define	NONNEGATIVE		/* D >= 0 */ \
211 	((int)d0 >= 0)
212 
213 #ifdef FPU_SHL1_BY_ADD
214 #define	SHL1			/* R <<= 1 */ \
215 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
216 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
217 #else
218 #define	SHL1 \
219 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
220 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
221 #endif
222 
223 #define	LOOP			/* do ... while (bit >>= 1) */ \
224 	do { \
225 		SHL1; \
226 		SUBTRACT; \
227 		if (NONNEGATIVE) { \
228 			q |= bit; \
229 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
230 		} \
231 	} while ((bit >>= 1) != 0)
232 
233 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
234 	q = 0; \
235 	bit = 1 << 31; \
236 	LOOP; \
237 	(x)->fp_mant[i] = q
238 
239 	/* Setup.  Note that we put our result in x. */
240 	r0 = x->fp_mant[0];
241 	r1 = x->fp_mant[1];
242 	r2 = x->fp_mant[2];
243 	r3 = x->fp_mant[3];
244 	y0 = y->fp_mant[0];
245 	y1 = y->fp_mant[1];
246 	y2 = y->fp_mant[2];
247 	y3 = y->fp_mant[3];
248 
249 	bit = FP_1;
250 	SUBTRACT;
251 	if (NONNEGATIVE) {
252 		x->fp_exp -= y->fp_exp;
253 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
254 		q = bit;
255 		bit >>= 1;
256 	} else {
257 		x->fp_exp -= y->fp_exp + 1;
258 		q = 0;
259 	}
260 	LOOP;
261 	x->fp_mant[0] = q;
262 	WORD(x, 1);
263 	WORD(x, 2);
264 	WORD(x, 3);
265 	x->fp_sticky = r0 | r1 | r2 | r3;
266 
267 	return (x);
268 }
269