1 /* $NetBSD: zs.c,v 1.102 2005/06/30 12:07:51 macallan Exp $ */ 2 3 /*- 4 * Copyright (c) 1996 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Zilog Z8530 Dual UART driver (machine-dependent part) 41 * 42 * Runs two serial lines per chip using slave drivers. 43 * Plain tty/async lines use the zs_async slave. 44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. 45 */ 46 47 #include <sys/cdefs.h> 48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.102 2005/06/30 12:07:51 macallan Exp $"); 49 50 #include "opt_ddb.h" 51 #include "opt_kgdb.h" 52 #include "opt_sparc_arch.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/conf.h> 57 #include <sys/device.h> 58 #include <sys/file.h> 59 #include <sys/ioctl.h> 60 #include <sys/kernel.h> 61 #include <sys/proc.h> 62 #include <sys/tty.h> 63 #include <sys/time.h> 64 #include <sys/syslog.h> 65 66 #include <machine/bsd_openprom.h> 67 #include <machine/autoconf.h> 68 #include <machine/intr.h> 69 #include <machine/eeprom.h> 70 #include <machine/psl.h> 71 #include <machine/z8530var.h> 72 73 #include <dev/cons.h> 74 #include <dev/ic/z8530reg.h> 75 76 #include <sparc/sparc/vaddrs.h> 77 #include <sparc/sparc/auxreg.h> 78 #include <sparc/sparc/auxiotwo.h> 79 #include <sparc/dev/cons.h> 80 #include <dev/sun/kbd_ms_ttyvar.h> 81 82 #include "kbd.h" 83 #include "ms.h" 84 85 /* 86 * Some warts needed by z8530tty.c - 87 * The default parity REALLY needs to be the same as the PROM uses, 88 * or you can not see messages done with printf during boot-up... 89 */ 90 int zs_def_cflag = (CREAD | CS8 | HUPCL); 91 92 /* 93 * The Sun provides a 4.9152 MHz clock to the ZS chips. 94 */ 95 #define PCLK (9600 * 512) /* PCLK pin input clock rate */ 96 97 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2)) 98 99 /* The layout of this is hardware-dependent (padding, order). */ 100 struct zschan { 101 volatile u_char zc_csr; /* ctrl,status, and indirect access */ 102 u_char zc_xxx0; 103 volatile u_char zc_data; /* data */ 104 u_char zc_xxx1; 105 }; 106 struct zsdevice { 107 /* Yes, they are backwards. */ 108 struct zschan zs_chan_b; 109 struct zschan zs_chan_a; 110 }; 111 112 /* ZS channel used as the console device (if any) */ 113 void *zs_conschan_get, *zs_conschan_put; 114 115 static u_char zs_init_reg[16] = { 116 0, /* 0: CMD (reset, etc.) */ 117 0, /* 1: No interrupts yet. */ 118 0, /* 2: IVECT */ 119 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 120 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 121 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 122 0, /* 6: TXSYNC/SYNCLO */ 123 0, /* 7: RXSYNC/SYNCHI */ 124 0, /* 8: alias for data port */ 125 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR, 126 0, /*10: Misc. TX/RX control bits */ 127 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 128 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 129 0, /*13: BAUDHI (default=9600) */ 130 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 131 ZSWR15_BREAK_IE, 132 }; 133 134 /* Console ops */ 135 static int zscngetc __P((dev_t)); 136 static void zscnputc __P((dev_t, int)); 137 static void zscnpollc __P((dev_t, int)); 138 139 struct consdev zs_consdev = { 140 NULL, 141 NULL, 142 zscngetc, 143 zscnputc, 144 zscnpollc, 145 NULL, 146 }; 147 148 149 /**************************************************************** 150 * Autoconfig 151 ****************************************************************/ 152 153 /* Definition of the driver for autoconfig. */ 154 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *)); 155 static int zs_match_obio __P((struct device *, struct cfdata *, void *)); 156 static void zs_attach_mainbus __P((struct device *, struct device *, void *)); 157 static void zs_attach_obio __P((struct device *, struct device *, void *)); 158 159 #if defined(SUN4D) 160 #include <sparc/dev/bootbusvar.h> 161 162 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *)); 163 static void zs_attach_bootbus __P((struct device *, struct device *, void *)); 164 165 CFATTACH_DECL(zs_bootbus, sizeof(struct zsc_softc), 166 zs_match_bootbus, zs_attach_bootbus, NULL, NULL); 167 #endif /* SUN4D */ 168 169 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int)); 170 static int zs_print __P((void *, const char *name)); 171 172 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc), 173 zs_match_mainbus, zs_attach_mainbus, NULL, NULL); 174 175 CFATTACH_DECL(zs_obio, sizeof(struct zsc_softc), 176 zs_match_obio, zs_attach_obio, NULL, NULL); 177 178 extern struct cfdriver zs_cd; 179 180 /* softintr(9) cookie, shared by all instances of this driver */ 181 static void *zs_sicookie; 182 183 /* Interrupt handlers. */ 184 static int zshard __P((void *)); 185 static void zssoft __P((void *)); 186 187 static int zs_get_speed __P((struct zs_chanstate *)); 188 189 /* Console device support */ 190 static int zs_console_flags __P((int, int, int)); 191 192 /* Power management hooks */ 193 int zs_enable __P((struct zs_chanstate *)); 194 void zs_disable __P((struct zs_chanstate *)); 195 196 197 /* XXX from dev/ic/z8530tty.c */ 198 extern struct tty *zstty_get_tty_from_dev(struct device *); 199 200 /* 201 * Is the zs chip present? 202 */ 203 static int 204 zs_match_mainbus(parent, cf, aux) 205 struct device *parent; 206 struct cfdata *cf; 207 void *aux; 208 { 209 struct mainbus_attach_args *ma = aux; 210 211 if (strcmp(cf->cf_name, ma->ma_name) != 0) 212 return (0); 213 214 return (1); 215 } 216 217 static int 218 zs_match_obio(parent, cf, aux) 219 struct device *parent; 220 struct cfdata *cf; 221 void *aux; 222 { 223 union obio_attach_args *uoba = aux; 224 struct obio4_attach_args *oba; 225 226 if (uoba->uoba_isobio4 == 0) { 227 struct sbus_attach_args *sa = &uoba->uoba_sbus; 228 229 if (strcmp(cf->cf_name, sa->sa_name) != 0) 230 return (0); 231 232 return (1); 233 } 234 235 oba = &uoba->uoba_oba4; 236 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr, 237 1, 0, 0, NULL, NULL)); 238 } 239 240 #if defined(SUN4D) 241 static int 242 zs_match_bootbus(parent, cf, aux) 243 struct device *parent; 244 struct cfdata *cf; 245 void *aux; 246 { 247 struct bootbus_attach_args *baa = aux; 248 249 return (strcmp(cf->cf_name, baa->ba_name) == 0); 250 } 251 #endif /* SUN4D */ 252 253 static void 254 zs_attach_mainbus(parent, self, aux) 255 struct device *parent; 256 struct device *self; 257 void *aux; 258 { 259 struct zsc_softc *zsc = (void *) self; 260 struct mainbus_attach_args *ma = aux; 261 262 zsc->zsc_bustag = ma->ma_bustag; 263 zsc->zsc_dmatag = ma->ma_dmatag; 264 zsc->zsc_promunit = prom_getpropint(ma->ma_node, "slave", -2); 265 zsc->zsc_node = ma->ma_node; 266 267 /* 268 * For machines with zs on mainbus (all sun4c models), we expect 269 * the device registers to be mapped by the PROM. 270 */ 271 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri); 272 } 273 274 static void 275 zs_attach_obio(parent, self, aux) 276 struct device *parent; 277 struct device *self; 278 void *aux; 279 { 280 struct zsc_softc *zsc = (void *) self; 281 union obio_attach_args *uoba = aux; 282 283 if (uoba->uoba_isobio4 == 0) { 284 struct sbus_attach_args *sa = &uoba->uoba_sbus; 285 void *va; 286 struct zs_chanstate *cs; 287 int channel; 288 289 if (sa->sa_nintr == 0) { 290 printf(" no interrupt lines\n"); 291 return; 292 } 293 294 /* 295 * Some sun4m models (Javastations) may not map the zs device. 296 */ 297 if (sa->sa_npromvaddrs > 0) 298 va = (void *)sa->sa_promvaddr; 299 else { 300 bus_space_handle_t bh; 301 302 if (sbus_bus_map(sa->sa_bustag, 303 sa->sa_slot, 304 sa->sa_offset, 305 sa->sa_size, 306 BUS_SPACE_MAP_LINEAR, &bh) != 0) { 307 printf(" cannot map zs registers\n"); 308 return; 309 } 310 va = (void *)bh; 311 } 312 313 /* 314 * Check if power state can be set, e.g. Tadpole 3GX 315 */ 316 if (prom_getpropint(sa->sa_node, "pwr-on-auxio2", 0)) 317 { 318 printf (" powered via auxio2"); 319 for (channel = 0; channel < 2; channel++) { 320 cs = &zsc->zsc_cs_store[channel]; 321 cs->enable = zs_enable; 322 cs->disable = zs_disable; 323 } 324 } 325 326 zsc->zsc_bustag = sa->sa_bustag; 327 zsc->zsc_dmatag = sa->sa_dmatag; 328 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2); 329 zsc->zsc_node = sa->sa_node; 330 zs_attach(zsc, va, sa->sa_pri); 331 } else { 332 struct obio4_attach_args *oba = &uoba->uoba_oba4; 333 bus_space_handle_t bh; 334 bus_addr_t paddr = oba->oba_paddr; 335 336 /* 337 * As for zs on mainbus, we require a PROM mapping. 338 */ 339 if (bus_space_map(oba->oba_bustag, 340 paddr, 341 sizeof(struct zsdevice), 342 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM, 343 &bh) != 0) { 344 printf(" cannot map zs registers\n"); 345 return; 346 } 347 zsc->zsc_bustag = oba->oba_bustag; 348 zsc->zsc_dmatag = oba->oba_dmatag; 349 /* 350 * Find prom unit by physical address 351 * We're just comparing the address (not the iospace) here 352 */ 353 paddr = BUS_ADDR_PADDR(paddr); 354 if (cpuinfo.cpu_type == CPUTYP_4_100) 355 /* 356 * On the sun4/100, the top-most 4 bits are zero 357 * on obio addresses; force them to 1's for the 358 * sake of the comparison here. 359 */ 360 paddr |= 0xf0000000; 361 zsc->zsc_promunit = 362 (paddr == 0xf1000000) ? 0 : 363 (paddr == 0xf0000000) ? 1 : 364 (paddr == 0xe0000000) ? 2 : -2; 365 366 zs_attach(zsc, (void *)bh, oba->oba_pri); 367 } 368 } 369 370 #if defined(SUN4D) 371 static void 372 zs_attach_bootbus(parent, self, aux) 373 struct device *parent; 374 struct device *self; 375 void *aux; 376 { 377 struct zsc_softc *zsc = (void *) self; 378 struct bootbus_attach_args *baa = aux; 379 void *va; 380 381 if (baa->ba_nintr == 0) { 382 printf(": no interrupt lines\n"); 383 return; 384 } 385 386 if (baa->ba_npromvaddrs > 0) 387 va = (void *) baa->ba_promvaddrs; 388 else { 389 bus_space_handle_t bh; 390 391 if (bus_space_map(baa->ba_bustag, 392 BUS_ADDR(baa->ba_slot, baa->ba_offset), 393 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) { 394 printf(": cannot map zs registers\n"); 395 return; 396 } 397 va = (void *) bh; 398 } 399 400 zsc->zsc_bustag = baa->ba_bustag; 401 zsc->zsc_promunit = prom_getpropint(baa->ba_node, "slave", -2); 402 zsc->zsc_node = baa->ba_node; 403 zs_attach(zsc, va, baa->ba_intr[0].oi_pri); 404 } 405 #endif /* SUN4D */ 406 407 /* 408 * Attach a found zs. 409 * 410 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 411 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 412 */ 413 static void 414 zs_attach(zsc, zsd, pri) 415 struct zsc_softc *zsc; 416 struct zsdevice *zsd; 417 int pri; 418 { 419 struct zsc_attach_args zsc_args; 420 struct zs_chanstate *cs; 421 int s, channel; 422 static int didintr, prevpri; 423 424 if (zsd == NULL) { 425 printf("configuration incomplete\n"); 426 return; 427 } 428 429 if (!didintr) { 430 zs_sicookie = softintr_establish(IPL_SOFTSERIAL, zssoft, NULL); 431 if (zs_sicookie == NULL) { 432 printf("\n%s: cannot establish soft int handler\n", 433 zsc->zsc_dev.dv_xname); 434 return; 435 } 436 } 437 printf(" softpri %d\n", IPL_SOFTSERIAL); 438 439 /* 440 * Initialize software state for each channel. 441 */ 442 for (channel = 0; channel < 2; channel++) { 443 struct zschan *zc; 444 struct device *child; 445 446 zsc_args.channel = channel; 447 cs = &zsc->zsc_cs_store[channel]; 448 zsc->zsc_cs[channel] = cs; 449 450 simple_lock_init(&cs->cs_lock); 451 cs->cs_channel = channel; 452 cs->cs_private = NULL; 453 cs->cs_ops = &zsops_null; 454 cs->cs_brg_clk = PCLK / 16; 455 456 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b; 457 458 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit, 459 zsc->zsc_node, 460 channel); 461 462 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) { 463 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV; 464 zsc_args.consdev = &zs_consdev; 465 } 466 467 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { 468 zs_conschan_get = zc; 469 } 470 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { 471 zs_conschan_put = zc; 472 } 473 /* Childs need to set cn_dev, etc */ 474 475 cs->cs_reg_csr = &zc->zc_csr; 476 cs->cs_reg_data = &zc->zc_data; 477 478 bcopy(zs_init_reg, cs->cs_creg, 16); 479 bcopy(zs_init_reg, cs->cs_preg, 16); 480 481 /* XXX: Consult PROM properties for this?! */ 482 cs->cs_defspeed = zs_get_speed(cs); 483 cs->cs_defcflag = zs_def_cflag; 484 485 /* Make these correspond to cs_defcflag (-crtscts) */ 486 cs->cs_rr0_dcd = ZSRR0_DCD; 487 cs->cs_rr0_cts = 0; 488 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 489 cs->cs_wr5_rts = 0; 490 491 /* 492 * Clear the master interrupt enable. 493 * The INTENA is common to both channels, 494 * so just do it on the A channel. 495 */ 496 if (channel == 0) { 497 zs_write_reg(cs, 9, 0); 498 } 499 500 /* 501 * Look for a child driver for this channel. 502 * The child attach will setup the hardware. 503 */ 504 505 child = config_found(&zsc->zsc_dev, &zsc_args, zs_print); 506 if (child == NULL) { 507 /* No sub-driver. Just reset it. */ 508 u_char reset = (channel == 0) ? 509 ZSWR9_A_RESET : ZSWR9_B_RESET; 510 s = splzs(); 511 zs_write_reg(cs, 9, reset); 512 splx(s); 513 } 514 #if (NKBD > 0) || (NMS > 0) 515 /* 516 * If this was a zstty it has a keyboard 517 * property on it we need to attach the 518 * sunkbd and sunms line disciplines. 519 */ 520 if ((child != NULL) 521 && (strcmp(child->dv_cfdata->cf_name, "zstty") == 0) 522 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) 523 { 524 struct kbd_ms_tty_attach_args kma; 525 struct tty *tp = zstty_get_tty_from_dev(child); 526 kma.kmta_tp = tp; 527 kma.kmta_dev = tp->t_dev; 528 kma.kmta_consdev = zsc_args.consdev; 529 530 /* Attach 'em if we got 'em. */ 531 #if (NKBD > 0) 532 if (channel == 0) { 533 kma.kmta_name = "keyboard"; 534 config_found(child, &kma, NULL); 535 } 536 #endif 537 #if (NMS > 0) 538 if (channel == 1) { 539 kma.kmta_name = "mouse"; 540 config_found(child, &kma, NULL); 541 } 542 #endif 543 } 544 #endif 545 } 546 547 /* 548 * Now safe to install interrupt handlers. Note the arguments 549 * to the interrupt handlers aren't used. Note, we only do this 550 * once since both SCCs interrupt at the same level and vector. 551 */ 552 if (!didintr) { 553 didintr = 1; 554 prevpri = pri; 555 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 556 zshard, NULL); 557 } else if (pri != prevpri) 558 panic("broken zs interrupt scheme"); 559 560 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL, 561 zsc->zsc_dev.dv_xname, "intr"); 562 563 /* 564 * Set the master interrupt enable and interrupt vector. 565 * (common to both channels, do it on A) 566 */ 567 cs = zsc->zsc_cs[0]; 568 s = splhigh(); 569 /* interrupt vector */ 570 zs_write_reg(cs, 2, zs_init_reg[2]); 571 /* master interrupt control (enable) */ 572 zs_write_reg(cs, 9, zs_init_reg[9]); 573 splx(s); 574 575 #if 0 576 /* 577 * XXX: L1A hack - We would like to be able to break into 578 * the debugger during the rest of autoconfiguration, so 579 * lower interrupts just enough to let zs interrupts in. 580 * This is done after both zs devices are attached. 581 */ 582 if (zsc->zsc_promunit == 1) { 583 printf("zs1: enabling zs interrupts\n"); 584 (void)splfd(); /* XXX: splzs - 1 */ 585 } 586 #endif 587 588 } 589 590 static int 591 zs_print(aux, name) 592 void *aux; 593 const char *name; 594 { 595 struct zsc_attach_args *args = aux; 596 597 if (name != NULL) 598 aprint_normal("%s: ", name); 599 600 if (args->channel != -1) 601 aprint_normal(" channel %d", args->channel); 602 603 return (UNCONF); 604 } 605 606 static volatile int zssoftpending; 607 608 /* 609 * Our ZS chips all share a common, autovectored interrupt, 610 * so we have to look at all of them on each interrupt. 611 */ 612 static int 613 zshard(arg) 614 void *arg; 615 { 616 struct zsc_softc *zsc; 617 int unit, rr3, rval, softreq; 618 619 rval = softreq = 0; 620 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { 621 struct zs_chanstate *cs; 622 623 zsc = zs_cd.cd_devs[unit]; 624 if (zsc == NULL) 625 continue; 626 rr3 = zsc_intr_hard(zsc); 627 /* Count up the interrupts. */ 628 if (rr3) { 629 rval |= rr3; 630 zsc->zsc_intrcnt.ev_count++; 631 } 632 if ((cs = zsc->zsc_cs[0]) != NULL) 633 softreq |= cs->cs_softreq; 634 if ((cs = zsc->zsc_cs[1]) != NULL) 635 softreq |= cs->cs_softreq; 636 } 637 638 /* We are at splzs here, so no need to lock. */ 639 if (softreq && (zssoftpending == 0)) { 640 zssoftpending = 1; 641 softintr_schedule(zs_sicookie); 642 } 643 return (rval); 644 } 645 646 /* 647 * Similar scheme as for zshard (look at all of them) 648 */ 649 static void 650 zssoft(arg) 651 void *arg; 652 { 653 struct zsc_softc *zsc; 654 int s, unit; 655 656 /* This is not the only ISR on this IPL. */ 657 if (zssoftpending == 0) 658 return; 659 660 /* 661 * The soft intr. bit will be set by zshard only if 662 * the variable zssoftpending is zero. The order of 663 * these next two statements prevents our clearing 664 * the soft intr bit just after zshard has set it. 665 */ 666 /* ienab_bic(IE_ZSSOFT); */ 667 zssoftpending = 0; 668 669 /* Make sure we call the tty layer at spltty. */ 670 s = spltty(); 671 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { 672 zsc = zs_cd.cd_devs[unit]; 673 if (zsc == NULL) 674 continue; 675 (void)zsc_intr_soft(zsc); 676 } 677 splx(s); 678 } 679 680 681 /* 682 * Compute the current baud rate given a ZS channel. 683 */ 684 static int 685 zs_get_speed(cs) 686 struct zs_chanstate *cs; 687 { 688 int tconst; 689 690 tconst = zs_read_reg(cs, 12); 691 tconst |= zs_read_reg(cs, 13) << 8; 692 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 693 } 694 695 /* 696 * MD functions for setting the baud rate and control modes. 697 */ 698 int 699 zs_set_speed(cs, bps) 700 struct zs_chanstate *cs; 701 int bps; /* bits per second */ 702 { 703 int tconst, real_bps; 704 705 if (bps == 0) 706 return (0); 707 708 #ifdef DIAGNOSTIC 709 if (cs->cs_brg_clk == 0) 710 panic("zs_set_speed"); 711 #endif 712 713 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 714 if (tconst < 0) 715 return (EINVAL); 716 717 /* Convert back to make sure we can do it. */ 718 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 719 720 /* XXX - Allow some tolerance here? */ 721 if (real_bps != bps) 722 return (EINVAL); 723 724 cs->cs_preg[12] = tconst; 725 cs->cs_preg[13] = tconst >> 8; 726 727 /* Caller will stuff the pending registers. */ 728 return (0); 729 } 730 731 int 732 zs_set_modes(cs, cflag) 733 struct zs_chanstate *cs; 734 int cflag; /* bits per second */ 735 { 736 int s; 737 738 /* 739 * Output hardware flow control on the chip is horrendous: 740 * if carrier detect drops, the receiver is disabled, and if 741 * CTS drops, the transmitter is stoped IN MID CHARACTER! 742 * Therefore, NEVER set the HFC bit, and instead use the 743 * status interrupt to detect CTS changes. 744 */ 745 s = splzs(); 746 cs->cs_rr0_pps = 0; 747 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 748 cs->cs_rr0_dcd = 0; 749 if ((cflag & MDMBUF) == 0) 750 cs->cs_rr0_pps = ZSRR0_DCD; 751 } else 752 cs->cs_rr0_dcd = ZSRR0_DCD; 753 if ((cflag & CRTSCTS) != 0) { 754 cs->cs_wr5_dtr = ZSWR5_DTR; 755 cs->cs_wr5_rts = ZSWR5_RTS; 756 cs->cs_rr0_cts = ZSRR0_CTS; 757 } else if ((cflag & CDTRCTS) != 0) { 758 cs->cs_wr5_dtr = 0; 759 cs->cs_wr5_rts = ZSWR5_DTR; 760 cs->cs_rr0_cts = ZSRR0_CTS; 761 } else if ((cflag & MDMBUF) != 0) { 762 cs->cs_wr5_dtr = 0; 763 cs->cs_wr5_rts = ZSWR5_DTR; 764 cs->cs_rr0_cts = ZSRR0_DCD; 765 } else { 766 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 767 cs->cs_wr5_rts = 0; 768 cs->cs_rr0_cts = 0; 769 } 770 splx(s); 771 772 /* Caller will stuff the pending registers. */ 773 return (0); 774 } 775 776 777 /* 778 * Read or write the chip with suitable delays. 779 */ 780 781 u_char 782 zs_read_reg(cs, reg) 783 struct zs_chanstate *cs; 784 u_char reg; 785 { 786 u_char val; 787 788 *cs->cs_reg_csr = reg; 789 ZS_DELAY(); 790 val = *cs->cs_reg_csr; 791 ZS_DELAY(); 792 return (val); 793 } 794 795 void 796 zs_write_reg(cs, reg, val) 797 struct zs_chanstate *cs; 798 u_char reg, val; 799 { 800 *cs->cs_reg_csr = reg; 801 ZS_DELAY(); 802 *cs->cs_reg_csr = val; 803 ZS_DELAY(); 804 } 805 806 u_char 807 zs_read_csr(cs) 808 struct zs_chanstate *cs; 809 { 810 u_char val; 811 812 val = *cs->cs_reg_csr; 813 ZS_DELAY(); 814 return (val); 815 } 816 817 void 818 zs_write_csr(cs, val) 819 struct zs_chanstate *cs; 820 u_char val; 821 { 822 *cs->cs_reg_csr = val; 823 ZS_DELAY(); 824 } 825 826 u_char 827 zs_read_data(cs) 828 struct zs_chanstate *cs; 829 { 830 u_char val; 831 832 val = *cs->cs_reg_data; 833 ZS_DELAY(); 834 return (val); 835 } 836 837 void zs_write_data(cs, val) 838 struct zs_chanstate *cs; 839 u_char val; 840 { 841 *cs->cs_reg_data = val; 842 ZS_DELAY(); 843 } 844 845 /**************************************************************** 846 * Console support functions (Sun specific!) 847 * Note: this code is allowed to know about the layout of 848 * the chip registers, and uses that to keep things simple. 849 * XXX - I think I like the mvme167 code better. -gwr 850 ****************************************************************/ 851 852 /* 853 * Handle user request to enter kernel debugger. 854 */ 855 void 856 zs_abort(cs) 857 struct zs_chanstate *cs; 858 { 859 struct zschan *zc = zs_conschan_get; 860 int rr0; 861 862 /* Wait for end of break to avoid PROM abort. */ 863 /* XXX - Limit the wait? */ 864 do { 865 rr0 = zc->zc_csr; 866 ZS_DELAY(); 867 } while (rr0 & ZSRR0_BREAK); 868 869 #if defined(KGDB) 870 zskgdb(cs); 871 #elif defined(DDB) 872 Debugger(); 873 #else 874 printf("stopping on keyboard abort\n"); 875 callrom(); 876 #endif 877 } 878 879 int zs_getc __P((void *arg)); 880 void zs_putc __P((void *arg, int c)); 881 882 /* 883 * Polled input char. 884 */ 885 int 886 zs_getc(arg) 887 void *arg; 888 { 889 struct zschan *zc = arg; 890 int s, c, rr0; 891 u_int omid; 892 893 /* Temporarily direct interrupts at ourselves */ 894 s = splhigh(); 895 omid = setitr(cpuinfo.mid); 896 897 /* Wait for a character to arrive. */ 898 do { 899 rr0 = zc->zc_csr; 900 ZS_DELAY(); 901 } while ((rr0 & ZSRR0_RX_READY) == 0); 902 903 c = zc->zc_data; 904 ZS_DELAY(); 905 setitr(omid); 906 splx(s); 907 908 /* 909 * This is used by the kd driver to read scan codes, 910 * so don't translate '\r' ==> '\n' here... 911 */ 912 return (c); 913 } 914 915 /* 916 * Polled output char. 917 */ 918 void 919 zs_putc(arg, c) 920 void *arg; 921 int c; 922 { 923 struct zschan *zc = arg; 924 int s, rr0; 925 u_int omid; 926 927 /* Temporarily direct interrupts at ourselves */ 928 s = splhigh(); 929 omid = setitr(cpuinfo.mid); 930 931 /* Wait for transmitter to become ready. */ 932 do { 933 rr0 = zc->zc_csr; 934 ZS_DELAY(); 935 } while ((rr0 & ZSRR0_TX_READY) == 0); 936 937 /* 938 * Send the next character. 939 * Now you'd think that this could be followed by a ZS_DELAY() 940 * just like all the other chip accesses, but it turns out that 941 * the `transmit-ready' interrupt isn't de-asserted until 942 * some period of time after the register write completes 943 * (more than a couple instructions). So to avoid stray 944 * interrupts we put in the 2us delay regardless of CPU model. 945 */ 946 zc->zc_data = c; 947 delay(2); 948 949 setitr(omid); 950 splx(s); 951 } 952 953 /*****************************************************************/ 954 /* 955 * Polled console input putchar. 956 */ 957 int 958 zscngetc(dev) 959 dev_t dev; 960 { 961 return (zs_getc(zs_conschan_get)); 962 } 963 964 /* 965 * Polled console output putchar. 966 */ 967 void 968 zscnputc(dev, c) 969 dev_t dev; 970 int c; 971 { 972 zs_putc(zs_conschan_put, c); 973 } 974 975 void 976 zscnpollc(dev, on) 977 dev_t dev; 978 int on; 979 { 980 /* No action needed */ 981 } 982 983 int 984 zs_console_flags(promunit, node, channel) 985 int promunit; 986 int node; 987 int channel; 988 { 989 int cookie, flags = 0; 990 991 switch (prom_version()) { 992 case PROM_OLDMON: 993 case PROM_OBP_V0: 994 /* 995 * Use `promunit' and `channel' to derive the PROM 996 * stdio handles that correspond to this device. 997 */ 998 if (promunit == 0) 999 cookie = PROMDEV_TTYA + channel; 1000 else if (promunit == 1 && channel == 0) 1001 cookie = PROMDEV_KBD; 1002 else 1003 cookie = -1; 1004 1005 if (cookie == prom_stdin()) 1006 flags |= ZS_HWFLAG_CONSOLE_INPUT; 1007 1008 /* 1009 * Prevent the keyboard from matching the output device 1010 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!). 1011 */ 1012 if (cookie != PROMDEV_KBD && cookie == prom_stdout()) 1013 flags |= ZS_HWFLAG_CONSOLE_OUTPUT; 1014 1015 break; 1016 1017 case PROM_OBP_V2: 1018 case PROM_OBP_V3: 1019 case PROM_OPENFIRM: 1020 1021 /* 1022 * Match the nodes and device arguments prepared by 1023 * consinit() against our device node and channel. 1024 * (The device argument is the part of the OBP path 1025 * following the colon, as in `/obio/zs@0,100000:a') 1026 */ 1027 1028 /* Default to channel 0 if there are no explicit prom args */ 1029 cookie = 0; 1030 1031 if (node == prom_stdin_node) { 1032 if (prom_stdin_args[0] != '\0') 1033 /* Translate (a,b) -> (0,1) */ 1034 cookie = prom_stdin_args[0] - 'a'; 1035 1036 if (channel == cookie) 1037 flags |= ZS_HWFLAG_CONSOLE_INPUT; 1038 } 1039 1040 if (node == prom_stdout_node) { 1041 if (prom_stdout_args[0] != '\0') 1042 /* Translate (a,b) -> (0,1) */ 1043 cookie = prom_stdout_args[0] - 'a'; 1044 1045 if (channel == cookie) 1046 flags |= ZS_HWFLAG_CONSOLE_OUTPUT; 1047 } 1048 1049 break; 1050 1051 default: 1052 break; 1053 } 1054 1055 return (flags); 1056 } 1057 1058 /* 1059 * Power management hooks for zsopen() and zsclose(). 1060 * We use them to power on/off the ports, if necessary. 1061 */ 1062 int 1063 zs_enable(cs) 1064 struct zs_chanstate *cs; 1065 { 1066 auxiotwoserialendis (ZS_ENABLE); 1067 cs->enabled = 1; 1068 return(0); 1069 } 1070 1071 void 1072 zs_disable(cs) 1073 struct zs_chanstate *cs; 1074 { 1075 auxiotwoserialendis (ZS_DISABLE); 1076 cs->enabled = 0; 1077 } 1078 1079 1080 1081 1082 1083 1084