xref: /netbsd-src/sys/arch/sparc/dev/zs.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: zs.c,v 1.80 2000/07/09 20:57:48 pk Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Gordon W. Ross.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Zilog Z8530 Dual UART driver (machine-dependent part)
41  *
42  * Runs two serial lines per chip using slave drivers.
43  * Plain tty/async lines use the zs_async slave.
44  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45  */
46 
47 #include "opt_ddb.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60 
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/intr.h>
64 #include <machine/conf.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68 
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71 
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76 
77 #include "kbd.h"	/* NKBD */
78 #include "zs.h" 	/* NZS */
79 
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef  NZS
83 #define NZS 3
84 #endif
85 
86 /*
87  * Some warts needed by z8530tty.c -
88  * The default parity REALLY needs to be the same as the PROM uses,
89  * or you can not see messages done with printf during boot-up...
90  */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93 
94 /*
95  * The Sun provides a 4.9152 MHz clock to the ZS chips.
96  */
97 #define PCLK	(9600 * 512)	/* PCLK pin input clock rate */
98 
99 /*
100  * Select software interrupt bit based on TTY ipl.
101  */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111 
112 #define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(2))
113 
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
117 	u_char		zc_xxx0;
118 	volatile u_char	zc_data;	/* data */
119 	u_char		zc_xxx1;
120 };
121 struct zsdevice {
122 	/* Yes, they are backwards. */
123 	struct	zschan zs_chan_b;
124 	struct	zschan zs_chan_a;
125 };
126 
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129 
130 static u_char zs_init_reg[16] = {
131 	0,	/* 0: CMD (reset, etc.) */
132 	0,	/* 1: No interrupts yet. */
133 	0,	/* 2: IVECT */
134 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 	0,	/* 6: TXSYNC/SYNCLO */
138 	0,	/* 7: RXSYNC/SYNCHI */
139 	0,	/* 8: alias for data port */
140 	ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 	0,	/*10: Misc. TX/RX control bits */
142 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
144 	0,			/*13: BAUDHI (default=9600) */
145 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 	ZSWR15_BREAK_IE,
147 };
148 
149 /* Console ops */
150 static int  zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153 
154 struct consdev zs_consdev = {
155 	NULL,
156 	NULL,
157 	zscngetc,
158 	zscnputc,
159 	zscnpollc,
160 	NULL,
161 };
162 
163 
164 /****************************************************************
165  * Autoconfig
166  ****************************************************************/
167 
168 /* Definition of the driver for autoconfig. */
169 static int  zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int  zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173 
174 
175 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
176 static int  zs_print __P((void *, const char *name));
177 
178 struct cfattach zs_mainbus_ca = {
179 	sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
180 };
181 
182 struct cfattach zs_obio_ca = {
183 	sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
184 };
185 
186 extern struct cfdriver zs_cd;
187 
188 /* Interrupt handlers. */
189 static int zshard __P((void *));
190 static int zssoft __P((void *));
191 
192 static int zs_get_speed __P((struct zs_chanstate *));
193 
194 /* Console device support */
195 static int zs_console_flags __P((int, int, int));
196 
197 /* Power management hooks */
198 int  zs_enable __P((struct zs_chanstate *));
199 void zs_disable __P((struct zs_chanstate *));
200 
201 
202 /*
203  * Is the zs chip present?
204  */
205 static int
206 zs_match_mainbus(parent, cf, aux)
207 	struct device *parent;
208 	struct cfdata *cf;
209 	void *aux;
210 {
211 	struct mainbus_attach_args *ma = aux;
212 
213 	if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
214 		return (0);
215 
216 	return (1);
217 }
218 
219 static int
220 zs_match_obio(parent, cf, aux)
221 	struct device *parent;
222 	struct cfdata *cf;
223 	void *aux;
224 {
225 	union obio_attach_args *uoba = aux;
226 	struct obio4_attach_args *oba;
227 
228 	if (uoba->uoba_isobio4 == 0) {
229 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
230 
231 		if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
232 			return (0);
233 
234 		return (1);
235 	}
236 
237 	oba = &uoba->uoba_oba4;
238 	return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
239 			        1, 0, 0, NULL, NULL));
240 }
241 
242 static void
243 zs_attach_mainbus(parent, self, aux)
244 	struct device *parent;
245 	struct device *self;
246 	void *aux;
247 {
248 	struct zsc_softc *zsc = (void *) self;
249 	struct mainbus_attach_args *ma = aux;
250 
251 	zsc->zsc_bustag = ma->ma_bustag;
252 	zsc->zsc_dmatag = ma->ma_dmatag;
253 	zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
254 	zsc->zsc_node = ma->ma_node;
255 
256 	/*
257 	 * For machines with zs on mainbus (all sun4c models), we expect
258 	 * the device registers to be mapped by the PROM.
259 	 */
260 	zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
261 }
262 
263 static void
264 zs_attach_obio(parent, self, aux)
265 	struct device *parent;
266 	struct device *self;
267 	void *aux;
268 {
269 	struct zsc_softc *zsc = (void *) self;
270 	union obio_attach_args *uoba = aux;
271 
272 	if (uoba->uoba_isobio4 == 0) {
273 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
274 		void *va;
275 		struct zs_chanstate *cs;
276 		int channel;
277 
278 		if (sa->sa_nintr == 0) {
279 			printf(" no interrupt lines\n");
280 			return;
281 		}
282 
283 		/*
284 		 * Some sun4m models (Javastations) may not map the zs device.
285 		 */
286 		if (sa->sa_npromvaddrs > 0)
287 			va = (void *)sa->sa_promvaddr;
288 		else {
289 			bus_space_handle_t bh;
290 
291 			if (sbus_bus_map(sa->sa_bustag,
292 					  sa->sa_slot,
293 					  sa->sa_offset,
294 					  sa->sa_size,
295 					  BUS_SPACE_MAP_LINEAR,
296 					  0, &bh) != 0) {
297 				printf(" cannot map zs registers\n");
298 				return;
299 			}
300 			va = (void *)bh;
301 		}
302 
303 		/*
304 		 * Check if power state can be set, e.g. Tadpole 3GX
305 		 */
306 		if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
307 		{
308 			printf (" powered via auxio2");
309 			for (channel = 0; channel < 2; channel++) {
310 				cs = &zsc->zsc_cs_store[channel];
311 				cs->enable = zs_enable;
312 				cs->disable = zs_disable;
313 			}
314 		}
315 
316 		zsc->zsc_bustag = sa->sa_bustag;
317 		zsc->zsc_dmatag = sa->sa_dmatag;
318 		zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
319 		zsc->zsc_node = sa->sa_node;
320 		zs_attach(zsc, va, sa->sa_pri);
321 	} else {
322 		struct obio4_attach_args *oba = &uoba->uoba_oba4;
323 		bus_space_handle_t bh;
324 		bus_addr_t paddr = oba->oba_paddr;
325 
326 		/*
327 		 * As for zs on mainbus, we require a PROM mapping.
328 		 */
329 		if (bus_space_map(oba->oba_bustag,
330 				  paddr,
331 				  sizeof(struct zsdevice),
332 				  BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
333 				  &bh) != 0) {
334 			printf(" cannot map zs registers\n");
335 			return;
336 		}
337 		zsc->zsc_bustag = oba->oba_bustag;
338 		zsc->zsc_dmatag = oba->oba_dmatag;
339 		/* Find prom unit by physical address */
340 		zsc->zsc_promunit =
341 			(paddr == 0xf1000000) ? 0 :
342 			(paddr == 0xf0000000) ? 1 :
343 			(paddr == 0xe0000000) ? 2 : -2;
344 
345 		zs_attach(zsc, (void *)bh, oba->oba_pri);
346 	}
347 }
348 /*
349  * Attach a found zs.
350  *
351  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
352  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
353  */
354 static void
355 zs_attach(zsc, zsd, pri)
356 	struct zsc_softc *zsc;
357 	struct zsdevice *zsd;
358 	int pri;
359 {
360 	struct zsc_attach_args zsc_args;
361 	struct zs_chanstate *cs;
362 	int s, channel;
363 	static int didintr, prevpri;
364 
365 	if (zsd == NULL) {
366 		printf("configuration incomplete\n");
367 		return;
368 	}
369 
370 	printf(" softpri %d\n", PIL_TTY);
371 
372 	/*
373 	 * Initialize software state for each channel.
374 	 */
375 	for (channel = 0; channel < 2; channel++) {
376 		struct zschan *zc;
377 
378 		zsc_args.channel = channel;
379 		cs = &zsc->zsc_cs_store[channel];
380 		zsc->zsc_cs[channel] = cs;
381 
382 		cs->cs_channel = channel;
383 		cs->cs_private = NULL;
384 		cs->cs_ops = &zsops_null;
385 		cs->cs_brg_clk = PCLK / 16;
386 
387 		zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
388 
389 		zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
390 						    zsc->zsc_node,
391 						    channel);
392 
393 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
394 			zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
395 			zsc_args.consdev = &zs_consdev;
396 		}
397 
398 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
399 			zs_conschan_get = zc;
400 		}
401 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
402 			zs_conschan_put = zc;
403 		}
404 		/* Childs need to set cn_dev, etc */
405 
406 		cs->cs_reg_csr  = &zc->zc_csr;
407 		cs->cs_reg_data = &zc->zc_data;
408 
409 		bcopy(zs_init_reg, cs->cs_creg, 16);
410 		bcopy(zs_init_reg, cs->cs_preg, 16);
411 
412 		/* XXX: Consult PROM properties for this?! */
413 		cs->cs_defspeed = zs_get_speed(cs);
414 		cs->cs_defcflag = zs_def_cflag;
415 
416 		/* Make these correspond to cs_defcflag (-crtscts) */
417 		cs->cs_rr0_dcd = ZSRR0_DCD;
418 		cs->cs_rr0_cts = 0;
419 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
420 		cs->cs_wr5_rts = 0;
421 
422 		/*
423 		 * Clear the master interrupt enable.
424 		 * The INTENA is common to both channels,
425 		 * so just do it on the A channel.
426 		 */
427 		if (channel == 0) {
428 			zs_write_reg(cs, 9, 0);
429 		}
430 
431 		/*
432 		 * Look for a child driver for this channel.
433 		 * The child attach will setup the hardware.
434 		 */
435 		if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
436 			/* No sub-driver.  Just reset it. */
437 			u_char reset = (channel == 0) ?
438 				ZSWR9_A_RESET : ZSWR9_B_RESET;
439 			s = splzs();
440 			zs_write_reg(cs,  9, reset);
441 			splx(s);
442 		}
443 	}
444 
445 	/*
446 	 * Now safe to install interrupt handlers.  Note the arguments
447 	 * to the interrupt handlers aren't used.  Note, we only do this
448 	 * once since both SCCs interrupt at the same level and vector.
449 	 */
450 	if (!didintr) {
451 		didintr = 1;
452 		prevpri = pri;
453 		bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
454 				   zshard, NULL);
455 		bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
456 				   IPL_SOFTSERIAL,
457 				   BUS_INTR_ESTABLISH_SOFTINTR,
458 				   zssoft, NULL);
459 	} else if (pri != prevpri)
460 		panic("broken zs interrupt scheme");
461 
462 	evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
463 	    zsc->zsc_dev.dv_xname, "intr");
464 
465 	/*
466 	 * Set the master interrupt enable and interrupt vector.
467 	 * (common to both channels, do it on A)
468 	 */
469 	cs = zsc->zsc_cs[0];
470 	s = splhigh();
471 	/* interrupt vector */
472 	zs_write_reg(cs, 2, zs_init_reg[2]);
473 	/* master interrupt control (enable) */
474 	zs_write_reg(cs, 9, zs_init_reg[9]);
475 	splx(s);
476 
477 #if 0
478 	/*
479 	 * XXX: L1A hack - We would like to be able to break into
480 	 * the debugger during the rest of autoconfiguration, so
481 	 * lower interrupts just enough to let zs interrupts in.
482 	 * This is done after both zs devices are attached.
483 	 */
484 	if (zsc->zsc_promunit == 1) {
485 		printf("zs1: enabling zs interrupts\n");
486 		(void)splfd(); /* XXX: splzs - 1 */
487 	}
488 #endif
489 }
490 
491 static int
492 zs_print(aux, name)
493 	void *aux;
494 	const char *name;
495 {
496 	struct zsc_attach_args *args = aux;
497 
498 	if (name != NULL)
499 		printf("%s: ", name);
500 
501 	if (args->channel != -1)
502 		printf(" channel %d", args->channel);
503 
504 	return (UNCONF);
505 }
506 
507 static volatile int zssoftpending;
508 
509 /*
510  * Our ZS chips all share a common, autovectored interrupt,
511  * so we have to look at all of them on each interrupt.
512  */
513 static int
514 zshard(arg)
515 	void *arg;
516 {
517 	struct zsc_softc *zsc;
518 	int unit, rr3, rval, softreq;
519 
520 	rval = softreq = 0;
521 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
522 		struct zs_chanstate *cs;
523 
524 		zsc = zs_cd.cd_devs[unit];
525 		if (zsc == NULL)
526 			continue;
527 		rr3 = zsc_intr_hard(zsc);
528 		/* Count up the interrupts. */
529 		if (rr3) {
530 			rval |= rr3;
531 			zsc->zsc_intrcnt.ev_count++;
532 		}
533 		if ((cs = zsc->zsc_cs[0]) != NULL)
534 			softreq |= cs->cs_softreq;
535 		if ((cs = zsc->zsc_cs[1]) != NULL)
536 			softreq |= cs->cs_softreq;
537 	}
538 
539 	/* We are at splzs here, so no need to lock. */
540 	if (softreq && (zssoftpending == 0)) {
541 		zssoftpending = IE_ZSSOFT;
542 #if defined(SUN4M)
543 		if (CPU_ISSUN4M)
544 			raise(0, PIL_TTY);
545 		else
546 #endif
547 			ienab_bis(IE_ZSSOFT);
548 	}
549 	return (rval);
550 }
551 
552 /*
553  * Similar scheme as for zshard (look at all of them)
554  */
555 static int
556 zssoft(arg)
557 	void *arg;
558 {
559 	struct zsc_softc *zsc;
560 	int s, unit;
561 
562 	/* This is not the only ISR on this IPL. */
563 	if (zssoftpending == 0)
564 		return (0);
565 
566 	/*
567 	 * The soft intr. bit will be set by zshard only if
568 	 * the variable zssoftpending is zero.  The order of
569 	 * these next two statements prevents our clearing
570 	 * the soft intr bit just after zshard has set it.
571 	 */
572 	/* ienab_bic(IE_ZSSOFT); */
573 	zssoftpending = 0;
574 
575 	/* Make sure we call the tty layer at spltty. */
576 	s = spltty();
577 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
578 		zsc = zs_cd.cd_devs[unit];
579 		if (zsc == NULL)
580 			continue;
581 		(void)zsc_intr_soft(zsc);
582 	}
583 	splx(s);
584 	return (1);
585 }
586 
587 
588 /*
589  * Compute the current baud rate given a ZS channel.
590  */
591 static int
592 zs_get_speed(cs)
593 	struct zs_chanstate *cs;
594 {
595 	int tconst;
596 
597 	tconst = zs_read_reg(cs, 12);
598 	tconst |= zs_read_reg(cs, 13) << 8;
599 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
600 }
601 
602 /*
603  * MD functions for setting the baud rate and control modes.
604  */
605 int
606 zs_set_speed(cs, bps)
607 	struct zs_chanstate *cs;
608 	int bps;	/* bits per second */
609 {
610 	int tconst, real_bps;
611 
612 	if (bps == 0)
613 		return (0);
614 
615 #ifdef	DIAGNOSTIC
616 	if (cs->cs_brg_clk == 0)
617 		panic("zs_set_speed");
618 #endif
619 
620 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
621 	if (tconst < 0)
622 		return (EINVAL);
623 
624 	/* Convert back to make sure we can do it. */
625 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
626 
627 	/* XXX - Allow some tolerance here? */
628 	if (real_bps != bps)
629 		return (EINVAL);
630 
631 	cs->cs_preg[12] = tconst;
632 	cs->cs_preg[13] = tconst >> 8;
633 
634 	/* Caller will stuff the pending registers. */
635 	return (0);
636 }
637 
638 int
639 zs_set_modes(cs, cflag)
640 	struct zs_chanstate *cs;
641 	int cflag;	/* bits per second */
642 {
643 	int s;
644 
645 	/*
646 	 * Output hardware flow control on the chip is horrendous:
647 	 * if carrier detect drops, the receiver is disabled, and if
648 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
649 	 * Therefore, NEVER set the HFC bit, and instead use the
650 	 * status interrupt to detect CTS changes.
651 	 */
652 	s = splzs();
653 	cs->cs_rr0_pps = 0;
654 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
655 		cs->cs_rr0_dcd = 0;
656 		if ((cflag & MDMBUF) == 0)
657 			cs->cs_rr0_pps = ZSRR0_DCD;
658 	} else
659 		cs->cs_rr0_dcd = ZSRR0_DCD;
660 	if ((cflag & CRTSCTS) != 0) {
661 		cs->cs_wr5_dtr = ZSWR5_DTR;
662 		cs->cs_wr5_rts = ZSWR5_RTS;
663 		cs->cs_rr0_cts = ZSRR0_CTS;
664 	} else if ((cflag & CDTRCTS) != 0) {
665 		cs->cs_wr5_dtr = 0;
666 		cs->cs_wr5_rts = ZSWR5_DTR;
667 		cs->cs_rr0_cts = ZSRR0_CTS;
668 	} else if ((cflag & MDMBUF) != 0) {
669 		cs->cs_wr5_dtr = 0;
670 		cs->cs_wr5_rts = ZSWR5_DTR;
671 		cs->cs_rr0_cts = ZSRR0_DCD;
672 	} else {
673 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
674 		cs->cs_wr5_rts = 0;
675 		cs->cs_rr0_cts = 0;
676 	}
677 	splx(s);
678 
679 	/* Caller will stuff the pending registers. */
680 	return (0);
681 }
682 
683 
684 /*
685  * Read or write the chip with suitable delays.
686  */
687 
688 u_char
689 zs_read_reg(cs, reg)
690 	struct zs_chanstate *cs;
691 	u_char reg;
692 {
693 	u_char val;
694 
695 	*cs->cs_reg_csr = reg;
696 	ZS_DELAY();
697 	val = *cs->cs_reg_csr;
698 	ZS_DELAY();
699 	return (val);
700 }
701 
702 void
703 zs_write_reg(cs, reg, val)
704 	struct zs_chanstate *cs;
705 	u_char reg, val;
706 {
707 	*cs->cs_reg_csr = reg;
708 	ZS_DELAY();
709 	*cs->cs_reg_csr = val;
710 	ZS_DELAY();
711 }
712 
713 u_char
714 zs_read_csr(cs)
715 	struct zs_chanstate *cs;
716 {
717 	u_char val;
718 
719 	val = *cs->cs_reg_csr;
720 	ZS_DELAY();
721 	return (val);
722 }
723 
724 void
725 zs_write_csr(cs, val)
726 	struct zs_chanstate *cs;
727 	u_char val;
728 {
729 	*cs->cs_reg_csr = val;
730 	ZS_DELAY();
731 }
732 
733 u_char
734 zs_read_data(cs)
735 	struct zs_chanstate *cs;
736 {
737 	u_char val;
738 
739 	val = *cs->cs_reg_data;
740 	ZS_DELAY();
741 	return (val);
742 }
743 
744 void  zs_write_data(cs, val)
745 	struct zs_chanstate *cs;
746 	u_char val;
747 {
748 	*cs->cs_reg_data = val;
749 	ZS_DELAY();
750 }
751 
752 /****************************************************************
753  * Console support functions (Sun specific!)
754  * Note: this code is allowed to know about the layout of
755  * the chip registers, and uses that to keep things simple.
756  * XXX - I think I like the mvme167 code better. -gwr
757  ****************************************************************/
758 
759 /*
760  * Handle user request to enter kernel debugger.
761  */
762 void
763 zs_abort(cs)
764 	struct zs_chanstate *cs;
765 {
766 	struct zschan *zc = zs_conschan_get;
767 	int rr0;
768 
769 	/* Wait for end of break to avoid PROM abort. */
770 	/* XXX - Limit the wait? */
771 	do {
772 		rr0 = zc->zc_csr;
773 		ZS_DELAY();
774 	} while (rr0 & ZSRR0_BREAK);
775 
776 #if defined(KGDB)
777 	zskgdb(cs);
778 #elif defined(DDB)
779 	Debugger();
780 #else
781 	printf("stopping on keyboard abort\n");
782 	callrom();
783 #endif
784 }
785 
786 static int  zs_getc __P((void *arg));
787 static void zs_putc __P((void *arg, int c));
788 
789 /*
790  * Polled input char.
791  */
792 int
793 zs_getc(arg)
794 	void *arg;
795 {
796 	struct zschan *zc = arg;
797 	int s, c, rr0;
798 
799 	s = splhigh();
800 	/* Wait for a character to arrive. */
801 	do {
802 		rr0 = zc->zc_csr;
803 		ZS_DELAY();
804 	} while ((rr0 & ZSRR0_RX_READY) == 0);
805 
806 	c = zc->zc_data;
807 	ZS_DELAY();
808 	splx(s);
809 
810 	/*
811 	 * This is used by the kd driver to read scan codes,
812 	 * so don't translate '\r' ==> '\n' here...
813 	 */
814 	return (c);
815 }
816 
817 /*
818  * Polled output char.
819  */
820 void
821 zs_putc(arg, c)
822 	void *arg;
823 	int c;
824 {
825 	struct zschan *zc = arg;
826 	int s, rr0;
827 
828 	s = splhigh();
829 
830 	/* Wait for transmitter to become ready. */
831 	do {
832 		rr0 = zc->zc_csr;
833 		ZS_DELAY();
834 	} while ((rr0 & ZSRR0_TX_READY) == 0);
835 
836 	/*
837 	 * Send the next character.
838 	 * Now you'd think that this could be followed by a ZS_DELAY()
839 	 * just like all the other chip accesses, but it turns out that
840 	 * the `transmit-ready' interrupt isn't de-asserted until
841 	 * some period of time after the register write completes
842 	 * (more than a couple instructions).  So to avoid stray
843 	 * interrupts we put in the 2us delay regardless of cpu model.
844 	 */
845 	zc->zc_data = c;
846 	delay(2);
847 
848 	splx(s);
849 }
850 
851 /*****************************************************************/
852 /*
853  * Polled console input putchar.
854  */
855 int
856 zscngetc(dev)
857 	dev_t dev;
858 {
859 	return (zs_getc(zs_conschan_get));
860 }
861 
862 /*
863  * Polled console output putchar.
864  */
865 void
866 zscnputc(dev, c)
867 	dev_t dev;
868 	int c;
869 {
870 	zs_putc(zs_conschan_put, c);
871 }
872 
873 void
874 zscnpollc(dev, on)
875 	dev_t dev;
876 	int on;
877 {
878 	/* No action needed */
879 }
880 
881 int
882 zs_console_flags(promunit, node, channel)
883 	int promunit;
884 	int node;
885 	int channel;
886 {
887 	int cookie, flags = 0;
888 
889 	switch (prom_version()) {
890 	case PROM_OLDMON:
891 	case PROM_OBP_V0:
892 		/*
893 		 * Use `promunit' and `channel' to derive the PROM
894 		 * stdio handles that correspond to this device.
895 		 */
896 		if (promunit == 0)
897 			cookie = PROMDEV_TTYA + channel;
898 		else if (promunit == 1 && channel == 0)
899 			cookie = PROMDEV_KBD;
900 		else
901 			cookie = -1;
902 
903 		if (cookie == prom_stdin())
904 			flags |= ZS_HWFLAG_CONSOLE_INPUT;
905 
906 		/*
907 		 * Prevent the keyboard from matching the output device
908 		 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
909 		 */
910 		if (cookie != PROMDEV_KBD && cookie == prom_stdout())
911 			flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
912 
913 		break;
914 
915 	case PROM_OBP_V2:
916 	case PROM_OBP_V3:
917 	case PROM_OPENFIRM:
918 
919 		/*
920 		 * Match the nodes and device arguments prepared by
921 		 * consinit() against our device node and channel.
922 		 * (The device argument is the part of the OBP path
923 		 * following the colon, as in `/obio/zs@0,100000:a')
924 		 */
925 
926 		/* Default to channel 0 if there are no explicit prom args */
927 		cookie = 0;
928 
929 		if (node == prom_stdin_node) {
930 			if (prom_stdin_args[0] != '\0')
931 				/* Translate (a,b) -> (0,1) */
932 				cookie = prom_stdin_args[0] - 'a';
933 
934 			if (channel == cookie)
935 				flags |= ZS_HWFLAG_CONSOLE_INPUT;
936 		}
937 
938 		if (node == prom_stdout_node) {
939 			if (prom_stdout_args[0] != '\0')
940 				/* Translate (a,b) -> (0,1) */
941 				cookie = prom_stdout_args[0] - 'a';
942 
943 			if (channel == cookie)
944 				flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
945 		}
946 
947 		break;
948 
949 	default:
950 		break;
951 	}
952 
953 	return (flags);
954 }
955 
956 /*
957  * Power management hooks for zsopen() and zsclose().
958  * We use them to power on/off the ports, if necessary.
959  */
960 int
961 zs_enable(cs)
962 	struct zs_chanstate *cs;
963 {
964 	auxiotwoserialendis (ZS_ENABLE);
965 	cs->enabled = 1;
966 	return(0);
967 }
968 
969 void
970 zs_disable(cs)
971 	struct zs_chanstate *cs;
972 {
973 	auxiotwoserialendis (ZS_DISABLE);
974 	cs->enabled = 0;
975 }
976