1 /* $NetBSD: zs.c,v 1.21 1994/12/06 00:01:39 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * @(#)zs.c 8.1 (Berkeley) 7/19/93 45 */ 46 47 /* 48 * Zilog Z8530 (ZSCC) driver. 49 * 50 * Runs two tty ports (ttya and ttyb) on zs0, 51 * and runs a keyboard and mouse on zs1. 52 * 53 * This driver knows far too much about chip to usage mappings. 54 */ 55 #define NZS 2 /* XXX */ 56 57 #include <sys/param.h> 58 #include <sys/proc.h> 59 #include <sys/device.h> 60 #include <sys/conf.h> 61 #include <sys/file.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/time.h> 65 #include <sys/kernel.h> 66 #include <sys/syslog.h> 67 68 #include <machine/autoconf.h> 69 #include <machine/cpu.h> 70 71 #include <sparc/sparc/vaddrs.h> 72 #include <sparc/sparc/auxreg.h> 73 74 #include <machine/kbd.h> 75 #include <sparc/dev/zsreg.h> 76 #include <sparc/dev/zsvar.h> 77 78 #ifdef KGDB 79 #include <machine/remote-sl.h> 80 #endif 81 82 #define ZSMAJOR 12 /* XXX */ 83 84 #define ZS_KBD 2 /* XXX */ 85 #define ZS_MOUSE 3 /* XXX */ 86 87 /* the magic number below was stolen from the Sprite source. */ 88 #define PCLK (19660800/4) /* PCLK pin input clock rate */ 89 90 /* 91 * Select software interrupt bit based on TTY ipl. 92 */ 93 #if PIL_TTY == 1 94 # define IE_ZSSOFT IE_L1 95 #elif PIL_TTY == 4 96 # define IE_ZSSOFT IE_L4 97 #elif PIL_TTY == 6 98 # define IE_ZSSOFT IE_L6 99 #else 100 # error "no suitable software interrupt bit" 101 #endif 102 103 /* 104 * Software state per found chip. This would be called `zs_softc', 105 * but the previous driver had a rather different zs_softc.... 106 */ 107 struct zsinfo { 108 struct device zi_dev; /* base device */ 109 volatile struct zsdevice *zi_zs;/* chip registers */ 110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */ 111 }; 112 113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */ 114 115 /* Definition of the driver for autoconfig. */ 116 static int zsmatch __P((struct device *, void *, void *)); 117 static void zsattach __P((struct device *, struct device *, void *)); 118 struct cfdriver zscd = 119 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) }; 120 121 /* Interrupt handlers. */ 122 static int zshard __P((void *)); 123 static struct intrhand levelhard = { zshard }; 124 static int zssoft __P((void *)); 125 static struct intrhand levelsoft = { zssoft }; 126 127 struct zs_chanstate *zslist; 128 129 /* Routines called from other code. */ 130 static void zsiopen __P((struct tty *)); 131 static void zsiclose __P((struct tty *)); 132 static void zsstart __P((struct tty *)); 133 void zsstop __P((struct tty *, int)); 134 static int zsparam __P((struct tty *, struct termios *)); 135 136 /* Routines purely local to this driver. */ 137 static int zs_getspeed __P((volatile struct zschan *)); 138 static void zs_reset __P((volatile struct zschan *, int, int)); 139 static void zs_modem __P((struct zs_chanstate *, int)); 140 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *)); 141 142 /* Console stuff. */ 143 static struct tty *zs_ctty; /* console `struct tty *' */ 144 static int zs_consin = -1, zs_consout = -1; 145 static int zscnputc __P((int)); /* console putc function */ 146 static volatile struct zschan *zs_conschan; 147 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *)); 148 149 #ifdef KGDB 150 /* KGDB stuff. Must reboot to change zs_kgdbunit. */ 151 extern int kgdb_dev, kgdb_rate; 152 static int zs_kgdb_savedspeed; 153 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *)); 154 #endif 155 156 extern volatile struct zsdevice *findzs(int); 157 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */ 158 159 /* 160 * Console keyboard L1-A processing is done in the hardware interrupt code, 161 * so we need to duplicate some of the console keyboard decode state. (We 162 * must not use the regular state as the hardware code keeps ahead of the 163 * software state: the software state tracks the most recent ring input but 164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h. 165 */ 166 static struct conk_state { /* console keyboard state */ 167 char conk_id; /* true => ID coming up (console only) */ 168 char conk_l1; /* true => L1 pressed (console only) */ 169 } zsconk_state; 170 171 int zshardscope; 172 int zsshortcuts; /* number of "shortcut" software interrupts */ 173 174 #ifdef SUN4 175 static u_char 176 zs_read(zc, reg) 177 volatile struct zschan *zc; 178 u_char reg; 179 { 180 u_char val; 181 182 zc->zc_csr = reg; 183 ZS_DELAY(); 184 val = zc->zc_csr; 185 ZS_DELAY(); 186 return val; 187 } 188 189 static u_char 190 zs_write(zc, reg, val) 191 volatile struct zschan *zc; 192 u_char reg, val; 193 { 194 zc->zc_csr = reg; 195 ZS_DELAY(); 196 zc->zc_csr = val; 197 ZS_DELAY(); 198 return val; 199 } 200 #endif /* SUN4 */ 201 202 /* 203 * Match slave number to zs unit number, so that misconfiguration will 204 * not set up the keyboard as ttya, etc. 205 */ 206 static int 207 zsmatch(parent, vcf, aux) 208 struct device *parent; 209 void *vcf, *aux; 210 { 211 struct cfdata *cf = vcf; 212 struct confargs *ca = aux; 213 struct romaux *ra = &ca->ca_ra; 214 215 if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) 216 return (0); 217 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4) 218 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit); 219 ra->ra_len = NBPG; 220 return (probeget(ra->ra_vaddr, 1) != -1); 221 } 222 223 /* 224 * Attach a found zs. 225 * 226 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 227 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 228 */ 229 static void 230 zsattach(parent, dev, aux) 231 struct device *parent; 232 struct device *dev; 233 void *aux; 234 { 235 register int zs = dev->dv_unit, unit; 236 register struct zsinfo *zi; 237 register struct zs_chanstate *cs; 238 register volatile struct zsdevice *addr; 239 register struct tty *tp, *ctp; 240 register struct confargs *ca = aux; 241 register struct romaux *ra = &ca->ca_ra; 242 int pri; 243 static int didintr, prevpri; 244 245 if ((addr = zsaddr[zs]) == NULL) 246 addr = zsaddr[zs] = findzs(zs); 247 if (ca->ca_bustype==BUS_MAIN) 248 if ((void *)addr != ra->ra_vaddr) 249 panic("zsattach"); 250 if (ra->ra_nintr != 1) { 251 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); 252 return; 253 } 254 pri = ra->ra_intr[0].int_pri; 255 printf(" pri %d, softpri %d\n", pri, PIL_TTY); 256 if (!didintr) { 257 didintr = 1; 258 prevpri = pri; 259 intr_establish(pri, &levelhard); 260 intr_establish(PIL_TTY, &levelsoft); 261 } else if (pri != prevpri) 262 panic("broken zs interrupt scheme"); 263 zi = (struct zsinfo *)dev; 264 zi->zi_zs = addr; 265 unit = zs * 2; 266 cs = zi->zi_cs; 267 268 if(!zs_tty[unit]) 269 zs_tty[unit] = ttymalloc(); 270 tp = zs_tty[unit]; 271 if(!zs_tty[unit+1]) 272 zs_tty[unit+1] = ttymalloc(); 273 274 /* link into interrupt list with order (A,B) (B=A+1) */ 275 cs[0].cs_next = &cs[1]; 276 cs[1].cs_next = zslist; 277 zslist = cs; 278 279 cs->cs_unit = unit; 280 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]); 281 cs->cs_zc = &addr->zs_chan[CHAN_A]; 282 tp->t_dev = makedev(ZSMAJOR, unit); 283 tp->t_oproc = zsstart; 284 tp->t_param = zsparam; 285 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) 286 tp = ctp; 287 cs->cs_ttyp = tp; 288 #ifdef KGDB 289 if (ctp == NULL) 290 zs_checkkgdb(unit, cs, tp); 291 #endif 292 if (unit == ZS_KBD) { 293 /* 294 * Keyboard: tell /dev/kbd driver how to talk to us. 295 */ 296 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 297 tp->t_cflag = CS8; 298 kbd_serial(tp, zsiopen, zsiclose); 299 cs->cs_conk = 1; /* do L1-A processing */ 300 } 301 unit++; 302 cs++; 303 tp = zs_tty[unit]; 304 cs->cs_unit = unit; 305 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]); 306 cs->cs_zc = &addr->zs_chan[CHAN_B]; 307 tp->t_dev = makedev(ZSMAJOR, unit); 308 tp->t_oproc = zsstart; 309 tp->t_param = zsparam; 310 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) 311 tp = ctp; 312 cs->cs_ttyp = tp; 313 #ifdef KGDB 314 if (ctp == NULL) 315 zs_checkkgdb(unit, cs, tp); 316 #endif 317 if (unit == ZS_MOUSE) { 318 /* 319 * Mouse: tell /dev/mouse driver how to talk to us. 320 */ 321 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 322 tp->t_cflag = CS8; 323 ms_serial(tp, zsiopen, zsiclose); 324 } 325 } 326 327 /* 328 * Put a channel in a known state. Interrupts may be left disabled 329 * or enabled, as desired. 330 */ 331 static void 332 zs_reset(zc, inten, speed) 333 volatile struct zschan *zc; 334 int inten, speed; 335 { 336 int tconst; 337 static u_char reg[16] = { 338 0, 339 0, 340 0, 341 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 342 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 343 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 344 0, 345 0, 346 0, 347 0, 348 ZSWR10_NRZ, 349 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 350 0, 351 0, 352 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, 353 ZSWR15_BREAK_IE | ZSWR15_DCD_IE, 354 }; 355 356 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR; 357 tconst = BPS_TO_TCONST(PCLK / 16, speed); 358 reg[12] = tconst; 359 reg[13] = tconst >> 8; 360 zs_loadchannelregs(zc, reg); 361 } 362 363 /* 364 * Declare the given tty (which is in fact &cons) as a console input 365 * or output. This happens before the zs chip is attached; the hookup 366 * is finished later, in zs_setcons() below. 367 * 368 * This is used only for ports a and b. The console keyboard is decoded 369 * independently (we always send unit-2 input to /dev/kbd, which will 370 * direct it to /dev/console if appropriate). 371 */ 372 void 373 zsconsole(tp, unit, out, fnstop) 374 register struct tty *tp; 375 register int unit; 376 int out; 377 void (**fnstop) __P((struct tty *, int)); 378 { 379 extern int (*v_putc)(); 380 int zs; 381 volatile struct zsdevice *addr; 382 383 if (unit >= ZS_KBD) 384 panic("zsconsole"); 385 if (out) { 386 zs_consout = unit; 387 zs = unit >> 1; 388 if ((addr = zsaddr[zs]) == NULL) 389 addr = zsaddr[zs] = findzs(zs); 390 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] : 391 &addr->zs_chan[CHAN_B]; 392 v_putc = zscnputc; 393 } else 394 zs_consin = unit; 395 if(fnstop) 396 *fnstop = &zsstop; 397 zs_ctty = tp; 398 } 399 400 /* 401 * Polled console output putchar. 402 */ 403 static int 404 zscnputc(c) 405 int c; 406 { 407 register volatile struct zschan *zc = zs_conschan; 408 register int s; 409 410 if (c == '\n') 411 zscnputc('\r'); 412 /* 413 * Must block output interrupts (i.e., raise to >= splzs) without 414 * lowering current ipl. Need a better way. 415 */ 416 s = splhigh(); 417 #ifdef SUN4C /* XXX */ 418 if (cputyp==CPU_SUN4C && s <= (12 << 8)) 419 (void) splzs(); 420 #endif 421 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 422 ZS_DELAY(); 423 zc->zc_data = c; 424 ZS_DELAY(); 425 splx(s); 426 } 427 428 /* 429 * Set up the given unit as console input, output, both, or neither, as 430 * needed. Return console tty if it is to receive console input. 431 */ 432 static struct tty * 433 zs_checkcons(zi, unit, cs) 434 struct zsinfo *zi; 435 int unit; 436 struct zs_chanstate *cs; 437 { 438 register struct tty *tp; 439 char *i, *o; 440 441 if ((tp = zs_ctty) == NULL) 442 return (0); 443 i = zs_consin == unit ? "input" : NULL; 444 o = zs_consout == unit ? "output" : NULL; 445 if (i == NULL && o == NULL) 446 return (0); 447 448 /* rewire the minor device (gack) */ 449 tp->t_dev = makedev(major(tp->t_dev), unit); 450 451 /* 452 * Rewire input and/or output. Note that baud rate reflects 453 * input settings, not output settings, but we can do no better 454 * if the console is split across two ports. 455 * 456 * XXX split consoles don't work anyway -- this needs to be 457 * thrown away and redone 458 */ 459 if (i) { 460 tp->t_param = zsparam; 461 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 462 tp->t_cflag = CS8; 463 ttsetwater(tp); 464 } 465 if (o) { 466 tp->t_oproc = zsstart; 467 } 468 printf("%s%c: console %s\n", 469 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o); 470 cs->cs_consio = 1; 471 cs->cs_brkabort = 1; 472 return (tp); 473 } 474 475 #ifdef KGDB 476 /* 477 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). 478 * Pick up the current speed and character size and restore the original 479 * speed. 480 */ 481 static void 482 zs_checkkgdb(unit, cs, tp) 483 int unit; 484 struct zs_chanstate *cs; 485 struct tty *tp; 486 { 487 488 if (kgdb_dev == makedev(ZSMAJOR, unit)) { 489 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 490 tp->t_cflag = CS8; 491 cs->cs_kgdb = 1; 492 cs->cs_speed = zs_kgdb_savedspeed; 493 (void) zsparam(tp, &tp->t_termios); 494 } 495 } 496 #endif 497 498 /* 499 * Compute the current baud rate given a ZSCC channel. 500 */ 501 static int 502 zs_getspeed(zc) 503 register volatile struct zschan *zc; 504 { 505 register int tconst; 506 507 tconst = ZS_READ(zc, 12); 508 tconst |= ZS_READ(zc, 13) << 8; 509 return (TCONST_TO_BPS(PCLK / 16, tconst)); 510 } 511 512 513 /* 514 * Do an internal open. 515 */ 516 static void 517 zsiopen(tp) 518 struct tty *tp; 519 { 520 521 (void) zsparam(tp, &tp->t_termios); 522 ttsetwater(tp); 523 tp->t_state = TS_ISOPEN | TS_CARR_ON; 524 } 525 526 /* 527 * Do an internal close. Eventually we should shut off the chip when both 528 * ports on it are closed. 529 */ 530 static void 531 zsiclose(tp) 532 struct tty *tp; 533 { 534 535 ttylclose(tp, 0); /* ??? */ 536 ttyclose(tp); /* ??? */ 537 tp->t_state = 0; 538 } 539 540 541 /* 542 * Open a zs serial port. This interface may not be used to open 543 * the keyboard and mouse ports. (XXX) 544 */ 545 int 546 zsopen(dev, flags, mode, p) 547 dev_t dev; 548 int flags; 549 int mode; 550 struct proc *p; 551 { 552 register struct tty *tp; 553 register struct zs_chanstate *cs; 554 struct zsinfo *zi; 555 int unit = minor(dev), zs = unit >> 1, error, s; 556 557 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL || 558 unit == ZS_KBD || unit == ZS_MOUSE) 559 return (ENXIO); 560 cs = &zi->zi_cs[unit & 1]; 561 if (cs->cs_consio) 562 return (ENXIO); /* ??? */ 563 tp = cs->cs_ttyp; 564 s = spltty(); 565 if ((tp->t_state & TS_ISOPEN) == 0) { 566 ttychars(tp); 567 if (tp->t_ispeed == 0) { 568 tp->t_iflag = TTYDEF_IFLAG; 569 tp->t_oflag = TTYDEF_OFLAG; 570 tp->t_cflag = TTYDEF_CFLAG; 571 tp->t_lflag = TTYDEF_LFLAG; 572 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 573 } 574 (void) zsparam(tp, &tp->t_termios); 575 ttsetwater(tp); 576 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { 577 splx(s); 578 return (EBUSY); 579 } 580 error = 0; 581 for (;;) { 582 /* loop, turning on the device, until carrier present */ 583 zs_modem(cs, 1); 584 if (cs->cs_softcar) 585 tp->t_state |= TS_CARR_ON; 586 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL || 587 tp->t_state & TS_CARR_ON) 588 break; 589 tp->t_state |= TS_WOPEN; 590 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, 591 ttopen, 0)) { 592 if (!(tp->t_state & TS_ISOPEN)) { 593 zs_modem(cs, 0); 594 tp->t_state &= ~TS_WOPEN; 595 ttwakeup(tp); 596 } 597 splx(s); 598 return error; 599 } 600 } 601 splx(s); 602 if (error == 0) 603 error = linesw[tp->t_line].l_open(dev, tp); 604 if (error) 605 zs_modem(cs, 0); 606 return (error); 607 } 608 609 /* 610 * Close a zs serial port. 611 */ 612 int 613 zsclose(dev, flags, mode, p) 614 dev_t dev; 615 int flags; 616 int mode; 617 struct proc *p; 618 { 619 register struct zs_chanstate *cs; 620 register struct tty *tp; 621 struct zsinfo *zi; 622 int unit = minor(dev), s; 623 624 zi = zscd.cd_devs[unit >> 1]; 625 cs = &zi->zi_cs[unit & 1]; 626 tp = cs->cs_ttyp; 627 linesw[tp->t_line].l_close(tp, flags); 628 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || 629 (tp->t_state & TS_ISOPEN) == 0) { 630 zs_modem(cs, 0); 631 /* hold low for 1 second */ 632 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); 633 } 634 if (cs->cs_creg[5] & ZSWR5_BREAK) 635 { 636 s = splzs(); 637 cs->cs_preg[5] &= ~ZSWR5_BREAK; 638 cs->cs_creg[5] &= ~ZSWR5_BREAK; 639 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 640 splx(s); 641 } 642 ttyclose(tp); 643 #ifdef KGDB 644 /* Reset the speed if we're doing kgdb on this port */ 645 if (cs->cs_kgdb) { 646 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 647 (void) zsparam(tp, &tp->t_termios); 648 } 649 #endif 650 return (0); 651 } 652 653 /* 654 * Read/write zs serial port. 655 */ 656 int 657 zsread(dev, uio, flags) 658 dev_t dev; 659 struct uio *uio; 660 int flags; 661 { 662 register struct tty *tp = zs_tty[minor(dev)]; 663 664 return (linesw[tp->t_line].l_read(tp, uio, flags)); 665 } 666 667 int 668 zswrite(dev, uio, flags) 669 dev_t dev; 670 struct uio *uio; 671 int flags; 672 { 673 register struct tty *tp = zs_tty[minor(dev)]; 674 675 return (linesw[tp->t_line].l_write(tp, uio, flags)); 676 } 677 678 /* 679 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that 680 * channels are kept in (A,B) pairs. 681 * 682 * Do just a little, then get out; set a software interrupt if more 683 * work is needed. 684 * 685 * We deliberately ignore the vectoring Zilog gives us, and match up 686 * only the number of `reset interrupt under service' operations, not 687 * the order. 688 */ 689 /* ARGSUSED */ 690 int 691 zshard(intrarg) 692 void *intrarg; 693 { 694 register struct zs_chanstate *a; 695 #define b (a + 1) 696 register volatile struct zschan *zc; 697 register int rr3, intflags = 0, v, i; 698 static int zsrint(struct zs_chanstate *, volatile struct zschan *); 699 static int zsxint(struct zs_chanstate *, volatile struct zschan *); 700 static int zssint(struct zs_chanstate *, volatile struct zschan *); 701 702 for (a = zslist; a != NULL; a = b->cs_next) { 703 rr3 = ZS_READ(a->cs_zc, 3); 704 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { 705 intflags |= 2; 706 zc = a->cs_zc; 707 i = a->cs_rbput; 708 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { 709 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 710 intflags |= 1; 711 } 712 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { 713 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 714 intflags |= 1; 715 } 716 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { 717 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 718 intflags |= 1; 719 } 720 a->cs_rbput = i; 721 } 722 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { 723 intflags |= 2; 724 zc = b->cs_zc; 725 i = b->cs_rbput; 726 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { 727 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 728 intflags |= 1; 729 } 730 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { 731 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 732 intflags |= 1; 733 } 734 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { 735 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 736 intflags |= 1; 737 } 738 b->cs_rbput = i; 739 } 740 } 741 #undef b 742 743 if (intflags & 1) { 744 #if defined(SUN4C) || defined(SUN4M) 745 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) { 746 /* XXX -- but this will go away when zshard moves to locore.s */ 747 struct clockframe *p = intrarg; 748 749 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) { 750 zsshortcuts++; 751 (void) spltty(); 752 if (zshardscope) { 753 LED_ON; 754 LED_OFF; 755 } 756 return (zssoft(intrarg)); 757 } 758 } 759 #endif 760 ienab_bis(IE_ZSSOFT); 761 } 762 return (intflags & 2); 763 } 764 765 static int 766 zsrint(cs, zc) 767 register struct zs_chanstate *cs; 768 register volatile struct zschan *zc; 769 { 770 register int c = zc->zc_data; 771 772 if (cs->cs_conk) { 773 register struct conk_state *conk = &zsconk_state; 774 775 /* 776 * Check here for console abort function, so that we 777 * can abort even when interrupts are locking up the 778 * machine. 779 */ 780 if (c == KBD_RESET) { 781 conk->conk_id = 1; /* ignore next byte */ 782 conk->conk_l1 = 0; 783 } else if (conk->conk_id) 784 conk->conk_id = 0; /* stop ignoring bytes */ 785 else if (c == KBD_L1) 786 conk->conk_l1 = 1; /* L1 went down */ 787 else if (c == (KBD_L1|KBD_UP)) 788 conk->conk_l1 = 0; /* L1 went up */ 789 else if (c == KBD_A && conk->conk_l1) { 790 zsabort(); 791 conk->conk_l1 = 0; /* we never see the up */ 792 goto clearit; /* eat the A after L1-A */ 793 } 794 } 795 #ifdef KGDB 796 if (c == FRAME_START && cs->cs_kgdb && 797 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { 798 zskgdb(cs->cs_unit); 799 goto clearit; 800 } 801 #endif 802 /* compose receive character and status */ 803 c <<= 8; 804 c |= ZS_READ(zc, 1); 805 806 /* clear receive error & interrupt condition */ 807 zc->zc_csr = ZSWR0_RESET_ERRORS; 808 ZS_DELAY(); 809 zc->zc_csr = ZSWR0_CLR_INTR; 810 ZS_DELAY(); 811 812 return (ZRING_MAKE(ZRING_RINT, c)); 813 814 clearit: 815 zc->zc_csr = ZSWR0_RESET_ERRORS; 816 ZS_DELAY(); 817 zc->zc_csr = ZSWR0_CLR_INTR; 818 ZS_DELAY(); 819 return (0); 820 } 821 822 static int 823 zsxint(cs, zc) 824 register struct zs_chanstate *cs; 825 register volatile struct zschan *zc; 826 { 827 register int i = cs->cs_tbc; 828 829 if (i == 0) { 830 zc->zc_csr = ZSWR0_RESET_TXINT; 831 ZS_DELAY(); 832 zc->zc_csr = ZSWR0_CLR_INTR; 833 ZS_DELAY(); 834 return (ZRING_MAKE(ZRING_XINT, 0)); 835 } 836 cs->cs_tbc = i - 1; 837 zc->zc_data = *cs->cs_tba++; 838 ZS_DELAY(); 839 zc->zc_csr = ZSWR0_CLR_INTR; 840 ZS_DELAY(); 841 return (0); 842 } 843 844 static int 845 zssint(cs, zc) 846 register struct zs_chanstate *cs; 847 register volatile struct zschan *zc; 848 { 849 register int rr0; 850 851 rr0 = zc->zc_csr; 852 zc->zc_csr = ZSWR0_RESET_STATUS; 853 ZS_DELAY(); 854 zc->zc_csr = ZSWR0_CLR_INTR; 855 ZS_DELAY(); 856 /* 857 * The chip's hardware flow control is, as noted in zsreg.h, 858 * busted---if the DCD line goes low the chip shuts off the 859 * receiver (!). If we want hardware CTS flow control but do 860 * not have it, and carrier is now on, turn HFC on; if we have 861 * HFC now but carrier has gone low, turn it off. 862 */ 863 if (rr0 & ZSRR0_DCD) { 864 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && 865 (cs->cs_creg[3] & ZSWR3_HFC) == 0) { 866 cs->cs_creg[3] |= ZSWR3_HFC; 867 ZS_WRITE(zc, 3, cs->cs_creg[3]); 868 } 869 } else { 870 if (cs->cs_creg[3] & ZSWR3_HFC) { 871 cs->cs_creg[3] &= ~ZSWR3_HFC; 872 ZS_WRITE(zc, 3, cs->cs_creg[3]); 873 } 874 } 875 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { 876 #ifdef SUN4 877 /* 878 * XXX This might not be necessary. Test and 879 * delete if it isn't. 880 */ 881 if (cputyp==CPU_SUN4) { 882 while (zc->zc_csr & ZSRR0_BREAK) 883 ZS_DELAY(); 884 } 885 #endif 886 zsabort(); 887 return (0); 888 } 889 return (ZRING_MAKE(ZRING_SINT, rr0)); 890 } 891 892 zsabort() 893 { 894 895 #ifdef DDB 896 Debugger(); 897 #else 898 printf("stopping on keyboard abort\n"); 899 callrom(); 900 #endif 901 } 902 903 #ifdef KGDB 904 /* 905 * KGDB framing character received: enter kernel debugger. This probably 906 * should time out after a few seconds to avoid hanging on spurious input. 907 */ 908 zskgdb(unit) 909 int unit; 910 { 911 912 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); 913 kgdb_connect(1); 914 } 915 #endif 916 917 /* 918 * Print out a ring or fifo overrun error message. 919 */ 920 static void 921 zsoverrun(unit, ptime, what) 922 int unit; 923 long *ptime; 924 char *what; 925 { 926 927 if (*ptime != time.tv_sec) { 928 *ptime = time.tv_sec; 929 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, 930 (unit & 1) + 'a', what); 931 } 932 } 933 934 /* 935 * ZS software interrupt. Scan all channels for deferred interrupts. 936 */ 937 int 938 zssoft(arg) 939 void *arg; 940 { 941 register struct zs_chanstate *cs; 942 register volatile struct zschan *zc; 943 register struct linesw *line; 944 register struct tty *tp; 945 register int get, n, c, cc, unit, s; 946 int retval = 0; 947 948 for (cs = zslist; cs != NULL; cs = cs->cs_next) { 949 get = cs->cs_rbget; 950 again: 951 n = cs->cs_rbput; /* atomic */ 952 if (get == n) /* nothing more on this line */ 953 continue; 954 retval = 1; 955 unit = cs->cs_unit; /* set up to handle interrupts */ 956 zc = cs->cs_zc; 957 tp = cs->cs_ttyp; 958 line = &linesw[tp->t_line]; 959 /* 960 * Compute the number of interrupts in the receive ring. 961 * If the count is overlarge, we lost some events, and 962 * must advance to the first valid one. It may get 963 * overwritten if more data are arriving, but this is 964 * too expensive to check and gains nothing (we already 965 * lost out; all we can do at this point is trade one 966 * kind of loss for another). 967 */ 968 n -= get; 969 if (n > ZLRB_RING_SIZE) { 970 zsoverrun(unit, &cs->cs_rotime, "ring"); 971 get += n - ZLRB_RING_SIZE; 972 n = ZLRB_RING_SIZE; 973 } 974 while (--n >= 0) { 975 /* race to keep ahead of incoming interrupts */ 976 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK]; 977 switch (ZRING_TYPE(c)) { 978 979 case ZRING_RINT: 980 c = ZRING_VALUE(c); 981 if (c & ZSRR1_DO) 982 zsoverrun(unit, &cs->cs_fotime, "fifo"); 983 cc = c >> 8; 984 if (c & ZSRR1_FE) 985 cc |= TTY_FE; 986 if (c & ZSRR1_PE) 987 cc |= TTY_PE; 988 /* 989 * this should be done through 990 * bstreams XXX gag choke 991 */ 992 if (unit == ZS_KBD) 993 kbd_rint(cc); 994 else if (unit == ZS_MOUSE) 995 ms_rint(cc); 996 else 997 line->l_rint(cc, tp); 998 break; 999 1000 case ZRING_XINT: 1001 /* 1002 * Transmit done: change registers and resume, 1003 * or clear BUSY. 1004 */ 1005 if (cs->cs_heldchange) { 1006 s = splzs(); 1007 c = zc->zc_csr; 1008 ZS_DELAY(); 1009 if ((c & ZSRR0_DCD) == 0) 1010 cs->cs_preg[3] &= ~ZSWR3_HFC; 1011 bcopy((caddr_t)cs->cs_preg, 1012 (caddr_t)cs->cs_creg, 16); 1013 zs_loadchannelregs(zc, cs->cs_creg); 1014 splx(s); 1015 cs->cs_heldchange = 0; 1016 if (cs->cs_heldtbc && 1017 (tp->t_state & TS_TTSTOP) == 0) { 1018 cs->cs_tbc = cs->cs_heldtbc - 1; 1019 zc->zc_data = *cs->cs_tba++; 1020 ZS_DELAY(); 1021 goto again; 1022 } 1023 } 1024 tp->t_state &= ~TS_BUSY; 1025 if (tp->t_state & TS_FLUSH) 1026 tp->t_state &= ~TS_FLUSH; 1027 else 1028 ndflush(&tp->t_outq, 1029 cs->cs_tba - (caddr_t)tp->t_outq.c_cf); 1030 line->l_start(tp); 1031 break; 1032 1033 case ZRING_SINT: 1034 /* 1035 * Status line change. HFC bit is run in 1036 * hardware interrupt, to avoid locking 1037 * at splzs here. 1038 */ 1039 c = ZRING_VALUE(c); 1040 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { 1041 cc = (c & ZSRR0_DCD) != 0; 1042 if (line->l_modem(tp, cc) == 0) 1043 zs_modem(cs, cc); 1044 } 1045 cs->cs_rr0 = c; 1046 break; 1047 1048 default: 1049 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", 1050 unit >> 1, (unit & 1) + 'a', c); 1051 break; 1052 } 1053 } 1054 cs->cs_rbget = get; 1055 goto again; 1056 } 1057 return (retval); 1058 } 1059 1060 int 1061 zsioctl(dev, cmd, data, flag, p) 1062 dev_t dev; 1063 u_long cmd; 1064 caddr_t data; 1065 int flag; 1066 struct proc *p; 1067 { 1068 int unit = minor(dev); 1069 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1070 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp; 1071 register int error, s; 1072 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 1073 1074 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); 1075 if (error >= 0) 1076 return (error); 1077 error = ttioctl(tp, cmd, data, flag, p); 1078 if (error >= 0) 1079 return (error); 1080 1081 switch (cmd) { 1082 case TIOCSBRK: 1083 s = splzs(); 1084 cs->cs_preg[5] |= ZSWR5_BREAK; 1085 cs->cs_creg[5] |= ZSWR5_BREAK; 1086 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1087 splx(s); 1088 break; 1089 case TIOCCBRK: 1090 s = splzs(); 1091 cs->cs_preg[5] &= ~ZSWR5_BREAK; 1092 cs->cs_creg[5] &= ~ZSWR5_BREAK; 1093 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1094 splx(s); 1095 break; 1096 case TIOCGFLAGS: { 1097 int bits = 0; 1098 1099 if (cs->cs_softcar) 1100 bits |= TIOCFLAG_SOFTCAR; 1101 if (cs->cs_creg[15] & ZSWR15_DCD_IE) 1102 bits |= TIOCFLAG_CLOCAL; 1103 if (cs->cs_creg[3] & ZSWR3_HFC) 1104 bits |= TIOCFLAG_CRTSCTS; 1105 *(int *)data = bits; 1106 break; 1107 } 1108 case TIOCSFLAGS: { 1109 int userbits, driverbits = 0; 1110 1111 error = suser(p->p_ucred, &p->p_acflag); 1112 if (error != 0) 1113 return (EPERM); 1114 1115 userbits = *(int *)data; 1116 1117 /* 1118 * can have `local' or `softcar', and `rtscts' or `mdmbuf' 1119 # defaulting to software flow control. 1120 */ 1121 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL) 1122 return(EINVAL); 1123 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */ 1124 return(ENXIO); 1125 1126 s = splzs(); 1127 if ((userbits & TIOCFLAG_SOFTCAR) || (tp == zs_ctty)) { 1128 cs->cs_softcar = 1; /* turn on softcar */ 1129 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */ 1130 cs->cs_creg[15] &= ~ZSWR15_DCD_IE; 1131 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1132 } else if (userbits & TIOCFLAG_CLOCAL) { 1133 cs->cs_softcar = 0; /* turn off softcar */ 1134 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */ 1135 cs->cs_creg[15] |= ZSWR15_DCD_IE; 1136 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1137 tp->t_termios.c_cflag |= CLOCAL; 1138 } 1139 if (userbits & TIOCFLAG_CRTSCTS) { 1140 cs->cs_preg[15] |= ZSWR15_CTS_IE; 1141 cs->cs_creg[15] |= ZSWR15_CTS_IE; 1142 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1143 cs->cs_preg[3] |= ZSWR3_HFC; 1144 cs->cs_creg[3] |= ZSWR3_HFC; 1145 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 1146 tp->t_termios.c_cflag |= CRTSCTS; 1147 } else { 1148 /* no mdmbuf, so we must want software flow control */ 1149 cs->cs_preg[15] &= ~ZSWR15_CTS_IE; 1150 cs->cs_creg[15] &= ~ZSWR15_CTS_IE; 1151 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1152 cs->cs_preg[3] &= ~ZSWR3_HFC; 1153 cs->cs_creg[3] &= ~ZSWR3_HFC; 1154 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 1155 tp->t_termios.c_cflag &= ~CRTSCTS; 1156 } 1157 splx(s); 1158 break; 1159 } 1160 case TIOCSDTR: 1161 case TIOCCDTR: 1162 case TIOCMSET: 1163 case TIOCMBIS: 1164 case TIOCMBIC: 1165 case TIOCMGET: 1166 default: 1167 return (ENOTTY); 1168 } 1169 return (0); 1170 } 1171 1172 /* 1173 * Start or restart transmission. 1174 */ 1175 static void 1176 zsstart(tp) 1177 register struct tty *tp; 1178 { 1179 register struct zs_chanstate *cs; 1180 register int s, nch; 1181 int unit = minor(tp->t_dev); 1182 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1183 1184 cs = &zi->zi_cs[unit & 1]; 1185 s = spltty(); 1186 1187 /* 1188 * If currently active or delaying, no need to do anything. 1189 */ 1190 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) 1191 goto out; 1192 1193 /* 1194 * If there are sleepers, and output has drained below low 1195 * water mark, awaken. 1196 */ 1197 if (tp->t_outq.c_cc <= tp->t_lowat) { 1198 if (tp->t_state & TS_ASLEEP) { 1199 tp->t_state &= ~TS_ASLEEP; 1200 wakeup((caddr_t)&tp->t_outq); 1201 } 1202 selwakeup(&tp->t_wsel); 1203 } 1204 1205 nch = ndqb(&tp->t_outq, 0); /* XXX */ 1206 if (nch) { 1207 register char *p = tp->t_outq.c_cf; 1208 1209 /* mark busy, enable tx done interrupts, & send first byte */ 1210 tp->t_state |= TS_BUSY; 1211 (void) splzs(); 1212 cs->cs_preg[1] |= ZSWR1_TIE; 1213 cs->cs_creg[1] |= ZSWR1_TIE; 1214 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1215 cs->cs_zc->zc_data = *p; 1216 ZS_DELAY(); 1217 cs->cs_tba = p + 1; 1218 cs->cs_tbc = nch - 1; 1219 } else { 1220 /* 1221 * Nothing to send, turn off transmit done interrupts. 1222 * This is useful if something is doing polled output. 1223 */ 1224 (void) splzs(); 1225 cs->cs_preg[1] &= ~ZSWR1_TIE; 1226 cs->cs_creg[1] &= ~ZSWR1_TIE; 1227 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1228 } 1229 out: 1230 splx(s); 1231 } 1232 1233 /* 1234 * Stop output, e.g., for ^S or output flush. 1235 */ 1236 void 1237 zsstop(tp, flag) 1238 register struct tty *tp; 1239 int flag; 1240 { 1241 register struct zs_chanstate *cs; 1242 register int s, unit = minor(tp->t_dev); 1243 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1244 1245 cs = &zi->zi_cs[unit & 1]; 1246 s = splzs(); 1247 if (tp->t_state & TS_BUSY) { 1248 /* 1249 * Device is transmitting; must stop it. 1250 */ 1251 cs->cs_tbc = 0; 1252 if ((tp->t_state & TS_TTSTOP) == 0) 1253 tp->t_state |= TS_FLUSH; 1254 } 1255 splx(s); 1256 } 1257 1258 /* 1259 * Set ZS tty parameters from termios. 1260 * 1261 * This routine makes use of the fact that only registers 1262 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. 1263 */ 1264 static int 1265 zsparam(tp, t) 1266 register struct tty *tp; 1267 register struct termios *t; 1268 { 1269 int unit = minor(tp->t_dev); 1270 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1271 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 1272 register int tmp, tmp5, cflag, s; 1273 1274 /* 1275 * Because PCLK is only run at 4.9 MHz, the fastest we 1276 * can go is 51200 baud (this corresponds to TC=1). 1277 * This is somewhat unfortunate as there is no real 1278 * reason we should not be able to handle higher rates. 1279 */ 1280 tmp = t->c_ospeed; 1281 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) 1282 return (EINVAL); 1283 if (tmp == 0) { 1284 /* stty 0 => drop DTR and RTS */ 1285 zs_modem(cs, 0); 1286 return (0); 1287 } 1288 tmp = BPS_TO_TCONST(PCLK / 16, tmp); 1289 if (tmp < 2) 1290 return (EINVAL); 1291 1292 cflag = t->c_cflag; 1293 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); 1294 tp->t_cflag = cflag; 1295 1296 /* 1297 * Block interrupts so that state will not 1298 * be altered until we are done setting it up. 1299 */ 1300 s = splzs(); 1301 cs->cs_preg[12] = tmp; 1302 cs->cs_preg[13] = tmp >> 8; 1303 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; 1304 switch (cflag & CSIZE) { 1305 case CS5: 1306 tmp = ZSWR3_RX_5; 1307 tmp5 = ZSWR5_TX_5; 1308 break; 1309 case CS6: 1310 tmp = ZSWR3_RX_6; 1311 tmp5 = ZSWR5_TX_6; 1312 break; 1313 case CS7: 1314 tmp = ZSWR3_RX_7; 1315 tmp5 = ZSWR5_TX_7; 1316 break; 1317 case CS8: 1318 default: 1319 tmp = ZSWR3_RX_8; 1320 tmp5 = ZSWR5_TX_8; 1321 break; 1322 } 1323 1324 /* 1325 * Output hardware flow control on the chip is horrendous: if 1326 * carrier detect drops, the receiver is disabled. Hence we 1327 * can only do this when the carrier is on. 1328 */ 1329 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD) 1330 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE; 1331 else 1332 tmp |= ZSWR3_RX_ENABLE; 1333 cs->cs_preg[3] = tmp; 1334 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; 1335 1336 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); 1337 if ((cflag & PARODD) == 0) 1338 tmp |= ZSWR4_EVENP; 1339 if (cflag & PARENB) 1340 tmp |= ZSWR4_PARENB; 1341 cs->cs_preg[4] = tmp; 1342 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR; 1343 cs->cs_preg[10] = ZSWR10_NRZ; 1344 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD; 1345 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA; 1346 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; 1347 1348 /* 1349 * If nothing is being transmitted, set up new current values, 1350 * else mark them as pending. 1351 */ 1352 if (cs->cs_heldchange == 0) { 1353 if (cs->cs_ttyp->t_state & TS_BUSY) { 1354 cs->cs_heldtbc = cs->cs_tbc; 1355 cs->cs_tbc = 0; 1356 cs->cs_heldchange = 1; 1357 } else { 1358 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); 1359 zs_loadchannelregs(cs->cs_zc, cs->cs_creg); 1360 } 1361 } 1362 splx(s); 1363 return (0); 1364 } 1365 1366 /* 1367 * Raise or lower modem control (DTR/RTS) signals. If a character is 1368 * in transmission, the change is deferred. 1369 */ 1370 static void 1371 zs_modem(cs, onoff) 1372 struct zs_chanstate *cs; 1373 int onoff; 1374 { 1375 int s, bis, and; 1376 1377 if (onoff) { 1378 bis = ZSWR5_DTR | ZSWR5_RTS; 1379 and = ~0; 1380 } else { 1381 bis = 0; 1382 and = ~(ZSWR5_DTR | ZSWR5_RTS); 1383 } 1384 s = splzs(); 1385 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; 1386 if (cs->cs_heldchange == 0) { 1387 if (cs->cs_ttyp->t_state & TS_BUSY) { 1388 cs->cs_heldtbc = cs->cs_tbc; 1389 cs->cs_tbc = 0; 1390 cs->cs_heldchange = 1; 1391 } else { 1392 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; 1393 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1394 } 1395 } 1396 splx(s); 1397 } 1398 1399 /* 1400 * Write the given register set to the given zs channel in the proper order. 1401 * The channel must not be transmitting at the time. The receiver will 1402 * be disabled for the time it takes to write all the registers. 1403 */ 1404 static void 1405 zs_loadchannelregs(zc, reg) 1406 volatile struct zschan *zc; 1407 u_char *reg; 1408 { 1409 int i; 1410 1411 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ 1412 ZS_DELAY(); 1413 i = zc->zc_data; /* drain fifo */ 1414 ZS_DELAY(); 1415 i = zc->zc_data; 1416 ZS_DELAY(); 1417 i = zc->zc_data; 1418 ZS_DELAY(); 1419 ZS_WRITE(zc, 4, reg[4]); 1420 ZS_WRITE(zc, 10, reg[10]); 1421 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); 1422 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); 1423 ZS_WRITE(zc, 1, reg[1]); 1424 ZS_WRITE(zc, 9, reg[9]); 1425 ZS_WRITE(zc, 11, reg[11]); 1426 ZS_WRITE(zc, 12, reg[12]); 1427 ZS_WRITE(zc, 13, reg[13]); 1428 ZS_WRITE(zc, 14, reg[14]); 1429 ZS_WRITE(zc, 15, reg[15]); 1430 ZS_WRITE(zc, 3, reg[3]); 1431 ZS_WRITE(zc, 5, reg[5]); 1432 } 1433 1434 #ifdef KGDB 1435 /* 1436 * Get a character from the given kgdb channel. Called at splhigh(). 1437 */ 1438 static int 1439 zs_kgdb_getc(arg) 1440 void *arg; 1441 { 1442 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1443 1444 while ((zc->zc_csr & ZSRR0_RX_READY) == 0) 1445 ZS_DELAY(); 1446 return (zc->zc_data); 1447 } 1448 1449 /* 1450 * Put a character to the given kgdb channel. Called at splhigh(). 1451 */ 1452 static void 1453 zs_kgdb_putc(arg, c) 1454 void *arg; 1455 int c; 1456 { 1457 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1458 1459 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 1460 ZS_DELAY(); 1461 zc->zc_data = c; 1462 ZS_DELAY(); 1463 } 1464 1465 /* 1466 * Set up for kgdb; called at boot time before configuration. 1467 * KGDB interrupts will be enabled later when zs0 is configured. 1468 */ 1469 void 1470 zs_kgdb_init() 1471 { 1472 volatile struct zsdevice *addr; 1473 volatile struct zschan *zc; 1474 int unit, zs; 1475 1476 if (major(kgdb_dev) != ZSMAJOR) 1477 return; 1478 unit = minor(kgdb_dev); 1479 /* 1480 * Unit must be 0 or 1 (zs0). 1481 */ 1482 if ((unsigned)unit >= ZS_KBD) { 1483 printf("zs_kgdb_init: bad minor dev %d\n", unit); 1484 return; 1485 } 1486 zs = unit >> 1; 1487 if ((addr = zsaddr[zs]) == NULL) 1488 addr = zsaddr[zs] = findzs(zs); 1489 unit &= 1; 1490 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B]; 1491 zs_kgdb_savedspeed = zs_getspeed(zc); 1492 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", 1493 zs, unit + 'a', kgdb_rate); 1494 zs_reset(zc, 1, kgdb_rate); 1495 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); 1496 } 1497 #endif /* KGDB */ 1498