1 /* 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This software was developed by the Computer Systems Engineering group 6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7 * contributed to Berkeley. 8 * 9 * All advertising materials mentioning features or use of this software 10 * must display the following acknowledgement: 11 * This product includes software developed by the University of 12 * California, Lawrence Berkeley Laboratory. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)zs.c 8.1 (Berkeley) 7/19/93 43 * 44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp 45 * $Id: zs.c,v 1.8 1994/05/19 06:53:07 deraadt Exp $ 46 */ 47 48 /* 49 * Zilog Z8530 (ZSCC) driver. 50 * 51 * Runs two tty ports (ttya and ttyb) on zs0, 52 * and runs a keyboard and mouse on zs1. 53 * 54 * This driver knows far too much about chip to usage mappings. 55 */ 56 #define NZS 2 /* XXX */ 57 58 #include <sys/param.h> 59 #include <sys/proc.h> 60 #include <sys/device.h> 61 #include <sys/conf.h> 62 #include <sys/file.h> 63 #include <sys/ioctl.h> 64 #include <sys/tty.h> 65 #include <sys/time.h> 66 #include <sys/kernel.h> 67 #include <sys/syslog.h> 68 69 #include <machine/autoconf.h> 70 #include <machine/cpu.h> 71 72 #include <sparc/sparc/vaddrs.h> 73 #include <sparc/sparc/auxreg.h> 74 75 #include <sparc/dev/kbd.h> 76 #include <sparc/dev/zsreg.h> 77 #include <sparc/dev/zsvar.h> 78 79 #ifdef KGDB 80 #include <machine/remote-sl.h> 81 #endif 82 83 #define ZSMAJOR 12 /* XXX */ 84 85 #define ZS_KBD 2 /* XXX */ 86 #define ZS_MOUSE 3 /* XXX */ 87 88 /* the magic number below was stolen from the Sprite source. */ 89 #define PCLK (19660800/4) /* PCLK pin input clock rate */ 90 91 /* 92 * Select software interrupt bit based on TTY ipl. 93 */ 94 #if PIL_TTY == 1 95 # define IE_ZSSOFT IE_L1 96 #elif PIL_TTY == 4 97 # define IE_ZSSOFT IE_L4 98 #elif PIL_TTY == 6 99 # define IE_ZSSOFT IE_L6 100 #else 101 # error "no suitable software interrupt bit" 102 #endif 103 104 /* 105 * Software state per found chip. This would be called `zs_softc', 106 * but the previous driver had a rather different zs_softc.... 107 */ 108 struct zsinfo { 109 struct device zi_dev; /* base device */ 110 volatile struct zsdevice *zi_zs;/* chip registers */ 111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */ 112 }; 113 114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */ 115 116 /* Definition of the driver for autoconfig. */ 117 static int zsmatch(struct device *, struct cfdata *, void *); 118 static void zsattach(struct device *, struct device *, void *); 119 struct cfdriver zscd = 120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) }; 121 122 /* Interrupt handlers. */ 123 static int zshard(void *); 124 static struct intrhand levelhard = { zshard }; 125 static int zssoft(void *); 126 static struct intrhand levelsoft = { zssoft }; 127 128 struct zs_chanstate *zslist; 129 130 /* Routines called from other code. */ 131 static void zsiopen(struct tty *); 132 static void zsiclose(struct tty *); 133 static void zsstart(struct tty *); 134 void zsstop(struct tty *, int); 135 static int zsparam(struct tty *, struct termios *); 136 137 /* Routines purely local to this driver. */ 138 static int zs_getspeed(volatile struct zschan *); 139 static void zs_reset(volatile struct zschan *, int, int); 140 static void zs_modem(struct zs_chanstate *, int); 141 static void zs_loadchannelregs(volatile struct zschan *, u_char *); 142 143 /* Console stuff. */ 144 static struct tty *zs_ctty; /* console `struct tty *' */ 145 static int zs_consin = -1, zs_consout = -1; 146 static int zscnputc(int); /* console putc function */ 147 static volatile struct zschan *zs_conschan; 148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *); 149 150 #ifdef KGDB 151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */ 152 extern int kgdb_dev, kgdb_rate; 153 static int zs_kgdb_savedspeed; 154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *); 155 #endif 156 157 extern volatile struct zsdevice *findzs(int); 158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */ 159 160 /* 161 * Console keyboard L1-A processing is done in the hardware interrupt code, 162 * so we need to duplicate some of the console keyboard decode state. (We 163 * must not use the regular state as the hardware code keeps ahead of the 164 * software state: the software state tracks the most recent ring input but 165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h. 166 */ 167 static struct conk_state { /* console keyboard state */ 168 char conk_id; /* true => ID coming up (console only) */ 169 char conk_l1; /* true => L1 pressed (console only) */ 170 } zsconk_state; 171 172 int zshardscope; 173 int zsshortcuts; /* number of "shortcut" software interrupts */ 174 175 /* 176 * Match slave number to zs unit number, so that misconfiguration will 177 * not set up the keyboard as ttya, etc. 178 */ 179 static int 180 zsmatch(struct device *parent, struct cfdata *cf, void *aux) 181 { 182 struct romaux *ra = aux; 183 184 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit); 185 } 186 187 /* 188 * Attach a found zs. 189 * 190 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 191 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 192 */ 193 static void 194 zsattach(struct device *parent, struct device *dev, void *aux) 195 { 196 register int zs = dev->dv_unit, unit; 197 register struct zsinfo *zi; 198 register struct zs_chanstate *cs; 199 register volatile struct zsdevice *addr; 200 register struct tty *tp, *ctp; 201 register struct romaux *ra = aux; 202 int pri, softcar; 203 static int didintr, prevpri; 204 205 if ((addr = zsaddr[zs]) == NULL) 206 addr = zsaddr[zs] = findzs(zs); 207 if ((void *)addr != ra->ra_vaddr) 208 panic("zsattach"); 209 if (ra->ra_nintr != 1) { 210 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); 211 return; 212 } 213 pri = ra->ra_intr[0].int_pri; 214 printf(" pri %d, softpri %d\n", pri, PIL_TTY); 215 if (!didintr) { 216 didintr = 1; 217 prevpri = pri; 218 intr_establish(pri, &levelhard); 219 intr_establish(PIL_TTY, &levelsoft); 220 } else if (pri != prevpri) 221 panic("broken zs interrupt scheme"); 222 zi = (struct zsinfo *)dev; 223 zi->zi_zs = addr; 224 unit = zs * 2; 225 cs = zi->zi_cs; 226 227 if(!zs_tty[unit]) 228 zs_tty[unit] = ttymalloc(); 229 tp = zs_tty[unit]; 230 if(!zs_tty[unit+1]) 231 zs_tty[unit+1] = ttymalloc(); 232 233 if (unit == 0) { 234 /* Get software carrier flags from options node in OPENPROM. */ 235 extern int optionsnode; 236 237 softcar = 0; 238 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't') 239 softcar |= 1; 240 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't') 241 softcar |= 2; 242 } else 243 softcar = dev->dv_cfdata->cf_flags; 244 245 /* link into interrupt list with order (A,B) (B=A+1) */ 246 cs[0].cs_next = &cs[1]; 247 cs[1].cs_next = zslist; 248 zslist = cs; 249 250 cs->cs_unit = unit; 251 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]); 252 cs->cs_softcar = softcar & 1; 253 cs->cs_zc = &addr->zs_chan[CHAN_A]; 254 tp->t_dev = makedev(ZSMAJOR, unit); 255 tp->t_oproc = zsstart; 256 tp->t_param = zsparam; 257 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) 258 tp = ctp; 259 cs->cs_ttyp = tp; 260 #ifdef KGDB 261 if (ctp == NULL) 262 zs_checkkgdb(unit, cs, tp); 263 #endif 264 if (unit == ZS_KBD) { 265 /* 266 * Keyboard: tell /dev/kbd driver how to talk to us. 267 */ 268 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 269 tp->t_cflag = CS8; 270 kbd_serial(tp, zsiopen, zsiclose); 271 cs->cs_conk = 1; /* do L1-A processing */ 272 } 273 unit++; 274 cs++; 275 tp = zs_tty[unit]; 276 cs->cs_unit = unit; 277 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]); 278 cs->cs_softcar = softcar & 2; 279 cs->cs_zc = &addr->zs_chan[CHAN_B]; 280 tp->t_dev = makedev(ZSMAJOR, unit); 281 tp->t_oproc = zsstart; 282 tp->t_param = zsparam; 283 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) 284 tp = ctp; 285 cs->cs_ttyp = tp; 286 #ifdef KGDB 287 if (ctp == NULL) 288 zs_checkkgdb(unit, cs, tp); 289 #endif 290 if (unit == ZS_MOUSE) { 291 /* 292 * Mouse: tell /dev/mouse driver how to talk to us. 293 */ 294 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 295 tp->t_cflag = CS8; 296 ms_serial(tp, zsiopen, zsiclose); 297 } 298 } 299 300 /* 301 * Put a channel in a known state. Interrupts may be left disabled 302 * or enabled, as desired. 303 */ 304 static void 305 zs_reset(zc, inten, speed) 306 volatile struct zschan *zc; 307 int inten, speed; 308 { 309 int tconst; 310 static u_char reg[16] = { 311 0, 312 0, 313 0, 314 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 315 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 316 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 317 0, 318 0, 319 0, 320 0, 321 ZSWR10_NRZ, 322 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 323 0, 324 0, 325 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, 326 ZSWR15_BREAK_IE | ZSWR15_DCD_IE, 327 }; 328 329 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR; 330 tconst = BPS_TO_TCONST(PCLK / 16, speed); 331 reg[12] = tconst; 332 reg[13] = tconst >> 8; 333 zs_loadchannelregs(zc, reg); 334 } 335 336 /* 337 * Declare the given tty (which is in fact &cons) as a console input 338 * or output. This happens before the zs chip is attached; the hookup 339 * is finished later, in zs_setcons() below. 340 * 341 * This is used only for ports a and b. The console keyboard is decoded 342 * independently (we always send unit-2 input to /dev/kbd, which will 343 * direct it to /dev/console if appropriate). 344 */ 345 void 346 zsconsole(tp, unit, out, fnstop) 347 register struct tty *tp; 348 register int unit; 349 int out; 350 void (**fnstop) __P((struct tty *, int)); 351 { 352 extern int (*v_putc)(); 353 int zs; 354 volatile struct zsdevice *addr; 355 356 if (unit >= ZS_KBD) 357 panic("zsconsole"); 358 if (out) { 359 zs_consout = unit; 360 zs = unit >> 1; 361 if ((addr = zsaddr[zs]) == NULL) 362 addr = zsaddr[zs] = findzs(zs); 363 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] : 364 &addr->zs_chan[CHAN_B]; 365 v_putc = zscnputc; 366 } else 367 zs_consin = unit; 368 if(fnstop) 369 *fnstop = &zsstop; 370 zs_ctty = tp; 371 } 372 373 /* 374 * Polled console output putchar. 375 */ 376 static int 377 zscnputc(c) 378 int c; 379 { 380 register volatile struct zschan *zc = zs_conschan; 381 register int s; 382 383 if (c == '\n') 384 zscnputc('\r'); 385 /* 386 * Must block output interrupts (i.e., raise to >= splzs) without 387 * lowering current ipl. Need a better way. 388 */ 389 s = splhigh(); 390 #ifdef sun4c /* XXX */ 391 if (s <= (12 << 8)) 392 (void) splzs(); 393 #endif 394 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 395 continue; 396 zc->zc_data = c; 397 splx(s); 398 } 399 400 /* 401 * Set up the given unit as console input, output, both, or neither, as 402 * needed. Return console tty if it is to receive console input. 403 */ 404 static struct tty * 405 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs) 406 { 407 register struct tty *tp; 408 char *i, *o; 409 410 if ((tp = zs_ctty) == NULL) 411 return (0); 412 i = zs_consin == unit ? "input" : NULL; 413 o = zs_consout == unit ? "output" : NULL; 414 if (i == NULL && o == NULL) 415 return (0); 416 417 /* rewire the minor device (gack) */ 418 tp->t_dev = makedev(major(tp->t_dev), unit); 419 420 /* 421 * Rewire input and/or output. Note that baud rate reflects 422 * input settings, not output settings, but we can do no better 423 * if the console is split across two ports. 424 * 425 * XXX split consoles don't work anyway -- this needs to be 426 * thrown away and redone 427 */ 428 if (i) { 429 tp->t_param = zsparam; 430 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 431 tp->t_cflag = CS8; 432 ttsetwater(tp); 433 } 434 if (o) { 435 tp->t_oproc = zsstart; 436 } 437 printf("%s%c: console %s\n", 438 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o); 439 cs->cs_consio = 1; 440 cs->cs_brkabort = 1; 441 return (tp); 442 } 443 444 #ifdef KGDB 445 /* 446 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). 447 * Pick up the current speed and character size and restore the original 448 * speed. 449 */ 450 static void 451 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp) 452 { 453 454 if (kgdb_dev == makedev(ZSMAJOR, unit)) { 455 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 456 tp->t_cflag = CS8; 457 cs->cs_kgdb = 1; 458 cs->cs_speed = zs_kgdb_savedspeed; 459 (void) zsparam(tp, &tp->t_termios); 460 } 461 } 462 #endif 463 464 /* 465 * Compute the current baud rate given a ZSCC channel. 466 */ 467 static int 468 zs_getspeed(zc) 469 register volatile struct zschan *zc; 470 { 471 register int tconst; 472 473 tconst = ZS_READ(zc, 12); 474 tconst |= ZS_READ(zc, 13) << 8; 475 return (TCONST_TO_BPS(PCLK / 16, tconst)); 476 } 477 478 479 /* 480 * Do an internal open. 481 */ 482 static void 483 zsiopen(struct tty *tp) 484 { 485 486 (void) zsparam(tp, &tp->t_termios); 487 ttsetwater(tp); 488 tp->t_state = TS_ISOPEN | TS_CARR_ON; 489 } 490 491 /* 492 * Do an internal close. Eventually we should shut off the chip when both 493 * ports on it are closed. 494 */ 495 static void 496 zsiclose(struct tty *tp) 497 { 498 499 ttylclose(tp, 0); /* ??? */ 500 ttyclose(tp); /* ??? */ 501 tp->t_state = 0; 502 } 503 504 505 /* 506 * Open a zs serial port. This interface may not be used to open 507 * the keyboard and mouse ports. (XXX) 508 */ 509 int 510 zsopen(dev_t dev, int flags, int mode, struct proc *p) 511 { 512 register struct tty *tp; 513 register struct zs_chanstate *cs; 514 struct zsinfo *zi; 515 int unit = minor(dev), zs = unit >> 1, error, s; 516 517 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL || 518 unit == ZS_KBD || unit == ZS_MOUSE) 519 return (ENXIO); 520 cs = &zi->zi_cs[unit & 1]; 521 if (cs->cs_consio) 522 return (ENXIO); /* ??? */ 523 tp = cs->cs_ttyp; 524 s = spltty(); 525 if ((tp->t_state & TS_ISOPEN) == 0) { 526 ttychars(tp); 527 if (tp->t_ispeed == 0) { 528 tp->t_iflag = TTYDEF_IFLAG; 529 tp->t_oflag = TTYDEF_OFLAG; 530 tp->t_cflag = TTYDEF_CFLAG; 531 tp->t_lflag = TTYDEF_LFLAG; 532 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 533 } 534 (void) zsparam(tp, &tp->t_termios); 535 ttsetwater(tp); 536 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { 537 splx(s); 538 return (EBUSY); 539 } 540 error = 0; 541 for (;;) { 542 /* loop, turning on the device, until carrier present */ 543 zs_modem(cs, 1); 544 if (cs->cs_softcar) 545 tp->t_state |= TS_CARR_ON; 546 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL || 547 tp->t_state & TS_CARR_ON) 548 break; 549 tp->t_state |= TS_WOPEN; 550 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, 551 ttopen, 0)) 552 break; 553 } 554 splx(s); 555 if (error == 0) 556 error = linesw[tp->t_line].l_open(dev, tp); 557 if (error) 558 zs_modem(cs, 0); 559 return (error); 560 } 561 562 /* 563 * Close a zs serial port. 564 */ 565 int 566 zsclose(dev_t dev, int flags, int mode, struct proc *p) 567 { 568 register struct zs_chanstate *cs; 569 register struct tty *tp; 570 struct zsinfo *zi; 571 int unit = minor(dev), s; 572 573 zi = zscd.cd_devs[unit >> 1]; 574 cs = &zi->zi_cs[unit & 1]; 575 tp = cs->cs_ttyp; 576 linesw[tp->t_line].l_close(tp, flags); 577 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || 578 (tp->t_state & TS_ISOPEN) == 0) { 579 zs_modem(cs, 0); 580 /* hold low for 1 second */ 581 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); 582 } 583 if (cs->cs_creg[5] & ZSWR5_BREAK) 584 { 585 s = splzs(); 586 cs->cs_preg[5] &= ~ZSWR5_BREAK; 587 cs->cs_creg[5] &= ~ZSWR5_BREAK; 588 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 589 splx(s); 590 } 591 ttyclose(tp); 592 #ifdef KGDB 593 /* Reset the speed if we're doing kgdb on this port */ 594 if (cs->cs_kgdb) { 595 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 596 (void) zsparam(tp, &tp->t_termios); 597 } 598 #endif 599 return (0); 600 } 601 602 /* 603 * Read/write zs serial port. 604 */ 605 int 606 zsread(dev_t dev, struct uio *uio, int flags) 607 { 608 register struct tty *tp = zs_tty[minor(dev)]; 609 610 return (linesw[tp->t_line].l_read(tp, uio, flags)); 611 } 612 613 int 614 zswrite(dev_t dev, struct uio *uio, int flags) 615 { 616 register struct tty *tp = zs_tty[minor(dev)]; 617 618 return (linesw[tp->t_line].l_write(tp, uio, flags)); 619 } 620 621 /* 622 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that 623 * channels are kept in (A,B) pairs. 624 * 625 * Do just a little, then get out; set a software interrupt if more 626 * work is needed. 627 * 628 * We deliberately ignore the vectoring Zilog gives us, and match up 629 * only the number of `reset interrupt under service' operations, not 630 * the order. 631 */ 632 /* ARGSUSED */ 633 int 634 zshard(void *intrarg) 635 { 636 register struct zs_chanstate *a; 637 #define b (a + 1) 638 register volatile struct zschan *zc; 639 register int rr3, intflags = 0, v, i; 640 static int zsrint(struct zs_chanstate *, volatile struct zschan *); 641 static int zsxint(struct zs_chanstate *, volatile struct zschan *); 642 static int zssint(struct zs_chanstate *, volatile struct zschan *); 643 644 for (a = zslist; a != NULL; a = b->cs_next) { 645 rr3 = ZS_READ(a->cs_zc, 3); 646 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { 647 intflags |= 2; 648 zc = a->cs_zc; 649 i = a->cs_rbput; 650 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { 651 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 652 intflags |= 1; 653 } 654 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { 655 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 656 intflags |= 1; 657 } 658 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { 659 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 660 intflags |= 1; 661 } 662 a->cs_rbput = i; 663 } 664 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { 665 intflags |= 2; 666 zc = b->cs_zc; 667 i = b->cs_rbput; 668 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { 669 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 670 intflags |= 1; 671 } 672 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { 673 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 674 intflags |= 1; 675 } 676 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { 677 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 678 intflags |= 1; 679 } 680 b->cs_rbput = i; 681 } 682 } 683 #undef b 684 if (intflags & 1) { 685 #if sun4c /* XXX -- but this will go away when zshard moves to locore.s */ 686 struct clockframe *p = intrarg; 687 688 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) { 689 zsshortcuts++; 690 (void) spltty(); 691 if (zshardscope) { 692 LED_ON; 693 LED_OFF; 694 } 695 return (zssoft(intrarg)); 696 } 697 #endif 698 ienab_bis(IE_ZSSOFT); 699 } 700 return (intflags & 2); 701 } 702 703 static int 704 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc) 705 { 706 register int c = zc->zc_data; 707 708 if (cs->cs_conk) { 709 register struct conk_state *conk = &zsconk_state; 710 711 /* 712 * Check here for console abort function, so that we 713 * can abort even when interrupts are locking up the 714 * machine. 715 */ 716 if (c == KBD_RESET) { 717 conk->conk_id = 1; /* ignore next byte */ 718 conk->conk_l1 = 0; 719 } else if (conk->conk_id) 720 conk->conk_id = 0; /* stop ignoring bytes */ 721 else if (c == KBD_L1) 722 conk->conk_l1 = 1; /* L1 went down */ 723 else if (c == (KBD_L1|KBD_UP)) 724 conk->conk_l1 = 0; /* L1 went up */ 725 else if (c == KBD_A && conk->conk_l1) { 726 zsabort(); 727 conk->conk_l1 = 0; /* we never see the up */ 728 goto clearit; /* eat the A after L1-A */ 729 } 730 } 731 #ifdef KGDB 732 if (c == FRAME_START && cs->cs_kgdb && 733 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { 734 zskgdb(cs->cs_unit); 735 goto clearit; 736 } 737 #endif 738 /* compose receive character and status */ 739 c <<= 8; 740 c |= ZS_READ(zc, 1); 741 742 /* clear receive error & interrupt condition */ 743 zc->zc_csr = ZSWR0_RESET_ERRORS; 744 zc->zc_csr = ZSWR0_CLR_INTR; 745 746 return (ZRING_MAKE(ZRING_RINT, c)); 747 748 clearit: 749 zc->zc_csr = ZSWR0_RESET_ERRORS; 750 zc->zc_csr = ZSWR0_CLR_INTR; 751 return (0); 752 } 753 754 static int 755 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc) 756 { 757 register int i = cs->cs_tbc; 758 759 if (i == 0) { 760 zc->zc_csr = ZSWR0_RESET_TXINT; 761 zc->zc_csr = ZSWR0_CLR_INTR; 762 return (ZRING_MAKE(ZRING_XINT, 0)); 763 } 764 cs->cs_tbc = i - 1; 765 zc->zc_data = *cs->cs_tba++; 766 zc->zc_csr = ZSWR0_CLR_INTR; 767 return (0); 768 } 769 770 static int 771 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc) 772 { 773 register int rr0; 774 775 rr0 = zc->zc_csr; 776 zc->zc_csr = ZSWR0_RESET_STATUS; 777 zc->zc_csr = ZSWR0_CLR_INTR; 778 /* 779 * The chip's hardware flow control is, as noted in zsreg.h, 780 * busted---if the DCD line goes low the chip shuts off the 781 * receiver (!). If we want hardware CTS flow control but do 782 * not have it, and carrier is now on, turn HFC on; if we have 783 * HFC now but carrier has gone low, turn it off. 784 */ 785 if (rr0 & ZSRR0_DCD) { 786 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && 787 (cs->cs_creg[3] & ZSWR3_HFC) == 0) { 788 cs->cs_creg[3] |= ZSWR3_HFC; 789 ZS_WRITE(zc, 3, cs->cs_creg[3]); 790 } 791 } else { 792 if (cs->cs_creg[3] & ZSWR3_HFC) { 793 cs->cs_creg[3] &= ~ZSWR3_HFC; 794 ZS_WRITE(zc, 3, cs->cs_creg[3]); 795 } 796 } 797 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { 798 zsabort(); 799 return (0); 800 } 801 return (ZRING_MAKE(ZRING_SINT, rr0)); 802 } 803 804 zsabort() 805 { 806 807 #ifdef DDB 808 Debugger(); 809 #else 810 printf("stopping on keyboard abort\n"); 811 callrom(); 812 #endif 813 } 814 815 #ifdef KGDB 816 /* 817 * KGDB framing character received: enter kernel debugger. This probably 818 * should time out after a few seconds to avoid hanging on spurious input. 819 */ 820 zskgdb(int unit) 821 { 822 823 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); 824 kgdb_connect(1); 825 } 826 #endif 827 828 /* 829 * Print out a ring or fifo overrun error message. 830 */ 831 static void 832 zsoverrun(int unit, long *ptime, char *what) 833 { 834 835 if (*ptime != time.tv_sec) { 836 *ptime = time.tv_sec; 837 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, 838 (unit & 1) + 'a', what); 839 } 840 } 841 842 /* 843 * ZS software interrupt. Scan all channels for deferred interrupts. 844 */ 845 int 846 zssoft(void *arg) 847 { 848 register struct zs_chanstate *cs; 849 register volatile struct zschan *zc; 850 register struct linesw *line; 851 register struct tty *tp; 852 register int get, n, c, cc, unit, s; 853 854 for (cs = zslist; cs != NULL; cs = cs->cs_next) { 855 get = cs->cs_rbget; 856 again: 857 n = cs->cs_rbput; /* atomic */ 858 if (get == n) /* nothing more on this line */ 859 continue; 860 unit = cs->cs_unit; /* set up to handle interrupts */ 861 zc = cs->cs_zc; 862 tp = cs->cs_ttyp; 863 line = &linesw[tp->t_line]; 864 /* 865 * Compute the number of interrupts in the receive ring. 866 * If the count is overlarge, we lost some events, and 867 * must advance to the first valid one. It may get 868 * overwritten if more data are arriving, but this is 869 * too expensive to check and gains nothing (we already 870 * lost out; all we can do at this point is trade one 871 * kind of loss for another). 872 */ 873 n -= get; 874 if (n > ZLRB_RING_SIZE) { 875 zsoverrun(unit, &cs->cs_rotime, "ring"); 876 get += n - ZLRB_RING_SIZE; 877 n = ZLRB_RING_SIZE; 878 } 879 while (--n >= 0) { 880 /* race to keep ahead of incoming interrupts */ 881 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK]; 882 switch (ZRING_TYPE(c)) { 883 884 case ZRING_RINT: 885 c = ZRING_VALUE(c); 886 if (c & ZSRR1_DO) 887 zsoverrun(unit, &cs->cs_fotime, "fifo"); 888 cc = c >> 8; 889 if (c & ZSRR1_FE) 890 cc |= TTY_FE; 891 if (c & ZSRR1_PE) 892 cc |= TTY_PE; 893 /* 894 * this should be done through 895 * bstreams XXX gag choke 896 */ 897 if (unit == ZS_KBD) 898 kbd_rint(cc); 899 else if (unit == ZS_MOUSE) 900 ms_rint(cc); 901 else 902 line->l_rint(cc, tp); 903 break; 904 905 case ZRING_XINT: 906 /* 907 * Transmit done: change registers and resume, 908 * or clear BUSY. 909 */ 910 if (cs->cs_heldchange) { 911 s = splzs(); 912 c = zc->zc_csr; 913 if ((c & ZSRR0_DCD) == 0) 914 cs->cs_preg[3] &= ~ZSWR3_HFC; 915 bcopy((caddr_t)cs->cs_preg, 916 (caddr_t)cs->cs_creg, 16); 917 zs_loadchannelregs(zc, cs->cs_creg); 918 splx(s); 919 cs->cs_heldchange = 0; 920 if (cs->cs_heldtbc && 921 (tp->t_state & TS_TTSTOP) == 0) { 922 cs->cs_tbc = cs->cs_heldtbc - 1; 923 zc->zc_data = *cs->cs_tba++; 924 goto again; 925 } 926 } 927 tp->t_state &= ~TS_BUSY; 928 if (tp->t_state & TS_FLUSH) 929 tp->t_state &= ~TS_FLUSH; 930 else 931 ndflush(&tp->t_outq, 932 cs->cs_tba - tp->t_outq.c_cf); 933 line->l_start(tp); 934 break; 935 936 case ZRING_SINT: 937 /* 938 * Status line change. HFC bit is run in 939 * hardware interrupt, to avoid locking 940 * at splzs here. 941 */ 942 c = ZRING_VALUE(c); 943 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { 944 cc = (c & ZSRR0_DCD) != 0; 945 if (line->l_modem(tp, cc) == 0) 946 zs_modem(cs, cc); 947 } 948 cs->cs_rr0 = c; 949 break; 950 951 default: 952 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", 953 unit >> 1, (unit & 1) + 'a', c); 954 break; 955 } 956 } 957 cs->cs_rbget = get; 958 goto again; 959 } 960 return (1); 961 } 962 963 int 964 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p) 965 { 966 int unit = minor(dev); 967 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 968 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp; 969 register int error, s; 970 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 971 972 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); 973 if (error >= 0) 974 return (error); 975 error = ttioctl(tp, cmd, data, flag, p); 976 if (error >= 0) 977 return (error); 978 979 switch (cmd) { 980 981 case TIOCSBRK: 982 { 983 s = splzs(); 984 cs->cs_preg[5] |= ZSWR5_BREAK; 985 cs->cs_creg[5] |= ZSWR5_BREAK; 986 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 987 splx(s); 988 break; 989 } 990 991 case TIOCCBRK: 992 { 993 s = splzs(); 994 cs->cs_preg[5] &= ~ZSWR5_BREAK; 995 cs->cs_creg[5] &= ~ZSWR5_BREAK; 996 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 997 splx(s); 998 break; 999 } 1000 1001 case TIOCSDTR: 1002 1003 case TIOCCDTR: 1004 1005 case TIOCMSET: 1006 1007 case TIOCMBIS: 1008 1009 case TIOCMBIC: 1010 1011 case TIOCMGET: 1012 1013 default: 1014 return (ENOTTY); 1015 } 1016 return (0); 1017 } 1018 1019 /* 1020 * Start or restart transmission. 1021 */ 1022 static void 1023 zsstart(register struct tty *tp) 1024 { 1025 register struct zs_chanstate *cs; 1026 register int s, nch; 1027 int unit = minor(tp->t_dev); 1028 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1029 1030 cs = &zi->zi_cs[unit & 1]; 1031 s = spltty(); 1032 1033 /* 1034 * If currently active or delaying, no need to do anything. 1035 */ 1036 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) 1037 goto out; 1038 1039 /* 1040 * If there are sleepers, and output has drained below low 1041 * water mark, awaken. 1042 */ 1043 if (tp->t_outq.c_cc <= tp->t_lowat) { 1044 if (tp->t_state & TS_ASLEEP) { 1045 tp->t_state &= ~TS_ASLEEP; 1046 wakeup((caddr_t)&tp->t_outq); 1047 } 1048 selwakeup(&tp->t_wsel); 1049 } 1050 1051 nch = ndqb(&tp->t_outq, 0); /* XXX */ 1052 if (nch) { 1053 register char *p = tp->t_outq.c_cf; 1054 1055 /* mark busy, enable tx done interrupts, & send first byte */ 1056 tp->t_state |= TS_BUSY; 1057 (void) splzs(); 1058 cs->cs_preg[1] |= ZSWR1_TIE; 1059 cs->cs_creg[1] |= ZSWR1_TIE; 1060 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1061 cs->cs_zc->zc_data = *p; 1062 cs->cs_tba = p + 1; 1063 cs->cs_tbc = nch - 1; 1064 } else { 1065 /* 1066 * Nothing to send, turn off transmit done interrupts. 1067 * This is useful if something is doing polled output. 1068 */ 1069 (void) splzs(); 1070 cs->cs_preg[1] &= ~ZSWR1_TIE; 1071 cs->cs_creg[1] &= ~ZSWR1_TIE; 1072 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1073 } 1074 out: 1075 splx(s); 1076 } 1077 1078 /* 1079 * Stop output, e.g., for ^S or output flush. 1080 */ 1081 void 1082 zsstop(register struct tty *tp, int flag) 1083 { 1084 register struct zs_chanstate *cs; 1085 register int s, unit = minor(tp->t_dev); 1086 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1087 1088 cs = &zi->zi_cs[unit & 1]; 1089 s = splzs(); 1090 if (tp->t_state & TS_BUSY) { 1091 /* 1092 * Device is transmitting; must stop it. 1093 */ 1094 cs->cs_tbc = 0; 1095 if ((tp->t_state & TS_TTSTOP) == 0) 1096 tp->t_state |= TS_FLUSH; 1097 } 1098 splx(s); 1099 } 1100 1101 /* 1102 * Set ZS tty parameters from termios. 1103 * 1104 * This routine makes use of the fact that only registers 1105 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. 1106 */ 1107 static int 1108 zsparam(register struct tty *tp, register struct termios *t) 1109 { 1110 int unit = minor(tp->t_dev); 1111 struct zsinfo *zi = zscd.cd_devs[unit >> 1]; 1112 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 1113 register int tmp, tmp5, cflag, s; 1114 1115 /* 1116 * Because PCLK is only run at 4.9 MHz, the fastest we 1117 * can go is 51200 baud (this corresponds to TC=1). 1118 * This is somewhat unfortunate as there is no real 1119 * reason we should not be able to handle higher rates. 1120 */ 1121 tmp = t->c_ospeed; 1122 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) 1123 return (EINVAL); 1124 if (tmp == 0) { 1125 /* stty 0 => drop DTR and RTS */ 1126 zs_modem(cs, 0); 1127 return (0); 1128 } 1129 tmp = BPS_TO_TCONST(PCLK / 16, tmp); 1130 if (tmp < 2) 1131 return (EINVAL); 1132 1133 cflag = t->c_cflag; 1134 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); 1135 tp->t_cflag = cflag; 1136 1137 /* 1138 * Block interrupts so that state will not 1139 * be altered until we are done setting it up. 1140 */ 1141 s = splzs(); 1142 cs->cs_preg[12] = tmp; 1143 cs->cs_preg[13] = tmp >> 8; 1144 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; 1145 switch (cflag & CSIZE) { 1146 case CS5: 1147 tmp = ZSWR3_RX_5; 1148 tmp5 = ZSWR5_TX_5; 1149 break; 1150 case CS6: 1151 tmp = ZSWR3_RX_6; 1152 tmp5 = ZSWR5_TX_6; 1153 break; 1154 case CS7: 1155 tmp = ZSWR3_RX_7; 1156 tmp5 = ZSWR5_TX_7; 1157 break; 1158 case CS8: 1159 default: 1160 tmp = ZSWR3_RX_8; 1161 tmp5 = ZSWR5_TX_8; 1162 break; 1163 } 1164 1165 /* 1166 * Output hardware flow control on the chip is horrendous: if 1167 * carrier detect drops, the receiver is disabled. Hence we 1168 * can only do this when the carrier is on. 1169 */ 1170 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD) 1171 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE; 1172 else 1173 tmp |= ZSWR3_RX_ENABLE; 1174 cs->cs_preg[3] = tmp; 1175 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; 1176 1177 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); 1178 if ((cflag & PARODD) == 0) 1179 tmp |= ZSWR4_EVENP; 1180 if (cflag & PARENB) 1181 tmp |= ZSWR4_PARENB; 1182 cs->cs_preg[4] = tmp; 1183 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR; 1184 cs->cs_preg[10] = ZSWR10_NRZ; 1185 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD; 1186 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA; 1187 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; 1188 1189 /* 1190 * If nothing is being transmitted, set up new current values, 1191 * else mark them as pending. 1192 */ 1193 if (cs->cs_heldchange == 0) { 1194 if (cs->cs_ttyp->t_state & TS_BUSY) { 1195 cs->cs_heldtbc = cs->cs_tbc; 1196 cs->cs_tbc = 0; 1197 cs->cs_heldchange = 1; 1198 } else { 1199 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); 1200 zs_loadchannelregs(cs->cs_zc, cs->cs_creg); 1201 } 1202 } 1203 splx(s); 1204 return (0); 1205 } 1206 1207 /* 1208 * Raise or lower modem control (DTR/RTS) signals. If a character is 1209 * in transmission, the change is deferred. 1210 */ 1211 static void 1212 zs_modem(struct zs_chanstate *cs, int onoff) 1213 { 1214 int s, bis, and; 1215 1216 if (onoff) { 1217 bis = ZSWR5_DTR | ZSWR5_RTS; 1218 and = ~0; 1219 } else { 1220 bis = 0; 1221 and = ~(ZSWR5_DTR | ZSWR5_RTS); 1222 } 1223 s = splzs(); 1224 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; 1225 if (cs->cs_heldchange == 0) { 1226 if (cs->cs_ttyp->t_state & TS_BUSY) { 1227 cs->cs_heldtbc = cs->cs_tbc; 1228 cs->cs_tbc = 0; 1229 cs->cs_heldchange = 1; 1230 } else { 1231 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; 1232 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1233 } 1234 } 1235 splx(s); 1236 } 1237 1238 /* 1239 * Write the given register set to the given zs channel in the proper order. 1240 * The channel must not be transmitting at the time. The receiver will 1241 * be disabled for the time it takes to write all the registers. 1242 */ 1243 static void 1244 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg) 1245 { 1246 int i; 1247 1248 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ 1249 i = zc->zc_data; /* drain fifo */ 1250 i = zc->zc_data; 1251 i = zc->zc_data; 1252 ZS_WRITE(zc, 4, reg[4]); 1253 ZS_WRITE(zc, 10, reg[10]); 1254 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); 1255 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); 1256 ZS_WRITE(zc, 1, reg[1]); 1257 ZS_WRITE(zc, 9, reg[9]); 1258 ZS_WRITE(zc, 11, reg[11]); 1259 ZS_WRITE(zc, 12, reg[12]); 1260 ZS_WRITE(zc, 13, reg[13]); 1261 ZS_WRITE(zc, 14, reg[14]); 1262 ZS_WRITE(zc, 15, reg[15]); 1263 ZS_WRITE(zc, 3, reg[3]); 1264 ZS_WRITE(zc, 5, reg[5]); 1265 } 1266 1267 #ifdef KGDB 1268 /* 1269 * Get a character from the given kgdb channel. Called at splhigh(). 1270 */ 1271 static int 1272 zs_kgdb_getc(void *arg) 1273 { 1274 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1275 1276 while ((zc->zc_csr & ZSRR0_RX_READY) == 0) 1277 continue; 1278 return (zc->zc_data); 1279 } 1280 1281 /* 1282 * Put a character to the given kgdb channel. Called at splhigh(). 1283 */ 1284 static void 1285 zs_kgdb_putc(void *arg, int c) 1286 { 1287 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1288 1289 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 1290 continue; 1291 zc->zc_data = c; 1292 } 1293 1294 /* 1295 * Set up for kgdb; called at boot time before configuration. 1296 * KGDB interrupts will be enabled later when zs0 is configured. 1297 */ 1298 void 1299 zs_kgdb_init() 1300 { 1301 volatile struct zsdevice *addr; 1302 volatile struct zschan *zc; 1303 int unit, zs; 1304 1305 if (major(kgdb_dev) != ZSMAJOR) 1306 return; 1307 unit = minor(kgdb_dev); 1308 /* 1309 * Unit must be 0 or 1 (zs0). 1310 */ 1311 if ((unsigned)unit >= ZS_KBD) { 1312 printf("zs_kgdb_init: bad minor dev %d\n", unit); 1313 return; 1314 } 1315 zs = unit >> 1; 1316 if ((addr = zsaddr[zs]) == NULL) 1317 addr = zsaddr[zs] = findzs(zs); 1318 unit &= 1; 1319 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B]; 1320 zs_kgdb_savedspeed = zs_getspeed(zc); 1321 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", 1322 zs, unit + 'a', kgdb_rate); 1323 zs_reset(zc, 1, kgdb_rate); 1324 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); 1325 } 1326 #endif /* KGDB */ 1327