xref: /netbsd-src/sys/arch/sparc/dev/zs.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /*	$NetBSD: zs.c,v 1.85 2002/03/11 16:27:02 pk Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Gordon W. Ross.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Zilog Z8530 Dual UART driver (machine-dependent part)
41  *
42  * Runs two serial lines per chip using slave drivers.
43  * Plain tty/async lines use the zs_async slave.
44  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45  */
46 
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61 
62 #include <machine/bsd_openprom.h>
63 #include <machine/autoconf.h>
64 #include <machine/intr.h>
65 #include <machine/conf.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69 
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72 
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77 
78 #include "kbd.h"	/* NKBD */
79 #include "zs.h" 	/* NZS */
80 
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef  NZS
84 #define NZS 3
85 #endif
86 
87 /*
88  * Some warts needed by z8530tty.c -
89  * The default parity REALLY needs to be the same as the PROM uses,
90  * or you can not see messages done with printf during boot-up...
91  */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93 int zs_major = 12;
94 
95 /*
96  * The Sun provides a 4.9152 MHz clock to the ZS chips.
97  */
98 #define PCLK	(9600 * 512)	/* PCLK pin input clock rate */
99 
100 /*
101  * Select software interrupt bit based on TTY ipl.
102  */
103 #if PIL_TTY == 1
104 # define IE_ZSSOFT IE_L1
105 #elif PIL_TTY == 4
106 # define IE_ZSSOFT IE_L4
107 #elif PIL_TTY == 6
108 # define IE_ZSSOFT IE_L6
109 #else
110 # error "no suitable software interrupt bit"
111 #endif
112 
113 #define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(2))
114 
115 /* The layout of this is hardware-dependent (padding, order). */
116 struct zschan {
117 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
118 	u_char		zc_xxx0;
119 	volatile u_char	zc_data;	/* data */
120 	u_char		zc_xxx1;
121 };
122 struct zsdevice {
123 	/* Yes, they are backwards. */
124 	struct	zschan zs_chan_b;
125 	struct	zschan zs_chan_a;
126 };
127 
128 /* ZS channel used as the console device (if any) */
129 void *zs_conschan_get, *zs_conschan_put;
130 
131 static u_char zs_init_reg[16] = {
132 	0,	/* 0: CMD (reset, etc.) */
133 	0,	/* 1: No interrupts yet. */
134 	0,	/* 2: IVECT */
135 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
136 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
137 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
138 	0,	/* 6: TXSYNC/SYNCLO */
139 	0,	/* 7: RXSYNC/SYNCHI */
140 	0,	/* 8: alias for data port */
141 	ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
142 	0,	/*10: Misc. TX/RX control bits */
143 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
145 	0,			/*13: BAUDHI (default=9600) */
146 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
147 	ZSWR15_BREAK_IE,
148 };
149 
150 /* Console ops */
151 static int  zscngetc __P((dev_t));
152 static void zscnputc __P((dev_t, int));
153 static void zscnpollc __P((dev_t, int));
154 
155 struct consdev zs_consdev = {
156 	NULL,
157 	NULL,
158 	zscngetc,
159 	zscnputc,
160 	zscnpollc,
161 	NULL,
162 };
163 
164 
165 /****************************************************************
166  * Autoconfig
167  ****************************************************************/
168 
169 /* Definition of the driver for autoconfig. */
170 static int  zs_match_mainbus __P((struct device *, struct cfdata *, void *));
171 static int  zs_match_obio __P((struct device *, struct cfdata *, void *));
172 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
173 static void zs_attach_obio __P((struct device *, struct device *, void *));
174 
175 
176 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
177 static int  zs_print __P((void *, const char *name));
178 
179 struct cfattach zs_mainbus_ca = {
180 	sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
181 };
182 
183 struct cfattach zs_obio_ca = {
184 	sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
185 };
186 
187 extern struct cfdriver zs_cd;
188 
189 /* Interrupt handlers. */
190 static int zshard __P((void *));
191 static int zssoft __P((void *));
192 
193 static int zs_get_speed __P((struct zs_chanstate *));
194 
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197 
198 /* Power management hooks */
199 int  zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201 
202 
203 /*
204  * Is the zs chip present?
205  */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 	struct device *parent;
209 	struct cfdata *cf;
210 	void *aux;
211 {
212 	struct mainbus_attach_args *ma = aux;
213 
214 	if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 		return (0);
216 
217 	return (1);
218 }
219 
220 static int
221 zs_match_obio(parent, cf, aux)
222 	struct device *parent;
223 	struct cfdata *cf;
224 	void *aux;
225 {
226 	union obio_attach_args *uoba = aux;
227 	struct obio4_attach_args *oba;
228 
229 	if (uoba->uoba_isobio4 == 0) {
230 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
231 
232 		if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 			return (0);
234 
235 		return (1);
236 	}
237 
238 	oba = &uoba->uoba_oba4;
239 	return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
240 			        1, 0, 0, NULL, NULL));
241 }
242 
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 	struct device *parent;
246 	struct device *self;
247 	void *aux;
248 {
249 	struct zsc_softc *zsc = (void *) self;
250 	struct mainbus_attach_args *ma = aux;
251 
252 	zsc->zsc_bustag = ma->ma_bustag;
253 	zsc->zsc_dmatag = ma->ma_dmatag;
254 	zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
255 	zsc->zsc_node = ma->ma_node;
256 
257 	/*
258 	 * For machines with zs on mainbus (all sun4c models), we expect
259 	 * the device registers to be mapped by the PROM.
260 	 */
261 	zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263 
264 static void
265 zs_attach_obio(parent, self, aux)
266 	struct device *parent;
267 	struct device *self;
268 	void *aux;
269 {
270 	struct zsc_softc *zsc = (void *) self;
271 	union obio_attach_args *uoba = aux;
272 
273 	if (uoba->uoba_isobio4 == 0) {
274 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 		void *va;
276 		struct zs_chanstate *cs;
277 		int channel;
278 
279 		if (sa->sa_nintr == 0) {
280 			printf(" no interrupt lines\n");
281 			return;
282 		}
283 
284 		/*
285 		 * Some sun4m models (Javastations) may not map the zs device.
286 		 */
287 		if (sa->sa_npromvaddrs > 0)
288 			va = (void *)sa->sa_promvaddr;
289 		else {
290 			bus_space_handle_t bh;
291 
292 			if (sbus_bus_map(sa->sa_bustag,
293 					 sa->sa_slot,
294 					 sa->sa_offset,
295 					 sa->sa_size,
296 					 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
297 				printf(" cannot map zs registers\n");
298 				return;
299 			}
300 			va = (void *)bh;
301 		}
302 
303 		/*
304 		 * Check if power state can be set, e.g. Tadpole 3GX
305 		 */
306 		if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
307 		{
308 			printf (" powered via auxio2");
309 			for (channel = 0; channel < 2; channel++) {
310 				cs = &zsc->zsc_cs_store[channel];
311 				cs->enable = zs_enable;
312 				cs->disable = zs_disable;
313 			}
314 		}
315 
316 		zsc->zsc_bustag = sa->sa_bustag;
317 		zsc->zsc_dmatag = sa->sa_dmatag;
318 		zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
319 		zsc->zsc_node = sa->sa_node;
320 		zs_attach(zsc, va, sa->sa_pri);
321 	} else {
322 		struct obio4_attach_args *oba = &uoba->uoba_oba4;
323 		bus_space_handle_t bh;
324 		bus_addr_t paddr = oba->oba_paddr;
325 
326 		/*
327 		 * As for zs on mainbus, we require a PROM mapping.
328 		 */
329 		if (bus_space_map(oba->oba_bustag,
330 				  paddr,
331 				  sizeof(struct zsdevice),
332 				  BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
333 				  &bh) != 0) {
334 			printf(" cannot map zs registers\n");
335 			return;
336 		}
337 		zsc->zsc_bustag = oba->oba_bustag;
338 		zsc->zsc_dmatag = oba->oba_dmatag;
339 		/* Find prom unit by physical address */
340 		if (cpuinfo.cpu_type == CPUTYP_4_100)
341 			/*
342 			 * On the sun4/100, the top-most 4 bits are zero
343 			 * on obio addresses; force them to 1's for the
344 			 * sake of the comparison here.
345 			 */
346 			paddr |= 0xf0000000;
347 		zsc->zsc_promunit =
348 			(paddr == 0xf1000000) ? 0 :
349 			(paddr == 0xf0000000) ? 1 :
350 			(paddr == 0xe0000000) ? 2 : -2;
351 
352 		zs_attach(zsc, (void *)bh, oba->oba_pri);
353 	}
354 }
355 /*
356  * Attach a found zs.
357  *
358  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
359  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
360  */
361 static void
362 zs_attach(zsc, zsd, pri)
363 	struct zsc_softc *zsc;
364 	struct zsdevice *zsd;
365 	int pri;
366 {
367 	struct zsc_attach_args zsc_args;
368 	struct zs_chanstate *cs;
369 	int s, channel;
370 	static int didintr, prevpri;
371 
372 	if (zsd == NULL) {
373 		printf("configuration incomplete\n");
374 		return;
375 	}
376 
377 	printf(" softpri %d\n", PIL_TTY);
378 
379 	/*
380 	 * Initialize software state for each channel.
381 	 */
382 	for (channel = 0; channel < 2; channel++) {
383 		struct zschan *zc;
384 
385 		zsc_args.channel = channel;
386 		cs = &zsc->zsc_cs_store[channel];
387 		zsc->zsc_cs[channel] = cs;
388 
389 		cs->cs_channel = channel;
390 		cs->cs_private = NULL;
391 		cs->cs_ops = &zsops_null;
392 		cs->cs_brg_clk = PCLK / 16;
393 
394 		zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
395 
396 		zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
397 						    zsc->zsc_node,
398 						    channel);
399 
400 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
401 			zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
402 			zsc_args.consdev = &zs_consdev;
403 		}
404 
405 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
406 			zs_conschan_get = zc;
407 		}
408 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
409 			zs_conschan_put = zc;
410 		}
411 		/* Childs need to set cn_dev, etc */
412 
413 		cs->cs_reg_csr  = &zc->zc_csr;
414 		cs->cs_reg_data = &zc->zc_data;
415 
416 		bcopy(zs_init_reg, cs->cs_creg, 16);
417 		bcopy(zs_init_reg, cs->cs_preg, 16);
418 
419 		/* XXX: Consult PROM properties for this?! */
420 		cs->cs_defspeed = zs_get_speed(cs);
421 		cs->cs_defcflag = zs_def_cflag;
422 
423 		/* Make these correspond to cs_defcflag (-crtscts) */
424 		cs->cs_rr0_dcd = ZSRR0_DCD;
425 		cs->cs_rr0_cts = 0;
426 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
427 		cs->cs_wr5_rts = 0;
428 
429 		/*
430 		 * Clear the master interrupt enable.
431 		 * The INTENA is common to both channels,
432 		 * so just do it on the A channel.
433 		 */
434 		if (channel == 0) {
435 			zs_write_reg(cs, 9, 0);
436 		}
437 
438 		/*
439 		 * Look for a child driver for this channel.
440 		 * The child attach will setup the hardware.
441 		 */
442 		if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
443 			/* No sub-driver.  Just reset it. */
444 			u_char reset = (channel == 0) ?
445 				ZSWR9_A_RESET : ZSWR9_B_RESET;
446 			s = splzs();
447 			zs_write_reg(cs,  9, reset);
448 			splx(s);
449 		}
450 	}
451 
452 	/*
453 	 * Now safe to install interrupt handlers.  Note the arguments
454 	 * to the interrupt handlers aren't used.  Note, we only do this
455 	 * once since both SCCs interrupt at the same level and vector.
456 	 */
457 	if (!didintr) {
458 		didintr = 1;
459 		prevpri = pri;
460 		bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
461 				   zshard, NULL);
462 		bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
463 				   IPL_SOFTSERIAL,
464 				   BUS_INTR_ESTABLISH_SOFTINTR,
465 				   zssoft, NULL);
466 	} else if (pri != prevpri)
467 		panic("broken zs interrupt scheme");
468 
469 	evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
470 	    zsc->zsc_dev.dv_xname, "intr");
471 
472 	/*
473 	 * Set the master interrupt enable and interrupt vector.
474 	 * (common to both channels, do it on A)
475 	 */
476 	cs = zsc->zsc_cs[0];
477 	s = splhigh();
478 	/* interrupt vector */
479 	zs_write_reg(cs, 2, zs_init_reg[2]);
480 	/* master interrupt control (enable) */
481 	zs_write_reg(cs, 9, zs_init_reg[9]);
482 	splx(s);
483 
484 #if 0
485 	/*
486 	 * XXX: L1A hack - We would like to be able to break into
487 	 * the debugger during the rest of autoconfiguration, so
488 	 * lower interrupts just enough to let zs interrupts in.
489 	 * This is done after both zs devices are attached.
490 	 */
491 	if (zsc->zsc_promunit == 1) {
492 		printf("zs1: enabling zs interrupts\n");
493 		(void)splfd(); /* XXX: splzs - 1 */
494 	}
495 #endif
496 }
497 
498 static int
499 zs_print(aux, name)
500 	void *aux;
501 	const char *name;
502 {
503 	struct zsc_attach_args *args = aux;
504 
505 	if (name != NULL)
506 		printf("%s: ", name);
507 
508 	if (args->channel != -1)
509 		printf(" channel %d", args->channel);
510 
511 	return (UNCONF);
512 }
513 
514 static volatile int zssoftpending;
515 
516 /*
517  * Our ZS chips all share a common, autovectored interrupt,
518  * so we have to look at all of them on each interrupt.
519  */
520 static int
521 zshard(arg)
522 	void *arg;
523 {
524 	struct zsc_softc *zsc;
525 	int unit, rr3, rval, softreq;
526 
527 	rval = softreq = 0;
528 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
529 		struct zs_chanstate *cs;
530 
531 		zsc = zs_cd.cd_devs[unit];
532 		if (zsc == NULL)
533 			continue;
534 		rr3 = zsc_intr_hard(zsc);
535 		/* Count up the interrupts. */
536 		if (rr3) {
537 			rval |= rr3;
538 			zsc->zsc_intrcnt.ev_count++;
539 		}
540 		if ((cs = zsc->zsc_cs[0]) != NULL)
541 			softreq |= cs->cs_softreq;
542 		if ((cs = zsc->zsc_cs[1]) != NULL)
543 			softreq |= cs->cs_softreq;
544 	}
545 
546 	/* We are at splzs here, so no need to lock. */
547 	if (softreq && (zssoftpending == 0)) {
548 		zssoftpending = IE_ZSSOFT;
549 #if defined(SUN4M)
550 		if (CPU_ISSUN4M)
551 			raise(0, PIL_TTY);
552 		else
553 #endif
554 			ienab_bis(IE_ZSSOFT);
555 	}
556 	return (rval);
557 }
558 
559 /*
560  * Similar scheme as for zshard (look at all of them)
561  */
562 static int
563 zssoft(arg)
564 	void *arg;
565 {
566 	struct zsc_softc *zsc;
567 	int s, unit;
568 
569 	/* This is not the only ISR on this IPL. */
570 	if (zssoftpending == 0)
571 		return (0);
572 
573 	/*
574 	 * The soft intr. bit will be set by zshard only if
575 	 * the variable zssoftpending is zero.  The order of
576 	 * these next two statements prevents our clearing
577 	 * the soft intr bit just after zshard has set it.
578 	 */
579 	/* ienab_bic(IE_ZSSOFT); */
580 	zssoftpending = 0;
581 
582 	/* Make sure we call the tty layer at spltty. */
583 	s = spltty();
584 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
585 		zsc = zs_cd.cd_devs[unit];
586 		if (zsc == NULL)
587 			continue;
588 		(void)zsc_intr_soft(zsc);
589 	}
590 	splx(s);
591 	return (1);
592 }
593 
594 
595 /*
596  * Compute the current baud rate given a ZS channel.
597  */
598 static int
599 zs_get_speed(cs)
600 	struct zs_chanstate *cs;
601 {
602 	int tconst;
603 
604 	tconst = zs_read_reg(cs, 12);
605 	tconst |= zs_read_reg(cs, 13) << 8;
606 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
607 }
608 
609 /*
610  * MD functions for setting the baud rate and control modes.
611  */
612 int
613 zs_set_speed(cs, bps)
614 	struct zs_chanstate *cs;
615 	int bps;	/* bits per second */
616 {
617 	int tconst, real_bps;
618 
619 	if (bps == 0)
620 		return (0);
621 
622 #ifdef	DIAGNOSTIC
623 	if (cs->cs_brg_clk == 0)
624 		panic("zs_set_speed");
625 #endif
626 
627 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
628 	if (tconst < 0)
629 		return (EINVAL);
630 
631 	/* Convert back to make sure we can do it. */
632 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
633 
634 	/* XXX - Allow some tolerance here? */
635 	if (real_bps != bps)
636 		return (EINVAL);
637 
638 	cs->cs_preg[12] = tconst;
639 	cs->cs_preg[13] = tconst >> 8;
640 
641 	/* Caller will stuff the pending registers. */
642 	return (0);
643 }
644 
645 int
646 zs_set_modes(cs, cflag)
647 	struct zs_chanstate *cs;
648 	int cflag;	/* bits per second */
649 {
650 	int s;
651 
652 	/*
653 	 * Output hardware flow control on the chip is horrendous:
654 	 * if carrier detect drops, the receiver is disabled, and if
655 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
656 	 * Therefore, NEVER set the HFC bit, and instead use the
657 	 * status interrupt to detect CTS changes.
658 	 */
659 	s = splzs();
660 	cs->cs_rr0_pps = 0;
661 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
662 		cs->cs_rr0_dcd = 0;
663 		if ((cflag & MDMBUF) == 0)
664 			cs->cs_rr0_pps = ZSRR0_DCD;
665 	} else
666 		cs->cs_rr0_dcd = ZSRR0_DCD;
667 	if ((cflag & CRTSCTS) != 0) {
668 		cs->cs_wr5_dtr = ZSWR5_DTR;
669 		cs->cs_wr5_rts = ZSWR5_RTS;
670 		cs->cs_rr0_cts = ZSRR0_CTS;
671 	} else if ((cflag & CDTRCTS) != 0) {
672 		cs->cs_wr5_dtr = 0;
673 		cs->cs_wr5_rts = ZSWR5_DTR;
674 		cs->cs_rr0_cts = ZSRR0_CTS;
675 	} else if ((cflag & MDMBUF) != 0) {
676 		cs->cs_wr5_dtr = 0;
677 		cs->cs_wr5_rts = ZSWR5_DTR;
678 		cs->cs_rr0_cts = ZSRR0_DCD;
679 	} else {
680 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
681 		cs->cs_wr5_rts = 0;
682 		cs->cs_rr0_cts = 0;
683 	}
684 	splx(s);
685 
686 	/* Caller will stuff the pending registers. */
687 	return (0);
688 }
689 
690 
691 /*
692  * Read or write the chip with suitable delays.
693  */
694 
695 u_char
696 zs_read_reg(cs, reg)
697 	struct zs_chanstate *cs;
698 	u_char reg;
699 {
700 	u_char val;
701 
702 	*cs->cs_reg_csr = reg;
703 	ZS_DELAY();
704 	val = *cs->cs_reg_csr;
705 	ZS_DELAY();
706 	return (val);
707 }
708 
709 void
710 zs_write_reg(cs, reg, val)
711 	struct zs_chanstate *cs;
712 	u_char reg, val;
713 {
714 	*cs->cs_reg_csr = reg;
715 	ZS_DELAY();
716 	*cs->cs_reg_csr = val;
717 	ZS_DELAY();
718 }
719 
720 u_char
721 zs_read_csr(cs)
722 	struct zs_chanstate *cs;
723 {
724 	u_char val;
725 
726 	val = *cs->cs_reg_csr;
727 	ZS_DELAY();
728 	return (val);
729 }
730 
731 void
732 zs_write_csr(cs, val)
733 	struct zs_chanstate *cs;
734 	u_char val;
735 {
736 	*cs->cs_reg_csr = val;
737 	ZS_DELAY();
738 }
739 
740 u_char
741 zs_read_data(cs)
742 	struct zs_chanstate *cs;
743 {
744 	u_char val;
745 
746 	val = *cs->cs_reg_data;
747 	ZS_DELAY();
748 	return (val);
749 }
750 
751 void  zs_write_data(cs, val)
752 	struct zs_chanstate *cs;
753 	u_char val;
754 {
755 	*cs->cs_reg_data = val;
756 	ZS_DELAY();
757 }
758 
759 /****************************************************************
760  * Console support functions (Sun specific!)
761  * Note: this code is allowed to know about the layout of
762  * the chip registers, and uses that to keep things simple.
763  * XXX - I think I like the mvme167 code better. -gwr
764  ****************************************************************/
765 
766 /*
767  * Handle user request to enter kernel debugger.
768  */
769 void
770 zs_abort(cs)
771 	struct zs_chanstate *cs;
772 {
773 	struct zschan *zc = zs_conschan_get;
774 	int rr0;
775 
776 	/* Wait for end of break to avoid PROM abort. */
777 	/* XXX - Limit the wait? */
778 	do {
779 		rr0 = zc->zc_csr;
780 		ZS_DELAY();
781 	} while (rr0 & ZSRR0_BREAK);
782 
783 #if defined(KGDB)
784 	zskgdb(cs);
785 #elif defined(DDB)
786 	Debugger();
787 #else
788 	printf("stopping on keyboard abort\n");
789 	callrom();
790 #endif
791 }
792 
793 int  zs_getc __P((void *arg));
794 void zs_putc __P((void *arg, int c));
795 
796 /*
797  * Polled input char.
798  */
799 int
800 zs_getc(arg)
801 	void *arg;
802 {
803 	struct zschan *zc = arg;
804 	int s, c, rr0;
805 
806 	s = splhigh();
807 	/* Wait for a character to arrive. */
808 	do {
809 		rr0 = zc->zc_csr;
810 		ZS_DELAY();
811 	} while ((rr0 & ZSRR0_RX_READY) == 0);
812 
813 	c = zc->zc_data;
814 	ZS_DELAY();
815 	splx(s);
816 
817 	/*
818 	 * This is used by the kd driver to read scan codes,
819 	 * so don't translate '\r' ==> '\n' here...
820 	 */
821 	return (c);
822 }
823 
824 /*
825  * Polled output char.
826  */
827 void
828 zs_putc(arg, c)
829 	void *arg;
830 	int c;
831 {
832 	struct zschan *zc = arg;
833 	int s, rr0;
834 
835 	s = splhigh();
836 
837 	/* Wait for transmitter to become ready. */
838 	do {
839 		rr0 = zc->zc_csr;
840 		ZS_DELAY();
841 	} while ((rr0 & ZSRR0_TX_READY) == 0);
842 
843 	/*
844 	 * Send the next character.
845 	 * Now you'd think that this could be followed by a ZS_DELAY()
846 	 * just like all the other chip accesses, but it turns out that
847 	 * the `transmit-ready' interrupt isn't de-asserted until
848 	 * some period of time after the register write completes
849 	 * (more than a couple instructions).  So to avoid stray
850 	 * interrupts we put in the 2us delay regardless of cpu model.
851 	 */
852 	zc->zc_data = c;
853 	delay(2);
854 
855 	splx(s);
856 }
857 
858 /*****************************************************************/
859 /*
860  * Polled console input putchar.
861  */
862 int
863 zscngetc(dev)
864 	dev_t dev;
865 {
866 	return (zs_getc(zs_conschan_get));
867 }
868 
869 /*
870  * Polled console output putchar.
871  */
872 void
873 zscnputc(dev, c)
874 	dev_t dev;
875 	int c;
876 {
877 	zs_putc(zs_conschan_put, c);
878 }
879 
880 void
881 zscnpollc(dev, on)
882 	dev_t dev;
883 	int on;
884 {
885 	/* No action needed */
886 }
887 
888 int
889 zs_console_flags(promunit, node, channel)
890 	int promunit;
891 	int node;
892 	int channel;
893 {
894 	int cookie, flags = 0;
895 
896 	switch (prom_version()) {
897 	case PROM_OLDMON:
898 	case PROM_OBP_V0:
899 		/*
900 		 * Use `promunit' and `channel' to derive the PROM
901 		 * stdio handles that correspond to this device.
902 		 */
903 		if (promunit == 0)
904 			cookie = PROMDEV_TTYA + channel;
905 		else if (promunit == 1 && channel == 0)
906 			cookie = PROMDEV_KBD;
907 		else
908 			cookie = -1;
909 
910 		if (cookie == prom_stdin())
911 			flags |= ZS_HWFLAG_CONSOLE_INPUT;
912 
913 		/*
914 		 * Prevent the keyboard from matching the output device
915 		 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
916 		 */
917 		if (cookie != PROMDEV_KBD && cookie == prom_stdout())
918 			flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
919 
920 		break;
921 
922 	case PROM_OBP_V2:
923 	case PROM_OBP_V3:
924 	case PROM_OPENFIRM:
925 
926 		/*
927 		 * Match the nodes and device arguments prepared by
928 		 * consinit() against our device node and channel.
929 		 * (The device argument is the part of the OBP path
930 		 * following the colon, as in `/obio/zs@0,100000:a')
931 		 */
932 
933 		/* Default to channel 0 if there are no explicit prom args */
934 		cookie = 0;
935 
936 		if (node == prom_stdin_node) {
937 			if (prom_stdin_args[0] != '\0')
938 				/* Translate (a,b) -> (0,1) */
939 				cookie = prom_stdin_args[0] - 'a';
940 
941 			if (channel == cookie)
942 				flags |= ZS_HWFLAG_CONSOLE_INPUT;
943 		}
944 
945 		if (node == prom_stdout_node) {
946 			if (prom_stdout_args[0] != '\0')
947 				/* Translate (a,b) -> (0,1) */
948 				cookie = prom_stdout_args[0] - 'a';
949 
950 			if (channel == cookie)
951 				flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
952 		}
953 
954 		break;
955 
956 	default:
957 		break;
958 	}
959 
960 	return (flags);
961 }
962 
963 /*
964  * Power management hooks for zsopen() and zsclose().
965  * We use them to power on/off the ports, if necessary.
966  */
967 int
968 zs_enable(cs)
969 	struct zs_chanstate *cs;
970 {
971 	auxiotwoserialendis (ZS_ENABLE);
972 	cs->enabled = 1;
973 	return(0);
974 }
975 
976 void
977 zs_disable(cs)
978 	struct zs_chanstate *cs;
979 {
980 	auxiotwoserialendis (ZS_DISABLE);
981 	cs->enabled = 0;
982 }
983