xref: /netbsd-src/sys/arch/sparc/fpu/fpu.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: fpu.c,v 1.11 2000/12/06 01:47:50 mrg Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/signal.h>
50 #include <sys/systm.h>
51 #include <sys/syslog.h>
52 #include <sys/signalvar.h>
53 
54 #include <machine/instr.h>
55 #include <machine/reg.h>
56 
57 #include <sparc/fpu/fpu_emu.h>
58 #include <sparc/fpu/fpu_extern.h>
59 
60 int fpe_debug = 0;
61 
62 #ifdef DEBUG
63 /*
64  * Dump a `fpn' structure.
65  */
66 void
67 fpu_dumpfpn(struct fpn *fp)
68 {
69 	static char *class[] = {
70 		"SNAN", "QNAN", "ZERO", "NUM", "INF"
71 	};
72 
73 	printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
74 		fp->fp_sign ? '-' : ' ',
75 		fp->fp_mant[0],	fp->fp_mant[1],
76 		fp->fp_mant[2], fp->fp_mant[3],
77 		fp->fp_exp);
78 }
79 #endif
80 
81 /*
82  * fpu_execute returns the following error numbers (0 = no error):
83  */
84 #define	FPE		1	/* take a floating point exception */
85 #define	NOTFPU		2	/* not an FPU instruction */
86 
87 /*
88  * Translate current exceptions into `first' exception.  The
89  * bits go the wrong way for ffs() (0x10 is most important, etc).
90  * There are only 5, so do it the obvious way.
91  */
92 #define	X1(x) x
93 #define	X2(x) x,x
94 #define	X4(x) x,x,x,x
95 #define	X8(x) X4(x),X4(x)
96 #define	X16(x) X8(x),X8(x)
97 
98 static char cx_to_trapx[] = {
99 	X1(FSR_NX),
100 	X2(FSR_DZ),
101 	X4(FSR_UF),
102 	X8(FSR_OF),
103 	X16(FSR_NV)
104 };
105 static u_char fpu_codes[] = {
106 	X1(FPE_FLTINEX_TRAP),
107 	X2(FPE_FLTDIV_TRAP),
108 	X4(FPE_FLTUND_TRAP),
109 	X8(FPE_FLTOVF_TRAP),
110 	X16(FPE_FLTOPERR_TRAP)
111 };
112 
113 /*
114  * The FPU gave us an exception.  Clean up the mess.  Note that the
115  * fp queue can only have FPops in it, never load/store FP registers
116  * nor FBfcc instructions.  Experiments with `crashme' prove that
117  * unknown FPops do enter the queue, however.
118  */
119 void
120 fpu_cleanup(p, fs)
121 	register struct proc *p;
122 #ifndef SUN4U
123 	register struct fpstate *fs;
124 #else /* SUN4U */
125 	register struct fpstate64 *fs;
126 #endif /* SUN4U */
127 {
128 	register int i, fsr = fs->fs_fsr, error;
129 	union instr instr;
130 	struct fpemu fe;
131 
132 	switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
133 
134 	case FSR_TT_NONE:
135 		panic("fpu_cleanup: No fault");	/* ??? */
136 		break;
137 
138 	case FSR_TT_IEEE:
139 		/* XXX missing trap address! */
140 		if ((i = fsr & FSR_CX) == 0)
141 			panic("fpu ieee trap, but no exception");
142 		trapsignal(p, SIGFPE, fpu_codes[i - 1]);
143 		break;		/* XXX should return, but queue remains */
144 
145 	case FSR_TT_UNFIN:
146 #ifdef SUN4U
147 		if (fs->fs_qsize == 0) {
148 			printf("fpu_cleanup: unfinished fpop");
149 			/* The book sez reexecute or emulate. */
150 			return;
151 		}
152 		break;
153 
154 #endif /* SUN4U */
155 	case FSR_TT_UNIMP:
156 		if (fs->fs_qsize == 0)
157 			panic("fpu_cleanup: unimplemented fpop");
158 		break;
159 
160 	case FSR_TT_SEQ:
161 		panic("fpu sequence error");
162 		/* NOTREACHED */
163 
164 	case FSR_TT_HWERR:
165 		log(LOG_ERR, "fpu hardware error (%s[%d])\n",
166 		    p->p_comm, p->p_pid);
167 		uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
168 		trapsignal(p, SIGFPE, -1);	/* ??? */
169 		goto out;
170 
171 	default:
172 		printf("fsr=0x%x\n", fsr);
173 		panic("fpu error");
174 	}
175 
176 	/* emulate the instructions left in the queue */
177 	fe.fe_fpstate = fs;
178 	for (i = 0; i < fs->fs_qsize; i++) {
179 		instr.i_int = fs->fs_queue[i].fq_instr;
180 		if (instr.i_any.i_op != IOP_reg ||
181 		    (instr.i_op3.i_op3 != IOP3_FPop1 &&
182 		     instr.i_op3.i_op3 != IOP3_FPop2))
183 			panic("bogus fpu queue");
184 		error = fpu_execute(&fe, instr);
185 		switch (error) {
186 
187 		case 0:
188 			continue;
189 
190 		case FPE:
191 			trapsignal(p, SIGFPE,
192 			    fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
193 			break;
194 
195 		case NOTFPU:
196 #ifdef SUN4U
197 #ifdef DEBUG
198 			printf("fpu_cleanup: not an FPU error -- sending SIGILL\n");
199 			Debugger();
200 #endif
201 #endif /* SUN4U */
202 			trapsignal(p, SIGILL, 0);	/* ??? code?  */
203 			break;
204 
205 		default:
206 			panic("fpu_cleanup 3");
207 			/* NOTREACHED */
208 		}
209 		/* XXX should stop here, but queue remains */
210 	}
211 out:
212 	fs->fs_qsize = 0;
213 }
214 
215 #ifdef notyet
216 /*
217  * If we have no FPU at all (are there any machines like this out
218  * there!?) we have to emulate each instruction, and we need a pointer
219  * to the trapframe so that we can step over them and do FBfcc's.
220  * We know the `queue' is empty, though; we just want to emulate
221  * the instruction at tf->tf_pc.
222  */
223 fpu_emulate(p, tf, fs)
224 	struct proc *p;
225 	register struct trapframe *tf;
226 #ifndef SUN4U
227 	register struct fpstate *fs;
228 #else /* SUN4U */
229 	register struct fpstate64 *fs;
230 #endif /* SUN4U */
231 {
232 
233 	do {
234 		fetch instr from pc
235 		decode
236 		if (integer instr) {
237 			/*
238 			 * We do this here, rather than earlier, to avoid
239 			 * losing even more badly than usual.
240 			 */
241 			if (p->p_addr->u_pcb.pcb_uw) {
242 				write_user_windows();
243 				if (rwindow_save(p))
244 					sigexit(p, SIGILL);
245 			}
246 			if (loadstore) {
247 				do_it;
248 				pc = npc, npc += 4
249 			} else if (fbfcc) {
250 				do_annul_stuff;
251 			} else
252 				return;
253 		} else if (fpu instr) {
254 			fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
255 			error = fpu_execute(&fe, fs, instr);
256 			switch (error) {
257 				etc;
258 			}
259 		} else
260 			return;
261 		if (want to reschedule)
262 			return;
263 	} while (error == 0);
264 }
265 #endif
266 
267 /*
268  * Execute an FPU instruction (one that runs entirely in the FPU; not
269  * FBfcc or STF, for instance).  On return, fe->fe_fs->fs_fsr will be
270  * modified to reflect the setting the hardware would have left.
271  *
272  * Note that we do not catch all illegal opcodes, so you can, for instance,
273  * multiply two integers this way.
274  */
275 int
276 fpu_execute(fe, instr)
277 	register struct fpemu *fe;
278 	union instr instr;
279 {
280 	register struct fpn *fp;
281 #ifndef SUN4U
282 	register int opf, rs1, rs2, rd, type, mask, fsr, cx;
283 	register struct fpstate *fs;
284 #else /* SUN4U */
285 	register int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
286 	register struct fpstate64 *fs;
287 #endif /* SUN4U */
288 	u_int space[4];
289 
290 	/*
291 	 * `Decode' and execute instruction.  Start with no exceptions.
292 	 * The type of any i_opf opcode is in the bottom two bits, so we
293 	 * squish them out here.
294 	 */
295 	opf = instr.i_opf.i_opf;
296 	type = opf & 3;
297 	mask = "\0\0\1\3"[type];
298 	rs1 = instr.i_opf.i_rs1 & ~mask;
299 	rs2 = instr.i_opf.i_rs2 & ~mask;
300 	rd = instr.i_opf.i_rd & ~mask;
301 #ifdef notdef
302 	if ((rs1 | rs2 | rd) & mask)
303 		return (BADREG);
304 #endif
305 	fs = fe->fe_fpstate;
306 	fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
307 	fe->fe_cx = 0;
308 #ifdef SUN4U
309 	/*
310 	 * Check to see if we're dealing with a fancy cmove and handle
311 	 * it first.
312 	 */
313 	if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
314 		switch (opf >>= 2) {
315 		case FMVFC0 >> 2:
316 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC0\n"));
317 			cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
318 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
319 			rs1 = fs->fs_regs[rs2];
320 			goto mov;
321 		case FMVFC1 >> 2:
322 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC1\n"));
323 			cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
324 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
325 			rs1 = fs->fs_regs[rs2];
326 			goto mov;
327 		case FMVFC2 >> 2:
328 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC2\n"));
329 			cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
330 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
331 			rs1 = fs->fs_regs[rs2];
332 			goto mov;
333 		case FMVFC3 >> 2:
334 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC3\n"));
335 			cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
336 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
337 			rs1 = fs->fs_regs[rs2];
338 			goto mov;
339 		case FMVIC >> 2:
340 			/* Presume we're curproc */
341 			DPRINTF(FPE_INSN, ("fpu_execute: FMVIC\n"));
342 			cond = (curproc->p_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
343 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
344 			rs1 = fs->fs_regs[rs2];
345 			goto mov;
346 		case FMVXC >> 2:
347 			/* Presume we're curproc */
348 			DPRINTF(FPE_INSN, ("fpu_execute: FMVXC\n"));
349 			cond = (curproc->p_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
350 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
351 			rs1 = fs->fs_regs[rs2];
352 			goto mov;
353 		case FMVRZ >> 2:
354 			/* Presume we're curproc */
355 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRZ\n"));
356 			rs1 = instr.i_fmovr.i_rs1;
357 			if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] != 0)
358 				return (0); /* success */
359 			rs1 = fs->fs_regs[rs2];
360 			goto mov;
361 		case FMVRLEZ >> 2:
362 			/* Presume we're curproc */
363 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRLEZ\n"));
364 			rs1 = instr.i_fmovr.i_rs1;
365 			if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] > 0)
366 				return (0); /* success */
367 			rs1 = fs->fs_regs[rs2];
368 			goto mov;
369 		case FMVRLZ >> 2:
370 			/* Presume we're curproc */
371 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRLZ\n"));
372 			rs1 = instr.i_fmovr.i_rs1;
373 			if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] >= 0)
374 				return (0); /* success */
375 			rs1 = fs->fs_regs[rs2];
376 			goto mov;
377 		case FMVRNZ >> 2:
378 			/* Presume we're curproc */
379 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRNZ\n"));
380 			rs1 = instr.i_fmovr.i_rs1;
381 			if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] == 0)
382 				return (0); /* success */
383 			rs1 = fs->fs_regs[rs2];
384 			goto mov;
385 		case FMVRGZ >> 2:
386 			/* Presume we're curproc */
387 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRGZ\n"));
388 			rs1 = instr.i_fmovr.i_rs1;
389 			if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] <= 0)
390 				return (0); /* success */
391 			rs1 = fs->fs_regs[rs2];
392 			goto mov;
393 		case FMVRGEZ >> 2:
394 			/* Presume we're curproc */
395 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRGEZ\n"));
396 			rs1 = instr.i_fmovr.i_rs1;
397 			if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] < 0)
398 				return (0); /* success */
399 			rs1 = fs->fs_regs[rs2];
400 			goto mov;
401 		default:
402 			DPRINTF(FPE_INSN,
403 				("fpu_execute: unknown v9 FP inst %x opf %x\n",
404 					instr.i_int, opf));
405 			return (NOTFPU);
406 		}
407 	}
408 #endif /* SUN4U */
409 	switch (opf >>= 2) {
410 
411 	default:
412 		DPRINTF(FPE_INSN,
413 			("fpu_execute: unknown basic FP inst %x opf %x\n",
414 				instr.i_int, opf));
415 		return (NOTFPU);
416 
417 	case FMOV >> 2:		/* these should all be pretty obvious */
418 		DPRINTF(FPE_INSN, ("fpu_execute: FMOV\n"));
419 		rs1 = fs->fs_regs[rs2];
420 		goto mov;
421 
422 	case FNEG >> 2:
423 		DPRINTF(FPE_INSN, ("fpu_execute: FNEG\n"));
424 		rs1 = fs->fs_regs[rs2] ^ (1 << 31);
425 		goto mov;
426 
427 	case FABS >> 2:
428 		DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
429 		rs1 = fs->fs_regs[rs2] & ~(1 << 31);
430 	mov:
431 #ifndef SUN4U
432 		fs->fs_regs[rd] = rs1;
433 #else /* SUN4U */
434 		i = 1<<type;
435 		fs->fs_regs[rd++] = rs1;
436 		while (--i)
437 			fs->fs_regs[rd++] = fs->fs_regs[++rs2];
438 #endif /* SUN4U */
439 		fs->fs_fsr = fe->fe_fsr;
440 		return (0);	/* success */
441 
442 	case FSQRT >> 2:
443 		DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
444 		fpu_explode(fe, &fe->fe_f1, type, rs2);
445 		fp = fpu_sqrt(fe);
446 		break;
447 
448 	case FADD >> 2:
449 		DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
450 		fpu_explode(fe, &fe->fe_f1, type, rs1);
451 		fpu_explode(fe, &fe->fe_f2, type, rs2);
452 		fp = fpu_add(fe);
453 		break;
454 
455 	case FSUB >> 2:
456 		DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
457 		fpu_explode(fe, &fe->fe_f1, type, rs1);
458 		fpu_explode(fe, &fe->fe_f2, type, rs2);
459 		fp = fpu_sub(fe);
460 		break;
461 
462 	case FMUL >> 2:
463 		DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
464 		fpu_explode(fe, &fe->fe_f1, type, rs1);
465 		fpu_explode(fe, &fe->fe_f2, type, rs2);
466 		fp = fpu_mul(fe);
467 		break;
468 
469 	case FDIV >> 2:
470 		DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
471 		fpu_explode(fe, &fe->fe_f1, type, rs1);
472 		fpu_explode(fe, &fe->fe_f2, type, rs2);
473 		fp = fpu_div(fe);
474 		break;
475 
476 	case FCMP >> 2:
477 		DPRINTF(FPE_INSN, ("fpu_execute: FCMP\n"));
478 		fpu_explode(fe, &fe->fe_f1, type, rs1);
479 		fpu_explode(fe, &fe->fe_f2, type, rs2);
480 		fpu_compare(fe, 0);
481 		goto cmpdone;
482 
483 	case FCMPE >> 2:
484 		DPRINTF(FPE_INSN, ("fpu_execute: FCMPE\n"));
485 		fpu_explode(fe, &fe->fe_f1, type, rs1);
486 		fpu_explode(fe, &fe->fe_f2, type, rs2);
487 		fpu_compare(fe, 1);
488 	cmpdone:
489 		/*
490 		 * The only possible exception here is NV; catch it
491 		 * early and get out, as there is no result register.
492 		 */
493 		cx = fe->fe_cx;
494 		fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
495 		if (cx != 0) {
496 			if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
497 				fs->fs_fsr = (fsr & ~FSR_FTT) |
498 				    (FSR_TT_IEEE << FSR_FTT_SHIFT);
499 				return (FPE);
500 			}
501 			fsr |= FSR_NV << FSR_AX_SHIFT;
502 		}
503 		fs->fs_fsr = fsr;
504 		return (0);
505 
506 	case FSMULD >> 2:
507 	case FDMULX >> 2:
508 		DPRINTF(FPE_INSN, ("fpu_execute: FSMULx\n"));
509 		if (type == FTYPE_EXT)
510 			return (NOTFPU);
511 		fpu_explode(fe, &fe->fe_f1, type, rs1);
512 		fpu_explode(fe, &fe->fe_f2, type, rs2);
513 		type++;	/* single to double, or double to quad */
514 		fp = fpu_mul(fe);
515 		break;
516 
517 #ifdef SUN4U
518 	case FXTOS >> 2:
519 	case FXTOD >> 2:
520 	case FXTOQ >> 2:
521 		DPRINTF(FPE_INSN, ("fpu_execute: FXTOx\n"));
522 		type = FTYPE_LNG;
523 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
524 		type = opf & 3;	/* sneaky; depends on instruction encoding */
525 		break;
526 
527 	case FTOX >> 2:
528 		DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
529 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
530 		type = FTYPE_LNG;
531 		break;
532 #endif /* SUN4U */
533 
534 	case FTOS >> 2:
535 	case FTOD >> 2:
536 	case FTOQ >> 2:
537 	case FTOI >> 2:
538 		DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
539 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
540 		type = opf & 3;	/* sneaky; depends on instruction encoding */
541 		break;
542 	}
543 
544 	/*
545 	 * ALU operation is complete.  Collapse the result and then check
546 	 * for exceptions.  If we got any, and they are enabled, do not
547 	 * alter the destination register, just stop with an exception.
548 	 * Otherwise set new current exceptions and accrue.
549 	 */
550 	fpu_implode(fe, fp, type, space);
551 	cx = fe->fe_cx;
552 	fsr = fe->fe_fsr;
553 	if (cx != 0) {
554 		mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
555 		if (cx & mask) {
556 			/* not accrued??? */
557 			fs->fs_fsr = (fsr & ~FSR_FTT) |
558 			    (FSR_TT_IEEE << FSR_FTT_SHIFT) |
559 			    (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
560 			return (FPE);
561 		}
562 		fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
563 	}
564 	fs->fs_fsr = fsr;
565 	fs->fs_regs[rd] = space[0];
566 	if (type >= FTYPE_DBL || type == FTYPE_LNG) {
567 		fs->fs_regs[rd + 1] = space[1];
568 		if (type > FTYPE_DBL) {
569 			fs->fs_regs[rd + 2] = space[2];
570 			fs->fs_regs[rd + 3] = space[3];
571 		}
572 	}
573 	return (0);	/* success */
574 }
575