1 /* $NetBSD: zs.c,v 1.44 1996/10/13 03:00:18 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * @(#)zs.c 8.1 (Berkeley) 7/19/93 45 */ 46 47 /* 48 * Zilog Z8530 (ZSCC) driver. 49 * 50 * Runs two tty ports (ttya and ttyb) on zs0, 51 * and runs a keyboard and mouse on zs1, and 52 * possibly two more tty ports (ttyc and ttyd) on zs2. 53 * 54 * This driver knows far too much about chip to usage mappings. 55 */ 56 #include "zs.h" 57 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/proc.h> 61 #include <sys/device.h> 62 #include <sys/file.h> 63 #include <sys/ioctl.h> 64 #include <sys/malloc.h> 65 #include <sys/tty.h> 66 #include <sys/time.h> 67 #include <sys/kernel.h> 68 #include <sys/syslog.h> 69 #include <sys/conf.h> 70 71 #include <machine/autoconf.h> 72 #include <machine/conf.h> 73 #include <machine/cpu.h> 74 #include <machine/kbd.h> 75 76 #include <sparc/sparc/vaddrs.h> 77 #include <sparc/sparc/auxreg.h> 78 #include <dev/ic/z8530reg.h> 79 #include <sparc/dev/zsvar.h> 80 81 #ifdef KGDB 82 #include <machine/remote-sl.h> 83 #endif 84 85 #define ZSMAJOR 12 /* XXX */ 86 87 #define ZS_KBD 2 /* XXX */ 88 #define ZS_MOUSE 3 /* XXX */ 89 90 /* the magic number below was stolen from the Sprite source. */ 91 #define PCLK (19660800/4) /* PCLK pin input clock rate */ 92 93 /* 94 * Select software interrupt bit based on TTY ipl. 95 */ 96 #if PIL_TTY == 1 97 # define IE_ZSSOFT IE_L1 98 #elif PIL_TTY == 4 99 # define IE_ZSSOFT IE_L4 100 #elif PIL_TTY == 6 101 # define IE_ZSSOFT IE_L6 102 #else 103 # error "no suitable software interrupt bit" 104 #endif 105 106 /* 107 * Software state per found chip. 108 */ 109 struct zs_softc { 110 struct device sc_dev; /* base device */ 111 volatile struct zsdevice *sc_zs; /* chip registers */ 112 struct evcnt sc_intrcnt; /* count interrupts */ 113 struct zs_chanstate sc_cs[2]; /* chan A/B software state */ 114 }; 115 116 /* Definition of the driver for autoconfig. */ 117 static int zsmatch __P((struct device *, void *, void *)); 118 static void zsattach __P((struct device *, struct device *, void *)); 119 120 struct cfattach zs_ca = { 121 sizeof(struct zs_softc), zsmatch, zsattach 122 }; 123 124 struct cfdriver zs_cd = { 125 NULL, "zs", DV_TTY 126 }; 127 128 /* Interrupt handlers. */ 129 static int zshard __P((void *)); 130 static struct intrhand levelhard = { zshard }; 131 static int zssoft __P((void *)); 132 static struct intrhand levelsoft = { zssoft }; 133 134 struct zs_chanstate *zslist; 135 136 /* Routines called from other code. */ 137 static void zsiopen __P((struct tty *)); 138 static void zsiclose __P((struct tty *)); 139 static void zsstart __P((struct tty *)); 140 static int zsparam __P((struct tty *, struct termios *)); 141 142 /* Routines purely local to this driver. */ 143 static int zs_getspeed __P((volatile struct zschan *)); 144 #ifdef KGDB 145 static void zs_reset __P((volatile struct zschan *, int, int)); 146 #endif 147 static void zs_modem __P((struct zs_chanstate *, int)); 148 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *)); 149 150 /* Console stuff. */ 151 static struct tty *zs_ctty; /* console `struct tty *' */ 152 static int zs_consin = -1, zs_consout = -1; 153 static void zscnputc __P((int)); /* console putc function */ 154 static volatile struct zschan *zs_conschan; 155 static struct tty *zs_checkcons __P((struct zs_softc *, int, 156 struct zs_chanstate *)); 157 158 #ifdef KGDB 159 /* KGDB stuff. Must reboot to change zs_kgdbunit. */ 160 extern int kgdb_dev, kgdb_rate; 161 static int zs_kgdb_savedspeed; 162 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *)); 163 void zskgdb __P((int)); 164 static int zs_kgdb_getc __P((void *)); 165 static void zs_kgdb_putc __P((void *, int)); 166 #endif 167 168 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *)); 169 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *)); 170 static int zssint __P((struct zs_chanstate *, volatile struct zschan *)); 171 172 void zsabort __P((void)); 173 static void zsoverrun __P((int, long *, char *)); 174 175 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */ 176 177 /* 178 * Console keyboard L1-A processing is done in the hardware interrupt code, 179 * so we need to duplicate some of the console keyboard decode state. (We 180 * must not use the regular state as the hardware code keeps ahead of the 181 * software state: the software state tracks the most recent ring input but 182 * the hardware state tracks the most recent ZSCC input.) See also kbd.h. 183 */ 184 static struct conk_state { /* console keyboard state */ 185 char conk_id; /* true => ID coming up (console only) */ 186 char conk_l1; /* true => L1 pressed (console only) */ 187 } zsconk_state; 188 189 int zshardscope; 190 int zsshortcuts; /* number of "shortcut" software interrupts */ 191 192 #ifdef SUN4 193 static u_int zs_read __P((volatile struct zschan *, u_int reg)); 194 static u_int zs_write __P((volatile struct zschan *, u_int, u_int)); 195 196 static u_int 197 zs_read(zc, reg) 198 volatile struct zschan *zc; 199 u_int reg; 200 { 201 u_char val; 202 203 zc->zc_csr = reg; 204 ZS_DELAY(); 205 val = zc->zc_csr; 206 ZS_DELAY(); 207 return val; 208 } 209 210 static u_int 211 zs_write(zc, reg, val) 212 volatile struct zschan *zc; 213 u_int reg, val; 214 { 215 zc->zc_csr = reg; 216 ZS_DELAY(); 217 zc->zc_csr = val; 218 ZS_DELAY(); 219 return val; 220 } 221 #endif /* SUN4 */ 222 223 /* 224 * Match slave number to zs unit number, so that misconfiguration will 225 * not set up the keyboard as ttya, etc. 226 */ 227 static int 228 zsmatch(parent, vcf, aux) 229 struct device *parent; 230 void *vcf, *aux; 231 { 232 struct cfdata *cf = vcf; 233 struct confargs *ca = aux; 234 struct romaux *ra = &ca->ca_ra; 235 236 if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) 237 return (0); 238 if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) || 239 (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M)) 240 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit); 241 ra->ra_len = NBPG; 242 return (probeget(ra->ra_vaddr, 1) != -1); 243 } 244 245 /* 246 * Attach a found zs. 247 * 248 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 249 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 250 */ 251 static void 252 zsattach(parent, dev, aux) 253 struct device *parent; 254 struct device *dev; 255 void *aux; 256 { 257 register int zs = dev->dv_unit, unit; 258 register struct zs_softc *sc; 259 register struct zs_chanstate *cs; 260 register volatile struct zsdevice *addr; 261 register struct tty *tp, *ctp; 262 register struct confargs *ca = aux; 263 register struct romaux *ra = &ca->ca_ra; 264 int pri; 265 static int didintr, prevpri; 266 int ringsize; 267 268 if ((addr = zsaddr[zs]) == NULL) 269 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); 270 if (ca->ca_bustype==BUS_MAIN) 271 if ((void *)addr != ra->ra_vaddr) 272 panic("zsattach"); 273 if (ra->ra_nintr != 1) { 274 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr); 275 return; 276 } 277 pri = ra->ra_intr[0].int_pri; 278 printf(" pri %d, softpri %d\n", pri, PIL_TTY); 279 if (!didintr) { 280 didintr = 1; 281 prevpri = pri; 282 intr_establish(pri, &levelhard); 283 intr_establish(PIL_TTY, &levelsoft); 284 } else if (pri != prevpri) 285 panic("broken zs interrupt scheme"); 286 sc = (struct zs_softc *)dev; 287 evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt); 288 sc->sc_zs = addr; 289 unit = zs * 2; 290 cs = sc->sc_cs; 291 292 /* link into interrupt list with order (A,B) (B=A+1) */ 293 cs[0].cs_next = &cs[1]; 294 cs[0].cs_sc = sc; 295 cs[1].cs_next = zslist; 296 cs[1].cs_sc = sc; 297 zslist = cs; 298 299 cs->cs_unit = unit; 300 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]); 301 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A]; 302 if ((ctp = zs_checkcons(sc, unit, cs)) != NULL) 303 tp = ctp; 304 else { 305 tp = ttymalloc(); 306 tp->t_dev = makedev(ZSMAJOR, unit); 307 tp->t_oproc = zsstart; 308 tp->t_param = zsparam; 309 } 310 cs->cs_ttyp = tp; 311 #ifdef KGDB 312 if (ctp == NULL) 313 zs_checkkgdb(unit, cs, tp); 314 #endif 315 if (unit == ZS_KBD) { 316 /* 317 * Keyboard: tell /dev/kbd driver how to talk to us. 318 */ 319 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 320 tp->t_cflag = CS8; 321 kbd_serial(tp, zsiopen, zsiclose); 322 cs->cs_conk = 1; /* do L1-A processing */ 323 ringsize = 128; 324 } else { 325 if (tp != ctp) 326 tty_attach(tp); 327 ringsize = 4096; 328 } 329 cs->cs_ringmask = ringsize - 1; 330 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf), 331 M_DEVBUF, M_NOWAIT); 332 333 unit++; 334 cs++; 335 cs->cs_unit = unit; 336 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]); 337 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B]; 338 if ((ctp = zs_checkcons(sc, unit, cs)) != NULL) 339 tp = ctp; 340 else { 341 tp = ttymalloc(); 342 tp->t_dev = makedev(ZSMAJOR, unit); 343 tp->t_oproc = zsstart; 344 tp->t_param = zsparam; 345 } 346 cs->cs_ttyp = tp; 347 #ifdef KGDB 348 if (ctp == NULL) 349 zs_checkkgdb(unit, cs, tp); 350 #endif 351 if (unit == ZS_MOUSE) { 352 /* 353 * Mouse: tell /dev/mouse driver how to talk to us. 354 */ 355 tp->t_ispeed = tp->t_ospeed = B1200; 356 tp->t_cflag = CS8; 357 ms_serial(tp, zsiopen, zsiclose); 358 ringsize = 128; 359 } else { 360 if (tp != ctp) 361 tty_attach(tp); 362 ringsize = 4096; 363 } 364 cs->cs_ringmask = ringsize - 1; 365 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf), 366 M_DEVBUF, M_NOWAIT); 367 } 368 369 #ifdef KGDB 370 /* 371 * Put a channel in a known state. Interrupts may be left disabled 372 * or enabled, as desired. 373 */ 374 static void 375 zs_reset(zc, inten, speed) 376 volatile struct zschan *zc; 377 int inten, speed; 378 { 379 int tconst; 380 static u_char reg[16] = { 381 0, 382 0, 383 0, 384 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 385 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 386 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 387 0, 388 0, 389 0, 390 0, 391 ZSWR10_NRZ, 392 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 393 0, 394 0, 395 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, 396 ZSWR15_BREAK_IE | ZSWR15_DCD_IE, 397 }; 398 399 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR; 400 tconst = BPS_TO_TCONST(PCLK / 16, speed); 401 reg[12] = tconst; 402 reg[13] = tconst >> 8; 403 zs_loadchannelregs(zc, reg); 404 } 405 #endif 406 407 /* 408 * Declare the given tty (which is in fact &cons) as a console input 409 * or output. This happens before the zs chip is attached; the hookup 410 * is finished later, in zs_setcons() below. 411 * 412 * This is used only for ports a and b. The console keyboard is decoded 413 * independently (we always send unit-2 input to /dev/kbd, which will 414 * direct it to /dev/console if appropriate). 415 */ 416 void 417 zsconsole(tp, unit, out, fnstop) 418 register struct tty *tp; 419 register int unit; 420 int out; 421 void (**fnstop) __P((struct tty *, int)); 422 { 423 int zs; 424 volatile struct zsdevice *addr; 425 426 if (unit >= ZS_KBD) 427 panic("zsconsole"); 428 if (out) { 429 zs_consout = unit; 430 zs = unit >> 1; 431 if ((addr = zsaddr[zs]) == NULL) 432 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); 433 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] : 434 &addr->zs_chan[ZS_CHAN_B]; 435 v_putc = zscnputc; 436 } else 437 zs_consin = unit; 438 if (fnstop) 439 *fnstop = &zsstop; 440 zs_ctty = tp; 441 } 442 443 /* 444 * Polled console output putchar. 445 */ 446 static void 447 zscnputc(c) 448 int c; 449 { 450 register volatile struct zschan *zc = zs_conschan; 451 register int s; 452 453 if (c == '\n') 454 zscnputc('\r'); 455 /* 456 * Must block output interrupts (i.e., raise to >= splzs) without 457 * lowering current ipl. Need a better way. 458 */ 459 s = splhigh(); 460 if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */ 461 (void) splzs(); 462 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 463 ZS_DELAY(); 464 zc->zc_data = c; 465 ZS_DELAY(); 466 splx(s); 467 } 468 469 /* 470 * Set up the given unit as console input, output, both, or neither, as 471 * needed. Return console tty if it is to receive console input. 472 */ 473 static struct tty * 474 zs_checkcons(sc, unit, cs) 475 struct zs_softc *sc; 476 int unit; 477 struct zs_chanstate *cs; 478 { 479 register struct tty *tp; 480 char *i, *o; 481 482 if ((tp = zs_ctty) == NULL) /* XXX */ 483 return (0); 484 i = zs_consin == unit ? "input" : NULL; 485 o = zs_consout == unit ? "output" : NULL; 486 if (i == NULL && o == NULL) 487 return (0); 488 489 /* rewire the minor device (gack) */ 490 tp->t_dev = makedev(major(tp->t_dev), unit); 491 492 /* 493 * Rewire input and/or output. Note that baud rate reflects 494 * input settings, not output settings, but we can do no better 495 * if the console is split across two ports. 496 * 497 * XXX split consoles don't work anyway -- this needs to be 498 * thrown away and redone 499 */ 500 if (i) { 501 tp->t_param = zsparam; 502 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 503 tp->t_cflag = CS8; 504 ttsetwater(tp); 505 } 506 if (o) { 507 tp->t_oproc = zsstart; 508 } 509 printf("%s%c: console %s\n", 510 sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o); 511 cs->cs_consio = 1; 512 cs->cs_brkabort = 1; 513 return (tp); 514 } 515 516 #ifdef KGDB 517 /* 518 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). 519 * Pick up the current speed and character size and restore the original 520 * speed. 521 */ 522 static void 523 zs_checkkgdb(unit, cs, tp) 524 int unit; 525 struct zs_chanstate *cs; 526 struct tty *tp; 527 { 528 529 if (kgdb_dev == makedev(ZSMAJOR, unit)) { 530 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 531 tp->t_cflag = CS8; 532 cs->cs_kgdb = 1; 533 cs->cs_speed = zs_kgdb_savedspeed; 534 (void) zsparam(tp, &tp->t_termios); 535 } 536 } 537 #endif 538 539 /* 540 * Compute the current baud rate given a ZSCC channel. 541 */ 542 static int 543 zs_getspeed(zc) 544 register volatile struct zschan *zc; 545 { 546 register int tconst; 547 548 tconst = ZS_READ(zc, 12); 549 tconst |= ZS_READ(zc, 13) << 8; 550 return (TCONST_TO_BPS(PCLK / 16, tconst)); 551 } 552 553 554 /* 555 * Do an internal open. 556 */ 557 static void 558 zsiopen(tp) 559 struct tty *tp; 560 { 561 562 (void) zsparam(tp, &tp->t_termios); 563 ttsetwater(tp); 564 tp->t_state = TS_ISOPEN | TS_CARR_ON; 565 } 566 567 /* 568 * Do an internal close. Eventually we should shut off the chip when both 569 * ports on it are closed. 570 */ 571 static void 572 zsiclose(tp) 573 struct tty *tp; 574 { 575 576 ttylclose(tp, 0); /* ??? */ 577 ttyclose(tp); /* ??? */ 578 tp->t_state = 0; 579 } 580 581 582 /* 583 * Open a zs serial port. This interface may not be used to open 584 * the keyboard and mouse ports. (XXX) 585 */ 586 int 587 zsopen(dev, flags, mode, p) 588 dev_t dev; 589 int flags; 590 int mode; 591 struct proc *p; 592 { 593 register struct tty *tp; 594 register struct zs_chanstate *cs; 595 struct zs_softc *sc; 596 int unit = minor(dev), zs = unit >> 1, error, s; 597 598 if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL || 599 unit == ZS_KBD || unit == ZS_MOUSE) 600 return (ENXIO); 601 cs = &sc->sc_cs[unit & 1]; 602 if (cs->cs_consio) 603 return (ENXIO); /* ??? */ 604 tp = cs->cs_ttyp; 605 s = spltty(); 606 if ((tp->t_state & TS_ISOPEN) == 0) { 607 ttychars(tp); 608 if (tp->t_ispeed == 0) { 609 tp->t_iflag = TTYDEF_IFLAG; 610 tp->t_oflag = TTYDEF_OFLAG; 611 tp->t_cflag = TTYDEF_CFLAG; 612 tp->t_lflag = TTYDEF_LFLAG; 613 tp->t_ispeed = tp->t_ospeed = cs->cs_speed; 614 } 615 (void) zsparam(tp, &tp->t_termios); 616 ttsetwater(tp); 617 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { 618 splx(s); 619 return (EBUSY); 620 } 621 error = 0; 622 for (;;) { 623 register int rr0; 624 625 /* loop, turning on the device, until carrier present */ 626 zs_modem(cs, 1); 627 /* May never get status intr if carrier already on. -gwr */ 628 rr0 = cs->cs_zc->zc_csr; 629 ZS_DELAY(); 630 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar) 631 tp->t_state |= TS_CARR_ON; 632 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL || 633 tp->t_state & TS_CARR_ON) 634 break; 635 tp->t_state |= TS_WOPEN; 636 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, 637 ttopen, 0); 638 if (error) { 639 if (!(tp->t_state & TS_ISOPEN)) { 640 zs_modem(cs, 0); 641 tp->t_state &= ~TS_WOPEN; 642 ttwakeup(tp); 643 } 644 splx(s); 645 return error; 646 } 647 } 648 splx(s); 649 if (error == 0) 650 error = linesw[tp->t_line].l_open(dev, tp); 651 if (error) 652 zs_modem(cs, 0); 653 return (error); 654 } 655 656 /* 657 * Close a zs serial port. 658 */ 659 int 660 zsclose(dev, flags, mode, p) 661 dev_t dev; 662 int flags; 663 int mode; 664 struct proc *p; 665 { 666 register struct zs_chanstate *cs; 667 register struct tty *tp; 668 struct zs_softc *sc; 669 int unit = minor(dev), s; 670 671 sc = zs_cd.cd_devs[unit >> 1]; 672 cs = &sc->sc_cs[unit & 1]; 673 tp = cs->cs_ttyp; 674 linesw[tp->t_line].l_close(tp, flags); 675 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || 676 (tp->t_state & TS_ISOPEN) == 0) { 677 zs_modem(cs, 0); 678 /* hold low for 1 second */ 679 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); 680 } 681 if (cs->cs_creg[5] & ZSWR5_BREAK) 682 { 683 s = splzs(); 684 cs->cs_preg[5] &= ~ZSWR5_BREAK; 685 cs->cs_creg[5] &= ~ZSWR5_BREAK; 686 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 687 splx(s); 688 } 689 ttyclose(tp); 690 #ifdef KGDB 691 /* Reset the speed if we're doing kgdb on this port */ 692 if (cs->cs_kgdb) { 693 tp->t_ispeed = tp->t_ospeed = kgdb_rate; 694 (void) zsparam(tp, &tp->t_termios); 695 } 696 #endif 697 return (0); 698 } 699 700 /* 701 * Read/write zs serial port. 702 */ 703 int 704 zsread(dev, uio, flags) 705 dev_t dev; 706 struct uio *uio; 707 int flags; 708 { 709 register struct zs_chanstate *cs; 710 register struct zs_softc *sc; 711 register struct tty *tp; 712 int unit = minor(dev); 713 714 sc = zs_cd.cd_devs[unit >> 1]; 715 cs = &sc->sc_cs[unit & 1]; 716 tp = cs->cs_ttyp; 717 718 return (linesw[tp->t_line].l_read(tp, uio, flags)); 719 720 } 721 722 int 723 zswrite(dev, uio, flags) 724 dev_t dev; 725 struct uio *uio; 726 int flags; 727 { 728 register struct zs_chanstate *cs; 729 register struct zs_softc *sc; 730 register struct tty *tp; 731 int unit = minor(dev); 732 733 sc = zs_cd.cd_devs[unit >> 1]; 734 cs = &sc->sc_cs[unit & 1]; 735 tp = cs->cs_ttyp; 736 737 return (linesw[tp->t_line].l_write(tp, uio, flags)); 738 } 739 740 struct tty * 741 zstty(dev) 742 dev_t dev; 743 { 744 register struct zs_chanstate *cs; 745 register struct zs_softc *sc; 746 int unit = minor(dev); 747 748 sc = zs_cd.cd_devs[unit >> 1]; 749 cs = &sc->sc_cs[unit & 1]; 750 751 return (cs->cs_ttyp); 752 } 753 754 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *)); 755 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *)); 756 static int zssint __P((struct zs_chanstate *, volatile struct zschan *)); 757 758 /* 759 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that 760 * channels are kept in (A,B) pairs. 761 * 762 * Do just a little, then get out; set a software interrupt if more 763 * work is needed. 764 * 765 * We deliberately ignore the vectoring Zilog gives us, and match up 766 * only the number of `reset interrupt under service' operations, not 767 * the order. 768 */ 769 /* ARGSUSED */ 770 int 771 zshard(intrarg) 772 void *intrarg; 773 { 774 register struct zs_chanstate *a; 775 #define b (a + 1) 776 register volatile struct zschan *zc; 777 register int rr3, intflags = 0, v, i, ringmask; 778 779 #define ZSHARD_NEED_SOFTINTR 1 780 #define ZSHARD_WAS_SERVICED 2 781 #define ZSHARD_CHIP_GOTINTR 4 782 783 for (a = zslist; a != NULL; a = b->cs_next) { 784 ringmask = a->cs_ringmask; 785 rr3 = ZS_READ(a->cs_zc, 3); 786 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { 787 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED); 788 zc = a->cs_zc; 789 i = a->cs_rbput; 790 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { 791 a->cs_rbuf[i++ & ringmask] = v; 792 intflags |= ZSHARD_NEED_SOFTINTR; 793 } 794 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { 795 a->cs_rbuf[i++ & ringmask] = v; 796 intflags |= ZSHARD_NEED_SOFTINTR; 797 } 798 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { 799 a->cs_rbuf[i++ & ringmask] = v; 800 intflags |= ZSHARD_NEED_SOFTINTR; 801 } 802 a->cs_rbput = i; 803 } 804 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { 805 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED); 806 zc = b->cs_zc; 807 i = b->cs_rbput; 808 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { 809 b->cs_rbuf[i++ & ringmask] = v; 810 intflags |= ZSHARD_NEED_SOFTINTR; 811 } 812 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { 813 b->cs_rbuf[i++ & ringmask] = v; 814 intflags |= ZSHARD_NEED_SOFTINTR; 815 } 816 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { 817 b->cs_rbuf[i++ & ringmask] = v; 818 intflags |= ZSHARD_NEED_SOFTINTR; 819 } 820 b->cs_rbput = i; 821 } 822 if (intflags & ZSHARD_CHIP_GOTINTR) { 823 a->cs_sc->sc_intrcnt.ev_count++; 824 intflags &= ~ZSHARD_CHIP_GOTINTR; 825 } 826 } 827 #undef b 828 829 if (intflags & ZSHARD_NEED_SOFTINTR) { 830 if (CPU_ISSUN4COR4M) { 831 /* XXX -- but this will go away when zshard moves to locore.s */ 832 struct clockframe *p = intrarg; 833 834 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) { 835 zsshortcuts++; 836 (void) spltty(); 837 if (zshardscope) { 838 LED_ON; 839 LED_OFF; 840 } 841 return (zssoft(intrarg)); 842 } 843 } 844 845 #if defined(SUN4M) 846 if (CPU_ISSUN4M) 847 raise(0, PIL_TTY); 848 else 849 #endif 850 ienab_bis(IE_ZSSOFT); 851 } 852 return (intflags & ZSHARD_WAS_SERVICED); 853 } 854 855 static int 856 zsrint(cs, zc) 857 register struct zs_chanstate *cs; 858 register volatile struct zschan *zc; 859 { 860 register u_int c = zc->zc_data; 861 862 ZS_DELAY(); 863 if (cs->cs_conk) { 864 register struct conk_state *conk = &zsconk_state; 865 866 /* 867 * Check here for console abort function, so that we 868 * can abort even when interrupts are locking up the 869 * machine. 870 */ 871 if (c == KBD_RESET) { 872 conk->conk_id = 1; /* ignore next byte */ 873 conk->conk_l1 = 0; 874 } else if (conk->conk_id) 875 conk->conk_id = 0; /* stop ignoring bytes */ 876 else if (c == KBD_L1) 877 conk->conk_l1 = 1; /* L1 went down */ 878 else if (c == (KBD_L1|KBD_UP)) 879 conk->conk_l1 = 0; /* L1 went up */ 880 else if (c == KBD_A && conk->conk_l1) { 881 zsabort(); 882 conk->conk_l1 = 0; /* we never see the up */ 883 goto clearit; /* eat the A after L1-A */ 884 } 885 } 886 #ifdef KGDB 887 if (c == FRAME_START && cs->cs_kgdb && 888 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { 889 zskgdb(cs->cs_unit); 890 goto clearit; 891 } 892 #endif 893 /* compose receive character and status */ 894 c <<= 8; 895 c |= ZS_READ(zc, 1); 896 897 /* clear receive error & interrupt condition */ 898 zc->zc_csr = ZSWR0_RESET_ERRORS; 899 ZS_DELAY(); 900 zc->zc_csr = ZSWR0_CLR_INTR; 901 ZS_DELAY(); 902 903 return (ZRING_MAKE(ZRING_RINT, c)); 904 905 clearit: 906 zc->zc_csr = ZSWR0_RESET_ERRORS; 907 ZS_DELAY(); 908 zc->zc_csr = ZSWR0_CLR_INTR; 909 ZS_DELAY(); 910 return (0); 911 } 912 913 static int 914 zsxint(cs, zc) 915 register struct zs_chanstate *cs; 916 register volatile struct zschan *zc; 917 { 918 register int i = cs->cs_tbc; 919 920 if (i == 0) { 921 zc->zc_csr = ZSWR0_RESET_TXINT; 922 ZS_DELAY(); 923 zc->zc_csr = ZSWR0_CLR_INTR; 924 ZS_DELAY(); 925 return (ZRING_MAKE(ZRING_XINT, 0)); 926 } 927 cs->cs_tbc = i - 1; 928 zc->zc_data = *cs->cs_tba++; 929 ZS_DELAY(); 930 zc->zc_csr = ZSWR0_CLR_INTR; 931 ZS_DELAY(); 932 return (0); 933 } 934 935 static int 936 zssint(cs, zc) 937 register struct zs_chanstate *cs; 938 register volatile struct zschan *zc; 939 { 940 register u_int rr0; 941 942 rr0 = zc->zc_csr; 943 ZS_DELAY(); 944 zc->zc_csr = ZSWR0_RESET_STATUS; 945 ZS_DELAY(); 946 zc->zc_csr = ZSWR0_CLR_INTR; 947 ZS_DELAY(); 948 /* 949 * The chip's hardware flow control is, as noted in zsreg.h, 950 * busted---if the DCD line goes low the chip shuts off the 951 * receiver (!). If we want hardware CTS flow control but do 952 * not have it, and carrier is now on, turn HFC on; if we have 953 * HFC now but carrier has gone low, turn it off. 954 */ 955 if (rr0 & ZSRR0_DCD) { 956 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && 957 (cs->cs_creg[3] & ZSWR3_HFC) == 0) { 958 cs->cs_creg[3] |= ZSWR3_HFC; 959 ZS_WRITE(zc, 3, cs->cs_creg[3]); 960 } 961 } else { 962 if (cs->cs_creg[3] & ZSWR3_HFC) { 963 cs->cs_creg[3] &= ~ZSWR3_HFC; 964 ZS_WRITE(zc, 3, cs->cs_creg[3]); 965 } 966 } 967 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { 968 /* 969 * XXX This might not be necessary. Test and 970 * delete if it isn't. 971 */ 972 if (CPU_ISSUN4) { 973 while (zc->zc_csr & ZSRR0_BREAK) 974 ZS_DELAY(); 975 } 976 zsabort(); 977 return (0); 978 } 979 return (ZRING_MAKE(ZRING_SINT, rr0)); 980 } 981 982 void 983 zsabort() 984 { 985 986 #ifdef DDB 987 Debugger(); 988 #else 989 printf("stopping on keyboard abort\n"); 990 callrom(); 991 #endif 992 } 993 994 #ifdef KGDB 995 /* 996 * KGDB framing character received: enter kernel debugger. This probably 997 * should time out after a few seconds to avoid hanging on spurious input. 998 */ 999 void 1000 zskgdb(unit) 1001 int unit; 1002 { 1003 1004 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); 1005 kgdb_connect(1); 1006 } 1007 #endif 1008 1009 /* 1010 * Print out a ring or fifo overrun error message. 1011 */ 1012 static void 1013 zsoverrun(unit, ptime, what) 1014 int unit; 1015 long *ptime; 1016 char *what; 1017 { 1018 1019 if (*ptime != time.tv_sec) { 1020 *ptime = time.tv_sec; 1021 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, 1022 (unit & 1) + 'a', what); 1023 } 1024 } 1025 1026 /* 1027 * ZS software interrupt. Scan all channels for deferred interrupts. 1028 */ 1029 int 1030 zssoft(arg) 1031 void *arg; 1032 { 1033 register struct zs_chanstate *cs; 1034 register volatile struct zschan *zc; 1035 register struct linesw *line; 1036 register struct tty *tp; 1037 register int get, n, c, cc, unit, s, ringmask, ringsize; 1038 int retval = 0; 1039 1040 for (cs = zslist; cs != NULL; cs = cs->cs_next) { 1041 ringmask = cs->cs_ringmask; 1042 get = cs->cs_rbget; 1043 again: 1044 n = cs->cs_rbput; /* atomic */ 1045 if (get == n) /* nothing more on this line */ 1046 continue; 1047 retval = 1; 1048 unit = cs->cs_unit; /* set up to handle interrupts */ 1049 zc = cs->cs_zc; 1050 tp = cs->cs_ttyp; 1051 line = &linesw[tp->t_line]; 1052 /* 1053 * Compute the number of interrupts in the receive ring. 1054 * If the count is overlarge, we lost some events, and 1055 * must advance to the first valid one. It may get 1056 * overwritten if more data are arriving, but this is 1057 * too expensive to check and gains nothing (we already 1058 * lost out; all we can do at this point is trade one 1059 * kind of loss for another). 1060 */ 1061 ringsize = ringmask + 1; 1062 n -= get; 1063 if (n > ringsize) { 1064 zsoverrun(unit, &cs->cs_rotime, "ring"); 1065 get += n - ringsize; 1066 n = ringsize; 1067 } 1068 while (--n >= 0) { 1069 /* race to keep ahead of incoming interrupts */ 1070 c = cs->cs_rbuf[get++ & ringmask]; 1071 switch (ZRING_TYPE(c)) { 1072 1073 case ZRING_RINT: 1074 c = ZRING_VALUE(c); 1075 if (c & ZSRR1_DO) 1076 zsoverrun(unit, &cs->cs_fotime, "fifo"); 1077 cc = c >> 8; 1078 if (c & ZSRR1_FE) 1079 cc |= TTY_FE; 1080 if (c & ZSRR1_PE) 1081 cc |= TTY_PE; 1082 /* 1083 * this should be done through 1084 * bstreams XXX gag choke 1085 */ 1086 if (unit == ZS_KBD) 1087 kbd_rint(cc); 1088 else if (unit == ZS_MOUSE) 1089 ms_rint(cc); 1090 else 1091 line->l_rint(cc, tp); 1092 break; 1093 1094 case ZRING_XINT: 1095 /* 1096 * Transmit done: change registers and resume, 1097 * or clear BUSY. 1098 */ 1099 if (cs->cs_heldchange) { 1100 s = splzs(); 1101 c = zc->zc_csr; 1102 ZS_DELAY(); 1103 if ((c & ZSRR0_DCD) == 0) 1104 cs->cs_preg[3] &= ~ZSWR3_HFC; 1105 bcopy((caddr_t)cs->cs_preg, 1106 (caddr_t)cs->cs_creg, 16); 1107 zs_loadchannelregs(zc, cs->cs_creg); 1108 splx(s); 1109 cs->cs_heldchange = 0; 1110 if (cs->cs_heldtbc && 1111 (tp->t_state & TS_TTSTOP) == 0) { 1112 cs->cs_tbc = cs->cs_heldtbc - 1; 1113 zc->zc_data = *cs->cs_tba++; 1114 ZS_DELAY(); 1115 goto again; 1116 } 1117 } 1118 tp->t_state &= ~TS_BUSY; 1119 if (tp->t_state & TS_FLUSH) 1120 tp->t_state &= ~TS_FLUSH; 1121 else 1122 ndflush(&tp->t_outq, 1123 cs->cs_tba - (caddr_t)tp->t_outq.c_cf); 1124 line->l_start(tp); 1125 break; 1126 1127 case ZRING_SINT: 1128 /* 1129 * Status line change. HFC bit is run in 1130 * hardware interrupt, to avoid locking 1131 * at splzs here. 1132 */ 1133 c = ZRING_VALUE(c); 1134 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { 1135 cc = (c & ZSRR0_DCD) != 0; 1136 if (line->l_modem(tp, cc) == 0) 1137 zs_modem(cs, cc); 1138 } 1139 cs->cs_rr0 = c; 1140 break; 1141 1142 default: 1143 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", 1144 unit >> 1, (unit & 1) + 'a', c); 1145 break; 1146 } 1147 } 1148 cs->cs_rbget = get; 1149 goto again; 1150 } 1151 return (retval); 1152 } 1153 1154 int 1155 zsioctl(dev, cmd, data, flag, p) 1156 dev_t dev; 1157 u_long cmd; 1158 caddr_t data; 1159 int flag; 1160 struct proc *p; 1161 { 1162 int unit = minor(dev); 1163 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; 1164 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1]; 1165 register struct tty *tp = cs->cs_ttyp; 1166 register int error, s; 1167 1168 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); 1169 if (error >= 0) 1170 return (error); 1171 error = ttioctl(tp, cmd, data, flag, p); 1172 if (error >= 0) 1173 return (error); 1174 1175 switch (cmd) { 1176 case TIOCSBRK: 1177 s = splzs(); 1178 cs->cs_preg[5] |= ZSWR5_BREAK; 1179 cs->cs_creg[5] |= ZSWR5_BREAK; 1180 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1181 splx(s); 1182 break; 1183 case TIOCCBRK: 1184 s = splzs(); 1185 cs->cs_preg[5] &= ~ZSWR5_BREAK; 1186 cs->cs_creg[5] &= ~ZSWR5_BREAK; 1187 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1188 splx(s); 1189 break; 1190 case TIOCGFLAGS: { 1191 int bits = 0; 1192 1193 if (cs->cs_softcar) 1194 bits |= TIOCFLAG_SOFTCAR; 1195 if (cs->cs_creg[15] & ZSWR15_DCD_IE) 1196 bits |= TIOCFLAG_CLOCAL; 1197 if (cs->cs_creg[3] & ZSWR3_HFC) 1198 bits |= TIOCFLAG_CRTSCTS; 1199 *(int *)data = bits; 1200 break; 1201 } 1202 case TIOCSFLAGS: { 1203 int userbits; 1204 1205 error = suser(p->p_ucred, &p->p_acflag); 1206 if (error != 0) 1207 return (EPERM); 1208 1209 userbits = *(int *)data; 1210 1211 /* 1212 * can have `local' or `softcar', and `rtscts' or `mdmbuf' 1213 # defaulting to software flow control. 1214 */ 1215 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL) 1216 return(EINVAL); 1217 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */ 1218 return(ENXIO); 1219 1220 s = splzs(); 1221 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) { 1222 cs->cs_softcar = 1; /* turn on softcar */ 1223 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */ 1224 cs->cs_creg[15] &= ~ZSWR15_DCD_IE; 1225 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1226 } else if (userbits & TIOCFLAG_CLOCAL) { 1227 cs->cs_softcar = 0; /* turn off softcar */ 1228 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */ 1229 cs->cs_creg[15] |= ZSWR15_DCD_IE; 1230 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1231 tp->t_termios.c_cflag |= CLOCAL; 1232 } 1233 if (userbits & TIOCFLAG_CRTSCTS) { 1234 cs->cs_preg[15] |= ZSWR15_CTS_IE; 1235 cs->cs_creg[15] |= ZSWR15_CTS_IE; 1236 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1237 cs->cs_preg[3] |= ZSWR3_HFC; 1238 cs->cs_creg[3] |= ZSWR3_HFC; 1239 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 1240 tp->t_termios.c_cflag |= CRTSCTS; 1241 } else { 1242 /* no mdmbuf, so we must want software flow control */ 1243 cs->cs_preg[15] &= ~ZSWR15_CTS_IE; 1244 cs->cs_creg[15] &= ~ZSWR15_CTS_IE; 1245 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 1246 cs->cs_preg[3] &= ~ZSWR3_HFC; 1247 cs->cs_creg[3] &= ~ZSWR3_HFC; 1248 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 1249 tp->t_termios.c_cflag &= ~CRTSCTS; 1250 } 1251 splx(s); 1252 break; 1253 } 1254 case TIOCSDTR: 1255 zs_modem(cs, 1); 1256 break; 1257 case TIOCCDTR: 1258 zs_modem(cs, 0); 1259 break; 1260 case TIOCMSET: 1261 case TIOCMGET: 1262 case TIOCMBIS: 1263 case TIOCMBIC: 1264 default: 1265 return (ENOTTY); 1266 } 1267 return (0); 1268 } 1269 1270 /* 1271 * Start or restart transmission. 1272 */ 1273 static void 1274 zsstart(tp) 1275 register struct tty *tp; 1276 { 1277 register struct zs_chanstate *cs; 1278 register int s, nch; 1279 int unit = minor(tp->t_dev); 1280 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; 1281 1282 cs = &sc->sc_cs[unit & 1]; 1283 s = spltty(); 1284 1285 /* 1286 * If currently active or delaying, no need to do anything. 1287 */ 1288 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) 1289 goto out; 1290 1291 /* 1292 * If there are sleepers, and output has drained below low 1293 * water mark, awaken. 1294 */ 1295 if (tp->t_outq.c_cc <= tp->t_lowat) { 1296 if (tp->t_state & TS_ASLEEP) { 1297 tp->t_state &= ~TS_ASLEEP; 1298 wakeup((caddr_t)&tp->t_outq); 1299 } 1300 selwakeup(&tp->t_wsel); 1301 } 1302 1303 nch = ndqb(&tp->t_outq, 0); /* XXX */ 1304 if (nch) { 1305 register char *p = tp->t_outq.c_cf; 1306 1307 /* mark busy, enable tx done interrupts, & send first byte */ 1308 tp->t_state |= TS_BUSY; 1309 (void) splzs(); 1310 cs->cs_preg[1] |= ZSWR1_TIE; 1311 cs->cs_creg[1] |= ZSWR1_TIE; 1312 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1313 cs->cs_zc->zc_data = *p; 1314 ZS_DELAY(); 1315 cs->cs_tba = p + 1; 1316 cs->cs_tbc = nch - 1; 1317 } else { 1318 /* 1319 * Nothing to send, turn off transmit done interrupts. 1320 * This is useful if something is doing polled output. 1321 */ 1322 (void) splzs(); 1323 cs->cs_preg[1] &= ~ZSWR1_TIE; 1324 cs->cs_creg[1] &= ~ZSWR1_TIE; 1325 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 1326 } 1327 out: 1328 splx(s); 1329 } 1330 1331 /* 1332 * Stop output, e.g., for ^S or output flush. 1333 */ 1334 void 1335 zsstop(tp, flag) 1336 register struct tty *tp; 1337 int flag; 1338 { 1339 register struct zs_chanstate *cs; 1340 register int s, unit = minor(tp->t_dev); 1341 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; 1342 1343 cs = &sc->sc_cs[unit & 1]; 1344 s = splzs(); 1345 if (tp->t_state & TS_BUSY) { 1346 /* 1347 * Device is transmitting; must stop it. 1348 */ 1349 cs->cs_tbc = 0; 1350 if ((tp->t_state & TS_TTSTOP) == 0) 1351 tp->t_state |= TS_FLUSH; 1352 } 1353 splx(s); 1354 } 1355 1356 /* 1357 * Set ZS tty parameters from termios. 1358 * 1359 * This routine makes use of the fact that only registers 1360 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. 1361 */ 1362 static int 1363 zsparam(tp, t) 1364 register struct tty *tp; 1365 register struct termios *t; 1366 { 1367 int unit = minor(tp->t_dev); 1368 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1]; 1369 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1]; 1370 register int tmp, tmp5, cflag, s; 1371 1372 /* 1373 * Because PCLK is only run at 4.9 MHz, the fastest we 1374 * can go is 51200 baud (this corresponds to TC=1). 1375 * This is somewhat unfortunate as there is no real 1376 * reason we should not be able to handle higher rates. 1377 */ 1378 tmp = t->c_ospeed; 1379 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) 1380 return (EINVAL); 1381 if (tmp == 0) { 1382 /* stty 0 => drop DTR and RTS */ 1383 zs_modem(cs, 0); 1384 return (0); 1385 } 1386 tmp = BPS_TO_TCONST(PCLK / 16, tmp); 1387 if (tmp < 2) 1388 return (EINVAL); 1389 1390 cflag = t->c_cflag; 1391 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); 1392 tp->t_cflag = cflag; 1393 1394 /* 1395 * Block interrupts so that state will not 1396 * be altered until we are done setting it up. 1397 */ 1398 s = splzs(); 1399 cs->cs_preg[12] = tmp; 1400 cs->cs_preg[13] = tmp >> 8; 1401 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; 1402 switch (cflag & CSIZE) { 1403 case CS5: 1404 tmp = ZSWR3_RX_5; 1405 tmp5 = ZSWR5_TX_5; 1406 break; 1407 case CS6: 1408 tmp = ZSWR3_RX_6; 1409 tmp5 = ZSWR5_TX_6; 1410 break; 1411 case CS7: 1412 tmp = ZSWR3_RX_7; 1413 tmp5 = ZSWR5_TX_7; 1414 break; 1415 case CS8: 1416 default: 1417 tmp = ZSWR3_RX_8; 1418 tmp5 = ZSWR5_TX_8; 1419 break; 1420 } 1421 1422 /* 1423 * Output hardware flow control on the chip is horrendous: if 1424 * carrier detect drops, the receiver is disabled. Hence we 1425 * can only do this when the carrier is on. 1426 */ 1427 tmp |= ZSWR3_RX_ENABLE; 1428 if (cflag & CCTS_OFLOW) { 1429 if (cs->cs_zc->zc_csr & ZSRR0_DCD) 1430 tmp |= ZSWR3_HFC; 1431 ZS_DELAY(); 1432 } 1433 cs->cs_preg[3] = tmp; 1434 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; 1435 1436 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); 1437 if ((cflag & PARODD) == 0) 1438 tmp |= ZSWR4_EVENP; 1439 if (cflag & PARENB) 1440 tmp |= ZSWR4_PARENB; 1441 cs->cs_preg[4] = tmp; 1442 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR; 1443 cs->cs_preg[10] = ZSWR10_NRZ; 1444 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD; 1445 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA; 1446 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; 1447 1448 /* 1449 * If nothing is being transmitted, set up new current values, 1450 * else mark them as pending. 1451 */ 1452 if (cs->cs_heldchange == 0) { 1453 if (cs->cs_ttyp->t_state & TS_BUSY) { 1454 cs->cs_heldtbc = cs->cs_tbc; 1455 cs->cs_tbc = 0; 1456 cs->cs_heldchange = 1; 1457 } else { 1458 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); 1459 zs_loadchannelregs(cs->cs_zc, cs->cs_creg); 1460 } 1461 } 1462 splx(s); 1463 return (0); 1464 } 1465 1466 /* 1467 * Raise or lower modem control (DTR/RTS) signals. If a character is 1468 * in transmission, the change is deferred. 1469 */ 1470 static void 1471 zs_modem(cs, onoff) 1472 struct zs_chanstate *cs; 1473 int onoff; 1474 { 1475 int s, bis, and; 1476 1477 if (onoff) { 1478 bis = ZSWR5_DTR | ZSWR5_RTS; 1479 and = ~0; 1480 } else { 1481 bis = 0; 1482 and = ~(ZSWR5_DTR | ZSWR5_RTS); 1483 } 1484 s = splzs(); 1485 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; 1486 if (cs->cs_heldchange == 0) { 1487 if (cs->cs_ttyp->t_state & TS_BUSY) { 1488 cs->cs_heldtbc = cs->cs_tbc; 1489 cs->cs_tbc = 0; 1490 cs->cs_heldchange = 1; 1491 } else { 1492 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; 1493 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1494 } 1495 } 1496 splx(s); 1497 } 1498 1499 /* 1500 * Write the given register set to the given zs channel in the proper order. 1501 * The channel must not be transmitting at the time. The receiver will 1502 * be disabled for the time it takes to write all the registers. 1503 */ 1504 static void 1505 zs_loadchannelregs(zc, reg) 1506 volatile struct zschan *zc; 1507 u_char *reg; 1508 { 1509 int i; 1510 1511 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ 1512 ZS_DELAY(); 1513 i = zc->zc_data; /* drain fifo */ 1514 ZS_DELAY(); 1515 i = zc->zc_data; 1516 ZS_DELAY(); 1517 i = zc->zc_data; 1518 ZS_DELAY(); 1519 ZS_WRITE(zc, 4, reg[4]); 1520 ZS_WRITE(zc, 10, reg[10]); 1521 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); 1522 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); 1523 ZS_WRITE(zc, 1, reg[1]); 1524 ZS_WRITE(zc, 9, reg[9]); 1525 ZS_WRITE(zc, 11, reg[11]); 1526 ZS_WRITE(zc, 12, reg[12]); 1527 ZS_WRITE(zc, 13, reg[13]); 1528 ZS_WRITE(zc, 14, reg[14]); 1529 ZS_WRITE(zc, 15, reg[15]); 1530 ZS_WRITE(zc, 3, reg[3]); 1531 ZS_WRITE(zc, 5, reg[5]); 1532 } 1533 1534 #ifdef KGDB 1535 /* 1536 * Get a character from the given kgdb channel. Called at splhigh(). 1537 */ 1538 static int 1539 zs_kgdb_getc(arg) 1540 void *arg; 1541 { 1542 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1543 u_char c; 1544 1545 while ((zc->zc_csr & ZSRR0_RX_READY) == 0) 1546 ZS_DELAY(); 1547 c = zc->zc_data; 1548 ZS_DELAY(); 1549 return c; 1550 } 1551 1552 /* 1553 * Put a character to the given kgdb channel. Called at splhigh(). 1554 */ 1555 static void 1556 zs_kgdb_putc(arg, c) 1557 void *arg; 1558 int c; 1559 { 1560 register volatile struct zschan *zc = (volatile struct zschan *)arg; 1561 1562 while ((zc->zc_csr & ZSRR0_TX_READY) == 0) 1563 ZS_DELAY(); 1564 zc->zc_data = c; 1565 ZS_DELAY(); 1566 } 1567 1568 /* 1569 * Set up for kgdb; called at boot time before configuration. 1570 * KGDB interrupts will be enabled later when zs0 is configured. 1571 */ 1572 void 1573 zs_kgdb_init() 1574 { 1575 volatile struct zsdevice *addr; 1576 volatile struct zschan *zc; 1577 int unit, zs; 1578 1579 if (major(kgdb_dev) != ZSMAJOR) 1580 return; 1581 unit = minor(kgdb_dev); 1582 /* 1583 * Unit must be 0 or 1 (zs0). 1584 */ 1585 if ((unsigned)unit >= ZS_KBD) { 1586 printf("zs_kgdb_init: bad minor dev %d\n", unit); 1587 return; 1588 } 1589 zs = unit >> 1; 1590 if ((addr = zsaddr[zs]) == NULL) 1591 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs); 1592 unit &= 1; 1593 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B]; 1594 zs_kgdb_savedspeed = zs_getspeed(zc); 1595 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", 1596 zs, unit + 'a', kgdb_rate); 1597 zs_reset(zc, 1, kgdb_rate); 1598 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); 1599 } 1600 #endif /* KGDB */ 1601