xref: /netbsd-src/sys/arch/sparc/dev/zs.c (revision d0fed6c87ddc40a8bffa6f99e7433ddfc864dd83)
1 /*	$NetBSD: zs.c,v 1.47 1997/04/14 21:26:29 pk Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
45  */
46 
47 /*
48  * Zilog Z8530 (ZSCC) driver.
49  *
50  * Runs two tty ports (ttya and ttyb) on zs0,
51  * and runs a keyboard and mouse on zs1, and
52  * possibly two more tty ports (ttyc and ttyd) on zs2.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include "zs.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/malloc.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69 #include <sys/conf.h>
70 
71 #include <machine/autoconf.h>
72 #include <machine/conf.h>
73 #include <machine/cpu.h>
74 #include <machine/kbd.h>
75 
76 #include <sparc/sparc/vaddrs.h>
77 #include <sparc/sparc/auxreg.h>
78 #include <dev/ic/z8530reg.h>
79 #include <sparc/dev/zsvar.h>
80 
81 #ifdef KGDB
82 #include <machine/remote-sl.h>
83 #endif
84 
85 #define	ZSMAJOR	12		/* XXX */
86 
87 #define	ZS_KBD		2	/* XXX */
88 #define	ZS_MOUSE	3	/* XXX */
89 
90 /* the magic number below was stolen from the Sprite source. */
91 #define PCLK	(19660800/4)	/* PCLK pin input clock rate */
92 
93 /*
94  * Select software interrupt bit based on TTY ipl.
95  */
96 #if PIL_TTY == 1
97 # define IE_ZSSOFT IE_L1
98 #elif PIL_TTY == 4
99 # define IE_ZSSOFT IE_L4
100 #elif PIL_TTY == 6
101 # define IE_ZSSOFT IE_L6
102 #else
103 # error "no suitable software interrupt bit"
104 #endif
105 
106 /*
107  * Software state per found chip.
108  */
109 struct zs_softc {
110 	struct	device sc_dev;			/* base device */
111 	volatile struct zsdevice *sc_zs;	/* chip registers */
112 	struct	evcnt sc_intrcnt;		/* count interrupts */
113 	struct	zs_chanstate sc_cs[2];		/* chan A/B software state */
114 };
115 
116 /* Definition of the driver for autoconfig. */
117 static int	zsmatch __P((struct device *, struct cfdata *, void *));
118 static void	zsattach __P((struct device *, struct device *, void *));
119 
120 struct cfattach zs_ca = {
121 	sizeof(struct zs_softc), zsmatch, zsattach
122 };
123 
124 struct cfdriver zs_cd = {
125 	NULL, "zs", DV_TTY
126 };
127 
128 /* Interrupt handlers. */
129 static int	zshard __P((void *));
130 static struct intrhand levelhard = { zshard };
131 static int	zssoft __P((void *));
132 static struct intrhand levelsoft = { zssoft };
133 
134 struct zs_chanstate *zslist;
135 
136 /* Routines called from other code. */
137 static void	zsiopen __P((struct tty *));
138 static void	zsiclose __P((struct tty *));
139 static void	zsstart __P((struct tty *));
140 static int	zsparam __P((struct tty *, struct termios *));
141 
142 /* Routines purely local to this driver. */
143 static int	zs_getspeed __P((volatile struct zschan *));
144 #ifdef KGDB
145 static void	zs_reset __P((volatile struct zschan *, int, int));
146 #endif
147 static void	zs_modem __P((struct zs_chanstate *, int));
148 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
149 
150 /* Console stuff. */
151 static struct tty *zs_ctty;	/* console `struct tty *' */
152 static int zs_consin = -1, zs_consout = -1;
153 static struct zs_chanstate *zs_conscs = NULL; /*console channel state */
154 static void zscnputc __P((int));	/* console putc function */
155 static volatile struct zschan *zs_conschan;
156 static struct tty *zs_checkcons __P((struct zs_softc *, int,
157     struct zs_chanstate *));
158 
159 #ifdef KGDB
160 /* KGDB stuff.  Must reboot to change zs_kgdbunit. */
161 extern int kgdb_dev, kgdb_rate;
162 static int zs_kgdb_savedspeed;
163 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
164 void zskgdb __P((int));
165 static int zs_kgdb_getc __P((void *));
166 static void zs_kgdb_putc __P((void *, int));
167 #endif
168 
169 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
170 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
171 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
172 
173 void zsabort __P((void));
174 static void zsoverrun __P((int, long *, char *));
175 
176 static volatile struct zsdevice *zsaddr[NZS];	/* XXX, but saves work */
177 
178 /*
179  * Console keyboard L1-A processing is done in the hardware interrupt code,
180  * so we need to duplicate some of the console keyboard decode state.  (We
181  * must not use the regular state as the hardware code keeps ahead of the
182  * software state: the software state tracks the most recent ring input but
183  * the hardware state tracks the most recent ZSCC input.)  See also kbd.h.
184  */
185 static struct conk_state {	/* console keyboard state */
186 	char	conk_id;	/* true => ID coming up (console only) */
187 	char	conk_l1;	/* true => L1 pressed (console only) */
188 } zsconk_state;
189 
190 int zshardscope;
191 int zsshortcuts;		/* number of "shortcut" software interrupts */
192 
193 #ifdef SUN4
194 static u_int zs_read __P((volatile struct zschan *, u_int reg));
195 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
196 
197 static u_int
198 zs_read(zc, reg)
199 	volatile struct zschan *zc;
200 	u_int reg;
201 {
202 	u_char val;
203 
204 	zc->zc_csr = reg;
205 	ZS_DELAY();
206 	val = zc->zc_csr;
207 	ZS_DELAY();
208 	return val;
209 }
210 
211 static u_int
212 zs_write(zc, reg, val)
213 	volatile struct zschan *zc;
214 	u_int reg, val;
215 {
216 	zc->zc_csr = reg;
217 	ZS_DELAY();
218 	zc->zc_csr = val;
219 	ZS_DELAY();
220 	return val;
221 }
222 #endif /* SUN4 */
223 
224 /*
225  * Match slave number to zs unit number, so that misconfiguration will
226  * not set up the keyboard as ttya, etc.
227  */
228 static int
229 zsmatch(parent, cf, aux)
230 	struct device *parent;
231 	struct cfdata *cf;
232 	void *aux;
233 {
234 	struct confargs *ca = aux;
235 	struct romaux *ra = &ca->ca_ra;
236 
237 	if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
238 		return (0);
239 	if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
240 	    (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
241 		return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
242 	ra->ra_len = NBPG;
243 	return (probeget(ra->ra_vaddr, 1) != -1);
244 }
245 
246 /*
247  * Attach a found zs.
248  *
249  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
250  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
251  */
252 static void
253 zsattach(parent, dev, aux)
254 	struct device *parent;
255 	struct device *dev;
256 	void *aux;
257 {
258 	register int zs = dev->dv_unit, unit;
259 	register struct zs_softc *sc;
260 	register struct zs_chanstate *cs;
261 	register volatile struct zsdevice *addr;
262 	register struct tty *tp, *ctp;
263 	register struct confargs *ca = aux;
264 	register struct romaux *ra = &ca->ca_ra;
265 	int pri;
266 	static int didintr, prevpri;
267 	int ringsize;
268 
269 	if ((addr = zsaddr[zs]) == NULL)
270 		addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
271 	if (ca->ca_bustype==BUS_MAIN)
272 		if ((void *)addr != ra->ra_vaddr)
273 			panic("zsattach");
274 	if (ra->ra_nintr != 1) {
275 		printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
276 		return;
277 	}
278 	pri = ra->ra_intr[0].int_pri;
279 	printf(" pri %d, softpri %d\n", pri, PIL_TTY);
280 	if (!didintr) {
281 		didintr = 1;
282 		prevpri = pri;
283 		intr_establish(pri, &levelhard);
284 		intr_establish(PIL_TTY, &levelsoft);
285 	} else if (pri != prevpri)
286 		panic("broken zs interrupt scheme");
287 	sc = (struct zs_softc *)dev;
288 	evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
289 	sc->sc_zs = addr;
290 	unit = zs * 2;
291 	cs = sc->sc_cs;
292 
293 	/* link into interrupt list with order (A,B) (B=A+1) */
294 	cs[0].cs_next = &cs[1];
295 	cs[0].cs_sc = sc;
296 	cs[1].cs_next = zslist;
297 	cs[1].cs_sc = sc;
298 	zslist = cs;
299 
300 	cs->cs_unit = unit;
301 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
302 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
303 	if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
304 		tp = ctp;
305 	else {
306 		tp = ttymalloc();
307 		tp->t_dev = makedev(ZSMAJOR, unit);
308 		tp->t_oproc = zsstart;
309 		tp->t_param = zsparam;
310 	}
311 	cs->cs_ttyp = tp;
312 #ifdef KGDB
313 	if (ctp == NULL)
314 		zs_checkkgdb(unit, cs, tp);
315 #endif
316 	if (unit == ZS_KBD) {
317 		/*
318 		 * Keyboard: tell /dev/kbd driver how to talk to us.
319 		 */
320 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
321 		tp->t_cflag = CS8;
322 		kbd_serial(tp, zsiopen, zsiclose);
323 		cs->cs_conk = 1;		/* do L1-A processing */
324 		ringsize = 128;
325 	} else {
326 		if (tp != ctp)
327 			tty_attach(tp);
328 		ringsize = 4096;
329 		if (unit == zs_consout)
330 			zs_conscs = cs;
331 	}
332 	cs->cs_ringmask = ringsize - 1;
333 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
334 			      M_DEVBUF, M_NOWAIT);
335 
336 	unit++;
337 	cs++;
338 	cs->cs_unit = unit;
339 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
340 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
341 	if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
342 		tp = ctp;
343 	else {
344 		tp = ttymalloc();
345 		tp->t_dev = makedev(ZSMAJOR, unit);
346 		tp->t_oproc = zsstart;
347 		tp->t_param = zsparam;
348 	}
349 	cs->cs_ttyp = tp;
350 #ifdef KGDB
351 	if (ctp == NULL)
352 		zs_checkkgdb(unit, cs, tp);
353 #endif
354 	if (unit == ZS_MOUSE) {
355 		/*
356 		 * Mouse: tell /dev/mouse driver how to talk to us.
357 		 */
358 		tp->t_ispeed = tp->t_ospeed = B1200;
359 		tp->t_cflag = CS8;
360 		ms_serial(tp, zsiopen, zsiclose);
361 		ringsize = 128;
362 	} else {
363 		if (tp != ctp)
364 			tty_attach(tp);
365 		ringsize = 4096;
366 		if (unit == zs_consout)
367 			zs_conscs = cs;
368 	}
369 	cs->cs_ringmask = ringsize - 1;
370 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
371 			      M_DEVBUF, M_NOWAIT);
372 }
373 
374 #ifdef KGDB
375 /*
376  * Put a channel in a known state.  Interrupts may be left disabled
377  * or enabled, as desired.
378  */
379 static void
380 zs_reset(zc, inten, speed)
381 	volatile struct zschan *zc;
382 	int inten, speed;
383 {
384 	int tconst;
385 	static u_char reg[16] = {
386 		0,
387 		0,
388 		0,
389 		ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
390 		ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
391 		ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
392 		0,
393 		0,
394 		0,
395 		0,
396 		ZSWR10_NRZ,
397 		ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
398 		0,
399 		0,
400 		ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
401 		ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
402 	};
403 
404 	reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
405 	tconst = BPS_TO_TCONST(PCLK / 16, speed);
406 	reg[12] = tconst;
407 	reg[13] = tconst >> 8;
408 	zs_loadchannelregs(zc, reg);
409 }
410 #endif
411 
412 /*
413  * Declare the given tty (which is in fact &cons) as a console input
414  * or output.  This happens before the zs chip is attached; the hookup
415  * is finished later, in zs_setcons() below.
416  *
417  * This is used only for ports a and b.  The console keyboard is decoded
418  * independently (we always send unit-2 input to /dev/kbd, which will
419  * direct it to /dev/console if appropriate).
420  */
421 void
422 zsconsole(tp, unit, out, fnstop)
423 	register struct tty *tp;
424 	register int unit;
425 	int out;
426 	void (**fnstop) __P((struct tty *, int));
427 {
428 	int zs;
429 	volatile struct zsdevice *addr;
430 
431 	if (unit >= ZS_KBD)
432 		panic("zsconsole");
433 	if (out) {
434 		zs_consout = unit;
435 		zs = unit >> 1;
436 		if ((addr = zsaddr[zs]) == NULL)
437 			addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
438 		zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
439 		    &addr->zs_chan[ZS_CHAN_B];
440 		v_putc = zscnputc;
441 	} else
442 		zs_consin = unit;
443 	if (fnstop)
444 		*fnstop = &zsstop;
445 	zs_ctty = tp;
446 }
447 
448 /*
449  * Polled console output putchar.
450  */
451 static void
452 zscnputc(c)
453 	int c;
454 {
455 	register volatile struct zschan *zc = zs_conschan;
456 	register int s;
457 
458 	if (c == '\n')
459 		zscnputc('\r');
460 	/*
461 	 * Must block output interrupts (i.e., raise to >= splzs) without
462 	 * lowering current ipl.  Need a better way.
463 	 */
464 	s = splhigh();
465 	if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
466 		(void) splzs();
467 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
468 		ZS_DELAY();
469 	/*
470 	 * If transmitter was busy doing regular tty I/O (ZSWR1_TIE on),
471 	 * defer our output until the transmit interrupt runs. We still
472 	 * sync with TX_READY so we can get by with a single-char "queue".
473 	 */
474 	if (zs_conscs != NULL && (zs_conscs->cs_creg[1] & ZSWR1_TIE)) {
475 		/*
476 		 * If previous not yet done, send it now; zsxint()
477 		 * will field the interrupt for our char, but doesn't
478 		 * care. We're running at sufficiently high spl for
479 		 * this to work.
480 		 */
481 		if (zs_conscs->cs_deferred_cc != 0)
482 			zc->zc_data = zs_conscs->cs_deferred_cc;
483 		zs_conscs->cs_deferred_cc = c;
484 		splx(s);
485 		return;
486 	}
487 	zc->zc_data = c;
488 	ZS_DELAY();
489 	splx(s);
490 }
491 
492 /*
493  * Set up the given unit as console input, output, both, or neither, as
494  * needed.  Return console tty if it is to receive console input.
495  */
496 static struct tty *
497 zs_checkcons(sc, unit, cs)
498 	struct zs_softc *sc;
499 	int unit;
500 	struct zs_chanstate *cs;
501 {
502 	register struct tty *tp;
503 	char *i, *o;
504 
505 	if ((tp = zs_ctty) == NULL) /* XXX */
506 		return (0);
507 	i = zs_consin == unit ? "input" : NULL;
508 	o = zs_consout == unit ? "output" : NULL;
509 	if (i == NULL && o == NULL)
510 		return (0);
511 
512 	/* rewire the minor device (gack) */
513 	tp->t_dev = makedev(major(tp->t_dev), unit);
514 
515 	/*
516 	 * Rewire input and/or output.  Note that baud rate reflects
517 	 * input settings, not output settings, but we can do no better
518 	 * if the console is split across two ports.
519 	 *
520 	 * XXX	split consoles don't work anyway -- this needs to be
521 	 *	thrown away and redone
522 	 */
523 	if (i) {
524 		tp->t_param = zsparam;
525 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
526 		tp->t_cflag = CS8;
527 		ttsetwater(tp);
528 	}
529 	if (o) {
530 		tp->t_oproc = zsstart;
531 	}
532 	printf("%s%c: console %s\n",
533 	    sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
534 	cs->cs_consio = 1;
535 	cs->cs_brkabort = 1;
536 	return (tp);
537 }
538 
539 #ifdef KGDB
540 /*
541  * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
542  * Pick up the current speed and character size and restore the original
543  * speed.
544  */
545 static void
546 zs_checkkgdb(unit, cs, tp)
547 	int unit;
548 	struct zs_chanstate *cs;
549 	struct tty *tp;
550 {
551 
552 	if (kgdb_dev == makedev(ZSMAJOR, unit)) {
553 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
554 		tp->t_cflag = CS8;
555 		cs->cs_kgdb = 1;
556 		cs->cs_speed = zs_kgdb_savedspeed;
557 		(void) zsparam(tp, &tp->t_termios);
558 	}
559 }
560 #endif
561 
562 /*
563  * Compute the current baud rate given a ZSCC channel.
564  */
565 static int
566 zs_getspeed(zc)
567 	register volatile struct zschan *zc;
568 {
569 	register int tconst;
570 
571 	tconst = ZS_READ(zc, 12);
572 	tconst |= ZS_READ(zc, 13) << 8;
573 	return (TCONST_TO_BPS(PCLK / 16, tconst));
574 }
575 
576 
577 /*
578  * Do an internal open.
579  */
580 static void
581 zsiopen(tp)
582 	struct tty *tp;
583 {
584 
585 	(void) zsparam(tp, &tp->t_termios);
586 	ttsetwater(tp);
587 	tp->t_state = TS_ISOPEN | TS_CARR_ON;
588 }
589 
590 /*
591  * Do an internal close.  Eventually we should shut off the chip when both
592  * ports on it are closed.
593  */
594 static void
595 zsiclose(tp)
596 	struct tty *tp;
597 {
598 
599 	ttylclose(tp, 0);	/* ??? */
600 	ttyclose(tp);		/* ??? */
601 	tp->t_state = 0;
602 }
603 
604 
605 /*
606  * Open a zs serial port.  This interface may not be used to open
607  * the keyboard and mouse ports. (XXX)
608  */
609 int
610 zsopen(dev, flags, mode, p)
611 	dev_t dev;
612 	int flags;
613 	int mode;
614 	struct proc *p;
615 {
616 	register struct tty *tp;
617 	register struct zs_chanstate *cs;
618 	struct zs_softc *sc;
619 	int unit = minor(dev), zs = unit >> 1, error, s;
620 
621 	if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL ||
622 	    unit == ZS_KBD || unit == ZS_MOUSE)
623 		return (ENXIO);
624 	cs = &sc->sc_cs[unit & 1];
625 	if (cs->cs_consio)
626 		return (ENXIO);		/* ??? */
627 	tp = cs->cs_ttyp;
628 	s = spltty();
629 	if ((tp->t_state & TS_ISOPEN) == 0) {
630 		ttychars(tp);
631 		if (tp->t_ispeed == 0) {
632 			tp->t_iflag = TTYDEF_IFLAG;
633 			tp->t_oflag = TTYDEF_OFLAG;
634 			tp->t_cflag = TTYDEF_CFLAG;
635 			tp->t_lflag = TTYDEF_LFLAG;
636 			tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
637 		}
638 		(void) zsparam(tp, &tp->t_termios);
639 		ttsetwater(tp);
640 	} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
641 		splx(s);
642 		return (EBUSY);
643 	}
644 	error = 0;
645 	for (;;) {
646 		register int rr0;
647 
648 		/* loop, turning on the device, until carrier present */
649 		zs_modem(cs, 1);
650 		/* May never get status intr if carrier already on. -gwr */
651 		rr0 = cs->cs_zc->zc_csr;
652 		ZS_DELAY();
653 		if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
654 			tp->t_state |= TS_CARR_ON;
655 		if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
656 		    tp->t_state & TS_CARR_ON)
657 			break;
658 		tp->t_state |= TS_WOPEN;
659 		error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
660 				 ttopen, 0);
661 		if (error) {
662 			if (!(tp->t_state & TS_ISOPEN)) {
663 				zs_modem(cs, 0);
664 				tp->t_state &= ~TS_WOPEN;
665 				ttwakeup(tp);
666 			}
667 			splx(s);
668 			return error;
669 		}
670 	}
671 	splx(s);
672 	if (error == 0)
673 		error = linesw[tp->t_line].l_open(dev, tp);
674 	if (error)
675 		zs_modem(cs, 0);
676 	return (error);
677 }
678 
679 /*
680  * Close a zs serial port.
681  */
682 int
683 zsclose(dev, flags, mode, p)
684 	dev_t dev;
685 	int flags;
686 	int mode;
687 	struct proc *p;
688 {
689 	register struct zs_chanstate *cs;
690 	register struct tty *tp;
691 	struct zs_softc *sc;
692 	int unit = minor(dev), s;
693 
694 	sc = zs_cd.cd_devs[unit >> 1];
695 	cs = &sc->sc_cs[unit & 1];
696 	tp = cs->cs_ttyp;
697 	linesw[tp->t_line].l_close(tp, flags);
698 	if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
699 	    (tp->t_state & TS_ISOPEN) == 0) {
700 		zs_modem(cs, 0);
701 		/* hold low for 1 second */
702 		(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
703 	}
704 	if (cs->cs_creg[5] & ZSWR5_BREAK)
705 	{
706 		s = splzs();
707 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
708 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
709 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
710 		splx(s);
711 	}
712 	ttyclose(tp);
713 #ifdef KGDB
714 	/* Reset the speed if we're doing kgdb on this port */
715 	if (cs->cs_kgdb) {
716 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
717 		(void) zsparam(tp, &tp->t_termios);
718 	}
719 #endif
720 	return (0);
721 }
722 
723 /*
724  * Read/write zs serial port.
725  */
726 int
727 zsread(dev, uio, flags)
728 	dev_t dev;
729 	struct uio *uio;
730 	int flags;
731 {
732 	register struct zs_chanstate *cs;
733 	register struct zs_softc *sc;
734 	register struct tty *tp;
735 	int unit = minor(dev);
736 
737 	sc = zs_cd.cd_devs[unit >> 1];
738 	cs = &sc->sc_cs[unit & 1];
739 	tp = cs->cs_ttyp;
740 
741 	return (linesw[tp->t_line].l_read(tp, uio, flags));
742 
743 }
744 
745 int
746 zswrite(dev, uio, flags)
747 	dev_t dev;
748 	struct uio *uio;
749 	int flags;
750 {
751 	register struct zs_chanstate *cs;
752 	register struct zs_softc *sc;
753 	register struct tty *tp;
754 	int unit = minor(dev);
755 
756 	sc = zs_cd.cd_devs[unit >> 1];
757 	cs = &sc->sc_cs[unit & 1];
758 	tp = cs->cs_ttyp;
759 
760 	return (linesw[tp->t_line].l_write(tp, uio, flags));
761 }
762 
763 struct tty *
764 zstty(dev)
765 	dev_t dev;
766 {
767 	register struct zs_chanstate *cs;
768 	register struct zs_softc *sc;
769 	int unit = minor(dev);
770 
771 	sc = zs_cd.cd_devs[unit >> 1];
772 	cs = &sc->sc_cs[unit & 1];
773 
774 	return (cs->cs_ttyp);
775 }
776 
777 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
778 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
779 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
780 
781 /*
782  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
783  * channels are kept in (A,B) pairs.
784  *
785  * Do just a little, then get out; set a software interrupt if more
786  * work is needed.
787  *
788  * We deliberately ignore the vectoring Zilog gives us, and match up
789  * only the number of `reset interrupt under service' operations, not
790  * the order.
791  */
792 /* ARGSUSED */
793 int
794 zshard(intrarg)
795 	void *intrarg;
796 {
797 	register struct zs_chanstate *a;
798 #define	b (a + 1)
799 	register volatile struct zschan *zc;
800 	register int rr3, intflags = 0, v, i, ringmask;
801 
802 #define ZSHARD_NEED_SOFTINTR	1
803 #define ZSHARD_WAS_SERVICED	2
804 #define ZSHARD_CHIP_GOTINTR	4
805 
806 	for (a = zslist; a != NULL; a = b->cs_next) {
807 		ringmask = a->cs_ringmask;
808 		rr3 = ZS_READ(a->cs_zc, 3);
809 		if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
810 			intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
811 			zc = a->cs_zc;
812 			i = a->cs_rbput;
813 			if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
814 				a->cs_rbuf[i++ & ringmask] = v;
815 				intflags |= ZSHARD_NEED_SOFTINTR;
816 			}
817 			if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
818 				a->cs_rbuf[i++ & ringmask] = v;
819 				intflags |= ZSHARD_NEED_SOFTINTR;
820 			}
821 			if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
822 				a->cs_rbuf[i++ & ringmask] = v;
823 				intflags |= ZSHARD_NEED_SOFTINTR;
824 			}
825 			a->cs_rbput = i;
826 		}
827 		if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
828 			intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
829 			zc = b->cs_zc;
830 			i = b->cs_rbput;
831 			if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
832 				b->cs_rbuf[i++ & ringmask] = v;
833 				intflags |= ZSHARD_NEED_SOFTINTR;
834 			}
835 			if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
836 				b->cs_rbuf[i++ & ringmask] = v;
837 				intflags |= ZSHARD_NEED_SOFTINTR;
838 			}
839 			if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
840 				b->cs_rbuf[i++ & ringmask] = v;
841 				intflags |= ZSHARD_NEED_SOFTINTR;
842 			}
843 			b->cs_rbput = i;
844 		}
845 		if (intflags & ZSHARD_CHIP_GOTINTR) {
846 			a->cs_sc->sc_intrcnt.ev_count++;
847 			intflags &= ~ZSHARD_CHIP_GOTINTR;
848 		}
849 	}
850 #undef b
851 
852 	if (intflags & ZSHARD_NEED_SOFTINTR) {
853 		if (CPU_ISSUN4COR4M) {
854 			/* XXX -- but this will go away when zshard moves to locore.s */
855 			struct clockframe *p = intrarg;
856 
857 			if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
858 				zsshortcuts++;
859 				(void) spltty();
860 				if (zshardscope) {
861 					LED_ON;
862 					LED_OFF;
863 				}
864 				return (zssoft(intrarg));
865 			}
866 		}
867 
868 #if defined(SUN4M)
869 		if (CPU_ISSUN4M)
870 			raise(0, PIL_TTY);
871 		else
872 #endif
873 		ienab_bis(IE_ZSSOFT);
874 	}
875 	return (intflags & ZSHARD_WAS_SERVICED);
876 }
877 
878 static int
879 zsrint(cs, zc)
880 	register struct zs_chanstate *cs;
881 	register volatile struct zschan *zc;
882 {
883 	register u_int c = zc->zc_data;
884 
885 	ZS_DELAY();
886 	if (cs->cs_conk) {
887 		register struct conk_state *conk = &zsconk_state;
888 
889 		/*
890 		 * Check here for console abort function, so that we
891 		 * can abort even when interrupts are locking up the
892 		 * machine.
893 		 */
894 		if (c == KBD_RESET) {
895 			conk->conk_id = 1;	/* ignore next byte */
896 			conk->conk_l1 = 0;
897 		} else if (conk->conk_id)
898 			conk->conk_id = 0;	/* stop ignoring bytes */
899 		else if (c == KBD_L1)
900 			conk->conk_l1 = 1;	/* L1 went down */
901 		else if (c == (KBD_L1|KBD_UP))
902 			conk->conk_l1 = 0;	/* L1 went up */
903 		else if (c == KBD_A && conk->conk_l1) {
904 			zsabort();
905 			conk->conk_l1 = 0;	/* we never see the up */
906 			goto clearit;		/* eat the A after L1-A */
907 		}
908 	}
909 #ifdef KGDB
910 	if (c == FRAME_START && cs->cs_kgdb &&
911 	    (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
912 		zskgdb(cs->cs_unit);
913 		goto clearit;
914 	}
915 #endif
916 	/* compose receive character and status */
917 	c <<= 8;
918 	c |= ZS_READ(zc, 1);
919 
920 	/* clear receive error & interrupt condition */
921 	zc->zc_csr = ZSWR0_RESET_ERRORS;
922 	ZS_DELAY();
923 	zc->zc_csr = ZSWR0_CLR_INTR;
924 	ZS_DELAY();
925 
926 	return (ZRING_MAKE(ZRING_RINT, c));
927 
928 clearit:
929 	zc->zc_csr = ZSWR0_RESET_ERRORS;
930 	ZS_DELAY();
931 	zc->zc_csr = ZSWR0_CLR_INTR;
932 	ZS_DELAY();
933 	return (0);
934 }
935 
936 static int
937 zsxint(cs, zc)
938 	register struct zs_chanstate *cs;
939 	register volatile struct zschan *zc;
940 {
941 	register int i = cs->cs_tbc;
942 
943 	if (cs->cs_deferred_cc != 0) {
944 		/* Handle deferred zscnputc() output first */
945 		zc->zc_data = cs->cs_deferred_cc;
946 		cs->cs_deferred_cc = 0;
947 		ZS_DELAY();
948 		zc->zc_csr = ZSWR0_CLR_INTR;
949 		ZS_DELAY();
950 		return (0);
951 	}
952 	if (i == 0) {
953 		zc->zc_csr = ZSWR0_RESET_TXINT;
954 		ZS_DELAY();
955 		zc->zc_csr = ZSWR0_CLR_INTR;
956 		ZS_DELAY();
957 		return (ZRING_MAKE(ZRING_XINT, 0));
958 	}
959 	cs->cs_tbc = i - 1;
960 	zc->zc_data = *cs->cs_tba++;
961 	ZS_DELAY();
962 	zc->zc_csr = ZSWR0_CLR_INTR;
963 	ZS_DELAY();
964 	return (0);
965 }
966 
967 static int
968 zssint(cs, zc)
969 	register struct zs_chanstate *cs;
970 	register volatile struct zschan *zc;
971 {
972 	register u_int rr0;
973 
974 	rr0 = zc->zc_csr;
975 	ZS_DELAY();
976 	zc->zc_csr = ZSWR0_RESET_STATUS;
977 	ZS_DELAY();
978 	zc->zc_csr = ZSWR0_CLR_INTR;
979 	ZS_DELAY();
980 	/*
981 	 * The chip's hardware flow control is, as noted in zsreg.h,
982 	 * busted---if the DCD line goes low the chip shuts off the
983 	 * receiver (!).  If we want hardware CTS flow control but do
984 	 * not have it, and carrier is now on, turn HFC on; if we have
985 	 * HFC now but carrier has gone low, turn it off.
986 	 */
987 	if (rr0 & ZSRR0_DCD) {
988 		if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
989 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
990 			cs->cs_creg[3] |= ZSWR3_HFC;
991 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
992 		}
993 	} else {
994 		if (cs->cs_creg[3] & ZSWR3_HFC) {
995 			cs->cs_creg[3] &= ~ZSWR3_HFC;
996 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
997 		}
998 	}
999 	if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
1000 		/*
1001 		 * XXX This might not be necessary. Test and
1002 		 * delete if it isn't.
1003 		 */
1004 		if (CPU_ISSUN4) {
1005 			while (zc->zc_csr & ZSRR0_BREAK)
1006 				ZS_DELAY();
1007 		}
1008 		zsabort();
1009 		return (0);
1010 	}
1011 	return (ZRING_MAKE(ZRING_SINT, rr0));
1012 }
1013 
1014 void
1015 zsabort()
1016 {
1017 
1018 #ifdef DDB
1019 	Debugger();
1020 #else
1021 	printf("stopping on keyboard abort\n");
1022 	callrom();
1023 #endif
1024 }
1025 
1026 #ifdef KGDB
1027 /*
1028  * KGDB framing character received: enter kernel debugger.  This probably
1029  * should time out after a few seconds to avoid hanging on spurious input.
1030  */
1031 void
1032 zskgdb(unit)
1033 	int unit;
1034 {
1035 
1036 	printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
1037 	kgdb_connect(1);
1038 }
1039 #endif
1040 
1041 /*
1042  * Print out a ring or fifo overrun error message.
1043  */
1044 static void
1045 zsoverrun(unit, ptime, what)
1046 	int unit;
1047 	long *ptime;
1048 	char *what;
1049 {
1050 
1051 	if (*ptime != time.tv_sec) {
1052 		*ptime = time.tv_sec;
1053 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
1054 		    (unit & 1) + 'a', what);
1055 	}
1056 }
1057 
1058 /*
1059  * ZS software interrupt.  Scan all channels for deferred interrupts.
1060  */
1061 int
1062 zssoft(arg)
1063 	void *arg;
1064 {
1065 	register struct zs_chanstate *cs;
1066 	register volatile struct zschan *zc;
1067 	register struct linesw *line;
1068 	register struct tty *tp;
1069 	register int get, n, c, cc, unit, s, ringmask, ringsize;
1070 	int	retval = 0;
1071 
1072 	for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1073 		ringmask = cs->cs_ringmask;
1074 		get = cs->cs_rbget;
1075 again:
1076 		n = cs->cs_rbput;	/* atomic */
1077 		if (get == n)		/* nothing more on this line */
1078 			continue;
1079 		retval = 1;
1080 		unit = cs->cs_unit;	/* set up to handle interrupts */
1081 		zc = cs->cs_zc;
1082 		tp = cs->cs_ttyp;
1083 		line = &linesw[tp->t_line];
1084 		/*
1085 		 * Compute the number of interrupts in the receive ring.
1086 		 * If the count is overlarge, we lost some events, and
1087 		 * must advance to the first valid one.  It may get
1088 		 * overwritten if more data are arriving, but this is
1089 		 * too expensive to check and gains nothing (we already
1090 		 * lost out; all we can do at this point is trade one
1091 		 * kind of loss for another).
1092 		 */
1093 		ringsize = ringmask + 1;
1094 		n -= get;
1095 		if (n > ringsize) {
1096 			zsoverrun(unit, &cs->cs_rotime, "ring");
1097 			get += n - ringsize;
1098 			n = ringsize;
1099 		}
1100 		while (--n >= 0) {
1101 			/* race to keep ahead of incoming interrupts */
1102 			c = cs->cs_rbuf[get++ & ringmask];
1103 			switch (ZRING_TYPE(c)) {
1104 
1105 			case ZRING_RINT:
1106 				c = ZRING_VALUE(c);
1107 				if (c & ZSRR1_DO)
1108 					zsoverrun(unit, &cs->cs_fotime, "fifo");
1109 				cc = c >> 8;
1110 				if (c & ZSRR1_FE)
1111 					cc |= TTY_FE;
1112 				if (c & ZSRR1_PE)
1113 					cc |= TTY_PE;
1114 				/*
1115 				 * this should be done through
1116 				 * bstreams	XXX gag choke
1117 				 */
1118 				if (unit == ZS_KBD)
1119 					kbd_rint(cc);
1120 				else if (unit == ZS_MOUSE)
1121 					ms_rint(cc);
1122 				else
1123 					line->l_rint(cc, tp);
1124 				break;
1125 
1126 			case ZRING_XINT:
1127 				/*
1128 				 * Transmit done: change registers and resume,
1129 				 * or clear BUSY.
1130 				 */
1131 				if (cs->cs_heldchange) {
1132 					s = splzs();
1133 					c = zc->zc_csr;
1134 					ZS_DELAY();
1135 					if ((c & ZSRR0_DCD) == 0)
1136 						cs->cs_preg[3] &= ~ZSWR3_HFC;
1137 					bcopy((caddr_t)cs->cs_preg,
1138 					    (caddr_t)cs->cs_creg, 16);
1139 					zs_loadchannelregs(zc, cs->cs_creg);
1140 					splx(s);
1141 					cs->cs_heldchange = 0;
1142 					if (cs->cs_heldtbc &&
1143 					    (tp->t_state & TS_TTSTOP) == 0) {
1144 						cs->cs_tbc = cs->cs_heldtbc - 1;
1145 						zc->zc_data = *cs->cs_tba++;
1146 						ZS_DELAY();
1147 						goto again;
1148 					}
1149 				}
1150 				tp->t_state &= ~TS_BUSY;
1151 				if (tp->t_state & TS_FLUSH)
1152 					tp->t_state &= ~TS_FLUSH;
1153 				else
1154 					ndflush(&tp->t_outq,
1155 					 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1156 				line->l_start(tp);
1157 				break;
1158 
1159 			case ZRING_SINT:
1160 				/*
1161 				 * Status line change.  HFC bit is run in
1162 				 * hardware interrupt, to avoid locking
1163 				 * at splzs here.
1164 				 */
1165 				c = ZRING_VALUE(c);
1166 				if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1167 					cc = (c & ZSRR0_DCD) != 0;
1168 					if (line->l_modem(tp, cc) == 0)
1169 						zs_modem(cs, cc);
1170 				}
1171 				cs->cs_rr0 = c;
1172 				break;
1173 
1174 			default:
1175 				log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1176 				    unit >> 1, (unit & 1) + 'a', c);
1177 				break;
1178 			}
1179 		}
1180 		cs->cs_rbget = get;
1181 		goto again;
1182 	}
1183 	return (retval);
1184 }
1185 
1186 int
1187 zsioctl(dev, cmd, data, flag, p)
1188 	dev_t dev;
1189 	u_long cmd;
1190 	caddr_t data;
1191 	int flag;
1192 	struct proc *p;
1193 {
1194 	int unit = minor(dev);
1195 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1196 	register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1197 	register struct tty *tp = cs->cs_ttyp;
1198 	register int error, s;
1199 
1200 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1201 	if (error >= 0)
1202 		return (error);
1203 	error = ttioctl(tp, cmd, data, flag, p);
1204 	if (error >= 0)
1205 		return (error);
1206 
1207 	switch (cmd) {
1208 	case TIOCSBRK:
1209 		s = splzs();
1210 		cs->cs_preg[5] |= ZSWR5_BREAK;
1211 		cs->cs_creg[5] |= ZSWR5_BREAK;
1212 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1213 		splx(s);
1214 		break;
1215 	case TIOCCBRK:
1216 		s = splzs();
1217 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1218 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1219 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1220 		splx(s);
1221 		break;
1222 	case TIOCGFLAGS: {
1223 		int bits = 0;
1224 
1225 		if (cs->cs_softcar)
1226 			bits |= TIOCFLAG_SOFTCAR;
1227 		if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1228 			bits |= TIOCFLAG_CLOCAL;
1229 		if (cs->cs_creg[3] & ZSWR3_HFC)
1230 			bits |= TIOCFLAG_CRTSCTS;
1231 		*(int *)data = bits;
1232 		break;
1233 	}
1234 	case TIOCSFLAGS: {
1235 		int userbits;
1236 
1237 		error = suser(p->p_ucred, &p->p_acflag);
1238 		if (error != 0)
1239 			return (EPERM);
1240 
1241 		userbits = *(int *)data;
1242 
1243 		/*
1244 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1245 		 # defaulting to software flow control.
1246 		 */
1247 		if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1248 			return(EINVAL);
1249 		if (userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
1250 			return(ENXIO);
1251 
1252 		s = splzs();
1253 		if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1254 			cs->cs_softcar = 1;	/* turn on softcar */
1255 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1256 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1257 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1258 		} else if (userbits & TIOCFLAG_CLOCAL) {
1259 			cs->cs_softcar = 0; 	/* turn off softcar */
1260 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1261 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
1262 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1263 			tp->t_termios.c_cflag |= CLOCAL;
1264 		}
1265 		if (userbits & TIOCFLAG_CRTSCTS) {
1266 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
1267 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
1268 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1269 			cs->cs_preg[3] |= ZSWR3_HFC;
1270 			cs->cs_creg[3] |= ZSWR3_HFC;
1271 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1272 			tp->t_termios.c_cflag |= CRTSCTS;
1273 		} else {
1274 			/* no mdmbuf, so we must want software flow control */
1275 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1276 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1277 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1278 			cs->cs_preg[3] &= ~ZSWR3_HFC;
1279 			cs->cs_creg[3] &= ~ZSWR3_HFC;
1280 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1281 			tp->t_termios.c_cflag &= ~CRTSCTS;
1282 		}
1283 		splx(s);
1284 		break;
1285 	}
1286 	case TIOCSDTR:
1287 		zs_modem(cs, 1);
1288 		break;
1289 	case TIOCCDTR:
1290 		zs_modem(cs, 0);
1291 		break;
1292 	case TIOCMSET:
1293 	case TIOCMGET:
1294 	case TIOCMBIS:
1295 	case TIOCMBIC:
1296 	default:
1297 		return (ENOTTY);
1298 	}
1299 	return (0);
1300 }
1301 
1302 /*
1303  * Start or restart transmission.
1304  */
1305 static void
1306 zsstart(tp)
1307 	register struct tty *tp;
1308 {
1309 	register struct zs_chanstate *cs;
1310 	register int s, nch;
1311 	int unit = minor(tp->t_dev);
1312 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1313 
1314 	cs = &sc->sc_cs[unit & 1];
1315 	s = spltty();
1316 
1317 	/*
1318 	 * If currently active or delaying, no need to do anything.
1319 	 */
1320 	if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1321 		goto out;
1322 
1323 	/*
1324 	 * If there are sleepers, and output has drained below low
1325 	 * water mark, awaken.
1326 	 */
1327 	if (tp->t_outq.c_cc <= tp->t_lowat) {
1328 		if (tp->t_state & TS_ASLEEP) {
1329 			tp->t_state &= ~TS_ASLEEP;
1330 			wakeup((caddr_t)&tp->t_outq);
1331 		}
1332 		selwakeup(&tp->t_wsel);
1333 	}
1334 
1335 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
1336 	if (nch) {
1337 		register char *p = tp->t_outq.c_cf;
1338 
1339 		/* mark busy, enable tx done interrupts, & send first byte */
1340 		tp->t_state |= TS_BUSY;
1341 		(void) splzs();
1342 		cs->cs_preg[1] |= ZSWR1_TIE;
1343 		cs->cs_creg[1] |= ZSWR1_TIE;
1344 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1345 		cs->cs_zc->zc_data = *p;
1346 		ZS_DELAY();
1347 		cs->cs_tba = p + 1;
1348 		cs->cs_tbc = nch - 1;
1349 	} else {
1350 		/*
1351 		 * Nothing to send, turn off transmit done interrupts.
1352 		 * This is useful if something is doing polled output.
1353 		 */
1354 		(void) splzs();
1355 		cs->cs_preg[1] &= ~ZSWR1_TIE;
1356 		cs->cs_creg[1] &= ~ZSWR1_TIE;
1357 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1358 	}
1359 out:
1360 	splx(s);
1361 }
1362 
1363 /*
1364  * Stop output, e.g., for ^S or output flush.
1365  */
1366 void
1367 zsstop(tp, flag)
1368 	register struct tty *tp;
1369 	int flag;
1370 {
1371 	register struct zs_chanstate *cs;
1372 	register int s, unit = minor(tp->t_dev);
1373 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1374 
1375 	cs = &sc->sc_cs[unit & 1];
1376 	s = splzs();
1377 	if (tp->t_state & TS_BUSY) {
1378 		/*
1379 		 * Device is transmitting; must stop it.
1380 		 */
1381 		cs->cs_tbc = 0;
1382 		if ((tp->t_state & TS_TTSTOP) == 0)
1383 			tp->t_state |= TS_FLUSH;
1384 	}
1385 	splx(s);
1386 }
1387 
1388 /*
1389  * Set ZS tty parameters from termios.
1390  *
1391  * This routine makes use of the fact that only registers
1392  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1393  */
1394 static int
1395 zsparam(tp, t)
1396 	register struct tty *tp;
1397 	register struct termios *t;
1398 {
1399 	int unit = minor(tp->t_dev);
1400 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1401 	register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1402 	register int tmp, tmp5, cflag, s;
1403 
1404 	/*
1405 	 * Because PCLK is only run at 4.9 MHz, the fastest we
1406 	 * can go is 51200 baud (this corresponds to TC=1).
1407 	 * This is somewhat unfortunate as there is no real
1408 	 * reason we should not be able to handle higher rates.
1409 	 */
1410 	tmp = t->c_ospeed;
1411 	if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1412 		return (EINVAL);
1413 	if (tmp == 0) {
1414 		/* stty 0 => drop DTR and RTS */
1415 		zs_modem(cs, 0);
1416 		return (0);
1417 	}
1418 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1419 #ifdef ALLOW_TC_EQUAL_ZERO
1420 	if (tmp < 0)
1421 #else
1422 	if (tmp < 1)
1423 #endif
1424 		return (EINVAL);
1425 
1426 	cflag = t->c_cflag;
1427 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1428 	tp->t_cflag = cflag;
1429 
1430 	/*
1431 	 * Block interrupts so that state will not
1432 	 * be altered until we are done setting it up.
1433 	 */
1434 	s = splzs();
1435 	cs->cs_preg[12] = tmp;
1436 	cs->cs_preg[13] = tmp >> 8;
1437 	cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1438 	switch (cflag & CSIZE) {
1439 	case CS5:
1440 		tmp = ZSWR3_RX_5;
1441 		tmp5 = ZSWR5_TX_5;
1442 		break;
1443 	case CS6:
1444 		tmp = ZSWR3_RX_6;
1445 		tmp5 = ZSWR5_TX_6;
1446 		break;
1447 	case CS7:
1448 		tmp = ZSWR3_RX_7;
1449 		tmp5 = ZSWR5_TX_7;
1450 		break;
1451 	case CS8:
1452 	default:
1453 		tmp = ZSWR3_RX_8;
1454 		tmp5 = ZSWR5_TX_8;
1455 		break;
1456 	}
1457 
1458 	/*
1459 	 * Output hardware flow control on the chip is horrendous: if
1460 	 * carrier detect drops, the receiver is disabled.  Hence we
1461 	 * can only do this when the carrier is on.
1462 	 */
1463 	tmp |= ZSWR3_RX_ENABLE;
1464 	if (cflag & CCTS_OFLOW) {
1465 		if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1466 			tmp |= ZSWR3_HFC;
1467 		ZS_DELAY();
1468 	}
1469 	cs->cs_preg[3] = tmp;
1470 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1471 
1472 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1473 	if ((cflag & PARODD) == 0)
1474 		tmp |= ZSWR4_EVENP;
1475 	if (cflag & PARENB)
1476 		tmp |= ZSWR4_PARENB;
1477 	cs->cs_preg[4] = tmp;
1478 	cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1479 	cs->cs_preg[10] = ZSWR10_NRZ;
1480 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1481 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1482 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1483 
1484 	/*
1485 	 * If nothing is being transmitted, set up new current values,
1486 	 * else mark them as pending.
1487 	 */
1488 	if (cs->cs_heldchange == 0) {
1489 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1490 			cs->cs_heldtbc = cs->cs_tbc;
1491 			cs->cs_tbc = 0;
1492 			cs->cs_heldchange = 1;
1493 		} else {
1494 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1495 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1496 		}
1497 	}
1498 	splx(s);
1499 	return (0);
1500 }
1501 
1502 /*
1503  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1504  * in transmission, the change is deferred.
1505  */
1506 static void
1507 zs_modem(cs, onoff)
1508 	struct zs_chanstate *cs;
1509 	int onoff;
1510 {
1511 	int s, bis, and;
1512 
1513 	if (onoff) {
1514 		bis = ZSWR5_DTR | ZSWR5_RTS;
1515 		and = ~0;
1516 	} else {
1517 		bis = 0;
1518 		and = ~(ZSWR5_DTR | ZSWR5_RTS);
1519 	}
1520 	s = splzs();
1521 	cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1522 	if (cs->cs_heldchange == 0) {
1523 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1524 			cs->cs_heldtbc = cs->cs_tbc;
1525 			cs->cs_tbc = 0;
1526 			cs->cs_heldchange = 1;
1527 		} else {
1528 			cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1529 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1530 		}
1531 	}
1532 	splx(s);
1533 }
1534 
1535 /*
1536  * Write the given register set to the given zs channel in the proper order.
1537  * The channel must not be transmitting at the time.  The receiver will
1538  * be disabled for the time it takes to write all the registers.
1539  */
1540 static void
1541 zs_loadchannelregs(zc, reg)
1542 	volatile struct zschan *zc;
1543 	u_char *reg;
1544 {
1545 	int i;
1546 
1547 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1548 	ZS_DELAY();
1549 	i = zc->zc_data;		/* drain fifo */
1550 	ZS_DELAY();
1551 	i = zc->zc_data;
1552 	ZS_DELAY();
1553 	i = zc->zc_data;
1554 	ZS_DELAY();
1555 	ZS_WRITE(zc, 4, reg[4]);
1556 	ZS_WRITE(zc, 10, reg[10]);
1557 	ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1558 	ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1559 	ZS_WRITE(zc, 1, reg[1]);
1560 	ZS_WRITE(zc, 9, reg[9]);
1561 	ZS_WRITE(zc, 11, reg[11]);
1562 	ZS_WRITE(zc, 12, reg[12]);
1563 	ZS_WRITE(zc, 13, reg[13]);
1564 	ZS_WRITE(zc, 14, reg[14]);
1565 	ZS_WRITE(zc, 15, reg[15]);
1566 	ZS_WRITE(zc, 3, reg[3]);
1567 	ZS_WRITE(zc, 5, reg[5]);
1568 }
1569 
1570 #ifdef KGDB
1571 /*
1572  * Get a character from the given kgdb channel.  Called at splhigh().
1573  */
1574 static int
1575 zs_kgdb_getc(arg)
1576 	void *arg;
1577 {
1578 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
1579 	u_char c;
1580 
1581 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1582 		ZS_DELAY();
1583 	c = zc->zc_data;
1584 	ZS_DELAY();
1585 	return c;
1586 }
1587 
1588 /*
1589  * Put a character to the given kgdb channel.  Called at splhigh().
1590  */
1591 static void
1592 zs_kgdb_putc(arg, c)
1593 	void *arg;
1594 	int c;
1595 {
1596 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
1597 
1598 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1599 		ZS_DELAY();
1600 	zc->zc_data = c;
1601 	ZS_DELAY();
1602 }
1603 
1604 /*
1605  * Set up for kgdb; called at boot time before configuration.
1606  * KGDB interrupts will be enabled later when zs0 is configured.
1607  */
1608 void
1609 zs_kgdb_init()
1610 {
1611 	volatile struct zsdevice *addr;
1612 	volatile struct zschan *zc;
1613 	int unit, zs;
1614 
1615 	if (major(kgdb_dev) != ZSMAJOR)
1616 		return;
1617 	unit = minor(kgdb_dev);
1618 	/*
1619 	 * Unit must be 0 or 1 (zs0).
1620 	 */
1621 	if ((unsigned)unit >= ZS_KBD) {
1622 		printf("zs_kgdb_init: bad minor dev %d\n", unit);
1623 		return;
1624 	}
1625 	zs = unit >> 1;
1626 	if ((addr = zsaddr[zs]) == NULL)
1627 		addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
1628 	unit &= 1;
1629 	zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1630 	zs_kgdb_savedspeed = zs_getspeed(zc);
1631 	printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1632 	    zs, unit + 'a', kgdb_rate);
1633 	zs_reset(zc, 1, kgdb_rate);
1634 	kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1635 }
1636 #endif /* KGDB */
1637