xref: /netbsd-src/sys/arch/sparc/dev/zs.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: zs.c,v 1.79 2000/06/04 19:15:03 cgd Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Gordon W. Ross.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Zilog Z8530 Dual UART driver (machine-dependent part)
41  *
42  * Runs two serial lines per chip using slave drivers.
43  * Plain tty/async lines use the zs_async slave.
44  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45  */
46 
47 #include "opt_ddb.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60 
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68 
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71 
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76 
77 #include "kbd.h"	/* NKBD */
78 #include "zs.h" 	/* NZS */
79 
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef  NZS
83 #define NZS 3
84 #endif
85 
86 /*
87  * Some warts needed by z8530tty.c -
88  * The default parity REALLY needs to be the same as the PROM uses,
89  * or you can not see messages done with printf during boot-up...
90  */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93 
94 /*
95  * The Sun provides a 4.9152 MHz clock to the ZS chips.
96  */
97 #define PCLK	(9600 * 512)	/* PCLK pin input clock rate */
98 
99 /*
100  * Select software interrupt bit based on TTY ipl.
101  */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111 
112 #define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(2))
113 
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
117 	u_char		zc_xxx0;
118 	volatile u_char	zc_data;	/* data */
119 	u_char		zc_xxx1;
120 };
121 struct zsdevice {
122 	/* Yes, they are backwards. */
123 	struct	zschan zs_chan_b;
124 	struct	zschan zs_chan_a;
125 };
126 
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129 
130 static u_char zs_init_reg[16] = {
131 	0,	/* 0: CMD (reset, etc.) */
132 	0,	/* 1: No interrupts yet. */
133 	0,	/* 2: IVECT */
134 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 	0,	/* 6: TXSYNC/SYNCLO */
138 	0,	/* 7: RXSYNC/SYNCHI */
139 	0,	/* 8: alias for data port */
140 	ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 	0,	/*10: Misc. TX/RX control bits */
142 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
144 	0,			/*13: BAUDHI (default=9600) */
145 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 	ZSWR15_BREAK_IE,
147 };
148 
149 /* Console ops */
150 static int  zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153 
154 struct consdev zs_consdev = {
155 	NULL,
156 	NULL,
157 	zscngetc,
158 	zscnputc,
159 	zscnpollc,
160 	NULL,
161 };
162 
163 
164 /****************************************************************
165  * Autoconfig
166  ****************************************************************/
167 
168 /* Definition of the driver for autoconfig. */
169 static int  zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int  zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173 
174 
175 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
176 static int  zs_print __P((void *, const char *name));
177 
178 struct cfattach zs_mainbus_ca = {
179 	sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
180 };
181 
182 struct cfattach zs_obio_ca = {
183 	sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
184 };
185 
186 extern struct cfdriver zs_cd;
187 
188 /* Interrupt handlers. */
189 static int zshard __P((void *));
190 static int zssoft __P((void *));
191 static struct intrhand levelsoft = { zssoft };
192 
193 static int zs_get_speed __P((struct zs_chanstate *));
194 
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197 
198 /* Power management hooks */
199 int  zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201 
202 
203 /*
204  * Is the zs chip present?
205  */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 	struct device *parent;
209 	struct cfdata *cf;
210 	void *aux;
211 {
212 	struct mainbus_attach_args *ma = aux;
213 
214 	if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 		return (0);
216 
217 	return (1);
218 }
219 
220 static int
221 zs_match_obio(parent, cf, aux)
222 	struct device *parent;
223 	struct cfdata *cf;
224 	void *aux;
225 {
226 	union obio_attach_args *uoba = aux;
227 	struct obio4_attach_args *oba;
228 
229 	if (uoba->uoba_isobio4 == 0) {
230 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
231 
232 		if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 			return (0);
234 
235 		return (1);
236 	}
237 
238 	oba = &uoba->uoba_oba4;
239 	return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
240 			        1, 0, 0, NULL, NULL));
241 }
242 
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 	struct device *parent;
246 	struct device *self;
247 	void *aux;
248 {
249 	struct zsc_softc *zsc = (void *) self;
250 	struct mainbus_attach_args *ma = aux;
251 
252 	zsc->zsc_bustag = ma->ma_bustag;
253 	zsc->zsc_dmatag = ma->ma_dmatag;
254 	zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
255 	zsc->zsc_node = ma->ma_node;
256 
257 	/*
258 	 * For machines with zs on mainbus (all sun4c models), we expect
259 	 * the device registers to be mapped by the PROM.
260 	 */
261 	zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263 
264 static void
265 zs_attach_obio(parent, self, aux)
266 	struct device *parent;
267 	struct device *self;
268 	void *aux;
269 {
270 	struct zsc_softc *zsc = (void *) self;
271 	union obio_attach_args *uoba = aux;
272 
273 	if (uoba->uoba_isobio4 == 0) {
274 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 		void *va;
276 		struct zs_chanstate *cs;
277 		int channel;
278 
279 		if (sa->sa_nintr == 0) {
280 			printf(" no interrupt lines\n");
281 			return;
282 		}
283 
284 		/*
285 		 * Some sun4m models (Javastations) may not map the zs device.
286 		 */
287 		if (sa->sa_npromvaddrs > 0)
288 			va = (void *)sa->sa_promvaddr;
289 		else {
290 			bus_space_handle_t bh;
291 
292 			if (sbus_bus_map(sa->sa_bustag,
293 					  sa->sa_slot,
294 					  sa->sa_offset,
295 					  sa->sa_size,
296 					  BUS_SPACE_MAP_LINEAR,
297 					  0, &bh) != 0) {
298 				printf(" cannot map zs registers\n");
299 				return;
300 			}
301 			va = (void *)bh;
302 		}
303 
304 		/*
305 		 * Check if power state can be set, e.g. Tadpole 3GX
306 		 */
307 		if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
308 		{
309 			printf (" powered via auxio2");
310 			for (channel = 0; channel < 2; channel++) {
311 				cs = &zsc->zsc_cs_store[channel];
312 				cs->enable = zs_enable;
313 				cs->disable = zs_disable;
314 			}
315 		}
316 
317 		zsc->zsc_bustag = sa->sa_bustag;
318 		zsc->zsc_dmatag = sa->sa_dmatag;
319 		zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
320 		zsc->zsc_node = sa->sa_node;
321 		zs_attach(zsc, va, sa->sa_pri);
322 	} else {
323 		struct obio4_attach_args *oba = &uoba->uoba_oba4;
324 		bus_space_handle_t bh;
325 		bus_addr_t paddr = oba->oba_paddr;
326 
327 		/*
328 		 * As for zs on mainbus, we require a PROM mapping.
329 		 */
330 		if (bus_space_map(oba->oba_bustag,
331 				  paddr,
332 				  sizeof(struct zsdevice),
333 				  BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
334 				  &bh) != 0) {
335 			printf(" cannot map zs registers\n");
336 			return;
337 		}
338 		zsc->zsc_bustag = oba->oba_bustag;
339 		zsc->zsc_dmatag = oba->oba_dmatag;
340 		/* Find prom unit by physical address */
341 		zsc->zsc_promunit =
342 			(paddr == 0xf1000000) ? 0 :
343 			(paddr == 0xf0000000) ? 1 :
344 			(paddr == 0xe0000000) ? 2 : -2;
345 
346 		zs_attach(zsc, (void *)bh, oba->oba_pri);
347 	}
348 }
349 /*
350  * Attach a found zs.
351  *
352  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
353  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
354  */
355 static void
356 zs_attach(zsc, zsd, pri)
357 	struct zsc_softc *zsc;
358 	struct zsdevice *zsd;
359 	int pri;
360 {
361 	struct zsc_attach_args zsc_args;
362 	struct zs_chanstate *cs;
363 	int s, channel;
364 	static int didintr, prevpri;
365 
366 	if (zsd == NULL) {
367 		printf("configuration incomplete\n");
368 		return;
369 	}
370 
371 	printf(" softpri %d\n", PIL_TTY);
372 
373 	/*
374 	 * Initialize software state for each channel.
375 	 */
376 	for (channel = 0; channel < 2; channel++) {
377 		struct zschan *zc;
378 
379 		zsc_args.channel = channel;
380 		cs = &zsc->zsc_cs_store[channel];
381 		zsc->zsc_cs[channel] = cs;
382 
383 		cs->cs_channel = channel;
384 		cs->cs_private = NULL;
385 		cs->cs_ops = &zsops_null;
386 		cs->cs_brg_clk = PCLK / 16;
387 
388 		zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
389 
390 		zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
391 						    zsc->zsc_node,
392 						    channel);
393 
394 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
395 			zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
396 			zsc_args.consdev = &zs_consdev;
397 		}
398 
399 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
400 			zs_conschan_get = zc;
401 		}
402 		if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
403 			zs_conschan_put = zc;
404 		}
405 		/* Childs need to set cn_dev, etc */
406 
407 		cs->cs_reg_csr  = &zc->zc_csr;
408 		cs->cs_reg_data = &zc->zc_data;
409 
410 		bcopy(zs_init_reg, cs->cs_creg, 16);
411 		bcopy(zs_init_reg, cs->cs_preg, 16);
412 
413 		/* XXX: Consult PROM properties for this?! */
414 		cs->cs_defspeed = zs_get_speed(cs);
415 		cs->cs_defcflag = zs_def_cflag;
416 
417 		/* Make these correspond to cs_defcflag (-crtscts) */
418 		cs->cs_rr0_dcd = ZSRR0_DCD;
419 		cs->cs_rr0_cts = 0;
420 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
421 		cs->cs_wr5_rts = 0;
422 
423 		/*
424 		 * Clear the master interrupt enable.
425 		 * The INTENA is common to both channels,
426 		 * so just do it on the A channel.
427 		 */
428 		if (channel == 0) {
429 			zs_write_reg(cs, 9, 0);
430 		}
431 
432 		/*
433 		 * Look for a child driver for this channel.
434 		 * The child attach will setup the hardware.
435 		 */
436 		if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
437 			/* No sub-driver.  Just reset it. */
438 			u_char reset = (channel == 0) ?
439 				ZSWR9_A_RESET : ZSWR9_B_RESET;
440 			s = splzs();
441 			zs_write_reg(cs,  9, reset);
442 			splx(s);
443 		}
444 	}
445 
446 	/*
447 	 * Now safe to install interrupt handlers.  Note the arguments
448 	 * to the interrupt handlers aren't used.  Note, we only do this
449 	 * once since both SCCs interrupt at the same level and vector.
450 	 */
451 	if (!didintr) {
452 		didintr = 1;
453 		prevpri = pri;
454 		bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
455 		intr_establish(PIL_TTY, &levelsoft);
456 	} else if (pri != prevpri)
457 		panic("broken zs interrupt scheme");
458 
459 	evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
460 	    zsc->zsc_dev.dv_xname, "intr");
461 
462 	/*
463 	 * Set the master interrupt enable and interrupt vector.
464 	 * (common to both channels, do it on A)
465 	 */
466 	cs = zsc->zsc_cs[0];
467 	s = splhigh();
468 	/* interrupt vector */
469 	zs_write_reg(cs, 2, zs_init_reg[2]);
470 	/* master interrupt control (enable) */
471 	zs_write_reg(cs, 9, zs_init_reg[9]);
472 	splx(s);
473 
474 #if 0
475 	/*
476 	 * XXX: L1A hack - We would like to be able to break into
477 	 * the debugger during the rest of autoconfiguration, so
478 	 * lower interrupts just enough to let zs interrupts in.
479 	 * This is done after both zs devices are attached.
480 	 */
481 	if (zsc->zsc_promunit == 1) {
482 		printf("zs1: enabling zs interrupts\n");
483 		(void)splfd(); /* XXX: splzs - 1 */
484 	}
485 #endif
486 }
487 
488 static int
489 zs_print(aux, name)
490 	void *aux;
491 	const char *name;
492 {
493 	struct zsc_attach_args *args = aux;
494 
495 	if (name != NULL)
496 		printf("%s: ", name);
497 
498 	if (args->channel != -1)
499 		printf(" channel %d", args->channel);
500 
501 	return (UNCONF);
502 }
503 
504 static volatile int zssoftpending;
505 
506 /*
507  * Our ZS chips all share a common, autovectored interrupt,
508  * so we have to look at all of them on each interrupt.
509  */
510 static int
511 zshard(arg)
512 	void *arg;
513 {
514 	struct zsc_softc *zsc;
515 	int unit, rr3, rval, softreq;
516 
517 	rval = softreq = 0;
518 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
519 		struct zs_chanstate *cs;
520 
521 		zsc = zs_cd.cd_devs[unit];
522 		if (zsc == NULL)
523 			continue;
524 		rr3 = zsc_intr_hard(zsc);
525 		/* Count up the interrupts. */
526 		if (rr3) {
527 			rval |= rr3;
528 			zsc->zsc_intrcnt.ev_count++;
529 		}
530 		if ((cs = zsc->zsc_cs[0]) != NULL)
531 			softreq |= cs->cs_softreq;
532 		if ((cs = zsc->zsc_cs[1]) != NULL)
533 			softreq |= cs->cs_softreq;
534 	}
535 
536 	/* We are at splzs here, so no need to lock. */
537 	if (softreq && (zssoftpending == 0)) {
538 		zssoftpending = IE_ZSSOFT;
539 #if defined(SUN4M)
540 		if (CPU_ISSUN4M)
541 			raise(0, PIL_TTY);
542 		else
543 #endif
544 			ienab_bis(IE_ZSSOFT);
545 	}
546 	return (rval);
547 }
548 
549 /*
550  * Similar scheme as for zshard (look at all of them)
551  */
552 static int
553 zssoft(arg)
554 	void *arg;
555 {
556 	struct zsc_softc *zsc;
557 	int s, unit;
558 
559 	/* This is not the only ISR on this IPL. */
560 	if (zssoftpending == 0)
561 		return (0);
562 
563 	/*
564 	 * The soft intr. bit will be set by zshard only if
565 	 * the variable zssoftpending is zero.  The order of
566 	 * these next two statements prevents our clearing
567 	 * the soft intr bit just after zshard has set it.
568 	 */
569 	/* ienab_bic(IE_ZSSOFT); */
570 	zssoftpending = 0;
571 
572 	/* Make sure we call the tty layer at spltty. */
573 	s = spltty();
574 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
575 		zsc = zs_cd.cd_devs[unit];
576 		if (zsc == NULL)
577 			continue;
578 		(void)zsc_intr_soft(zsc);
579 	}
580 	splx(s);
581 	return (1);
582 }
583 
584 
585 /*
586  * Compute the current baud rate given a ZS channel.
587  */
588 static int
589 zs_get_speed(cs)
590 	struct zs_chanstate *cs;
591 {
592 	int tconst;
593 
594 	tconst = zs_read_reg(cs, 12);
595 	tconst |= zs_read_reg(cs, 13) << 8;
596 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
597 }
598 
599 /*
600  * MD functions for setting the baud rate and control modes.
601  */
602 int
603 zs_set_speed(cs, bps)
604 	struct zs_chanstate *cs;
605 	int bps;	/* bits per second */
606 {
607 	int tconst, real_bps;
608 
609 	if (bps == 0)
610 		return (0);
611 
612 #ifdef	DIAGNOSTIC
613 	if (cs->cs_brg_clk == 0)
614 		panic("zs_set_speed");
615 #endif
616 
617 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
618 	if (tconst < 0)
619 		return (EINVAL);
620 
621 	/* Convert back to make sure we can do it. */
622 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
623 
624 	/* XXX - Allow some tolerance here? */
625 	if (real_bps != bps)
626 		return (EINVAL);
627 
628 	cs->cs_preg[12] = tconst;
629 	cs->cs_preg[13] = tconst >> 8;
630 
631 	/* Caller will stuff the pending registers. */
632 	return (0);
633 }
634 
635 int
636 zs_set_modes(cs, cflag)
637 	struct zs_chanstate *cs;
638 	int cflag;	/* bits per second */
639 {
640 	int s;
641 
642 	/*
643 	 * Output hardware flow control on the chip is horrendous:
644 	 * if carrier detect drops, the receiver is disabled, and if
645 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
646 	 * Therefore, NEVER set the HFC bit, and instead use the
647 	 * status interrupt to detect CTS changes.
648 	 */
649 	s = splzs();
650 	cs->cs_rr0_pps = 0;
651 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
652 		cs->cs_rr0_dcd = 0;
653 		if ((cflag & MDMBUF) == 0)
654 			cs->cs_rr0_pps = ZSRR0_DCD;
655 	} else
656 		cs->cs_rr0_dcd = ZSRR0_DCD;
657 	if ((cflag & CRTSCTS) != 0) {
658 		cs->cs_wr5_dtr = ZSWR5_DTR;
659 		cs->cs_wr5_rts = ZSWR5_RTS;
660 		cs->cs_rr0_cts = ZSRR0_CTS;
661 	} else if ((cflag & CDTRCTS) != 0) {
662 		cs->cs_wr5_dtr = 0;
663 		cs->cs_wr5_rts = ZSWR5_DTR;
664 		cs->cs_rr0_cts = ZSRR0_CTS;
665 	} else if ((cflag & MDMBUF) != 0) {
666 		cs->cs_wr5_dtr = 0;
667 		cs->cs_wr5_rts = ZSWR5_DTR;
668 		cs->cs_rr0_cts = ZSRR0_DCD;
669 	} else {
670 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
671 		cs->cs_wr5_rts = 0;
672 		cs->cs_rr0_cts = 0;
673 	}
674 	splx(s);
675 
676 	/* Caller will stuff the pending registers. */
677 	return (0);
678 }
679 
680 
681 /*
682  * Read or write the chip with suitable delays.
683  */
684 
685 u_char
686 zs_read_reg(cs, reg)
687 	struct zs_chanstate *cs;
688 	u_char reg;
689 {
690 	u_char val;
691 
692 	*cs->cs_reg_csr = reg;
693 	ZS_DELAY();
694 	val = *cs->cs_reg_csr;
695 	ZS_DELAY();
696 	return (val);
697 }
698 
699 void
700 zs_write_reg(cs, reg, val)
701 	struct zs_chanstate *cs;
702 	u_char reg, val;
703 {
704 	*cs->cs_reg_csr = reg;
705 	ZS_DELAY();
706 	*cs->cs_reg_csr = val;
707 	ZS_DELAY();
708 }
709 
710 u_char
711 zs_read_csr(cs)
712 	struct zs_chanstate *cs;
713 {
714 	u_char val;
715 
716 	val = *cs->cs_reg_csr;
717 	ZS_DELAY();
718 	return (val);
719 }
720 
721 void
722 zs_write_csr(cs, val)
723 	struct zs_chanstate *cs;
724 	u_char val;
725 {
726 	*cs->cs_reg_csr = val;
727 	ZS_DELAY();
728 }
729 
730 u_char
731 zs_read_data(cs)
732 	struct zs_chanstate *cs;
733 {
734 	u_char val;
735 
736 	val = *cs->cs_reg_data;
737 	ZS_DELAY();
738 	return (val);
739 }
740 
741 void  zs_write_data(cs, val)
742 	struct zs_chanstate *cs;
743 	u_char val;
744 {
745 	*cs->cs_reg_data = val;
746 	ZS_DELAY();
747 }
748 
749 /****************************************************************
750  * Console support functions (Sun specific!)
751  * Note: this code is allowed to know about the layout of
752  * the chip registers, and uses that to keep things simple.
753  * XXX - I think I like the mvme167 code better. -gwr
754  ****************************************************************/
755 
756 /*
757  * Handle user request to enter kernel debugger.
758  */
759 void
760 zs_abort(cs)
761 	struct zs_chanstate *cs;
762 {
763 	struct zschan *zc = zs_conschan_get;
764 	int rr0;
765 
766 	/* Wait for end of break to avoid PROM abort. */
767 	/* XXX - Limit the wait? */
768 	do {
769 		rr0 = zc->zc_csr;
770 		ZS_DELAY();
771 	} while (rr0 & ZSRR0_BREAK);
772 
773 #if defined(KGDB)
774 	zskgdb(cs);
775 #elif defined(DDB)
776 	Debugger();
777 #else
778 	printf("stopping on keyboard abort\n");
779 	callrom();
780 #endif
781 }
782 
783 static int  zs_getc __P((void *arg));
784 static void zs_putc __P((void *arg, int c));
785 
786 /*
787  * Polled input char.
788  */
789 int
790 zs_getc(arg)
791 	void *arg;
792 {
793 	struct zschan *zc = arg;
794 	int s, c, rr0;
795 
796 	s = splhigh();
797 	/* Wait for a character to arrive. */
798 	do {
799 		rr0 = zc->zc_csr;
800 		ZS_DELAY();
801 	} while ((rr0 & ZSRR0_RX_READY) == 0);
802 
803 	c = zc->zc_data;
804 	ZS_DELAY();
805 	splx(s);
806 
807 	/*
808 	 * This is used by the kd driver to read scan codes,
809 	 * so don't translate '\r' ==> '\n' here...
810 	 */
811 	return (c);
812 }
813 
814 /*
815  * Polled output char.
816  */
817 void
818 zs_putc(arg, c)
819 	void *arg;
820 	int c;
821 {
822 	struct zschan *zc = arg;
823 	int s, rr0;
824 
825 	s = splhigh();
826 
827 	/* Wait for transmitter to become ready. */
828 	do {
829 		rr0 = zc->zc_csr;
830 		ZS_DELAY();
831 	} while ((rr0 & ZSRR0_TX_READY) == 0);
832 
833 	/*
834 	 * Send the next character.
835 	 * Now you'd think that this could be followed by a ZS_DELAY()
836 	 * just like all the other chip accesses, but it turns out that
837 	 * the `transmit-ready' interrupt isn't de-asserted until
838 	 * some period of time after the register write completes
839 	 * (more than a couple instructions).  So to avoid stray
840 	 * interrupts we put in the 2us delay regardless of cpu model.
841 	 */
842 	zc->zc_data = c;
843 	delay(2);
844 
845 	splx(s);
846 }
847 
848 /*****************************************************************/
849 /*
850  * Polled console input putchar.
851  */
852 int
853 zscngetc(dev)
854 	dev_t dev;
855 {
856 	return (zs_getc(zs_conschan_get));
857 }
858 
859 /*
860  * Polled console output putchar.
861  */
862 void
863 zscnputc(dev, c)
864 	dev_t dev;
865 	int c;
866 {
867 	zs_putc(zs_conschan_put, c);
868 }
869 
870 void
871 zscnpollc(dev, on)
872 	dev_t dev;
873 	int on;
874 {
875 	/* No action needed */
876 }
877 
878 int
879 zs_console_flags(promunit, node, channel)
880 	int promunit;
881 	int node;
882 	int channel;
883 {
884 	int cookie, flags = 0;
885 
886 	switch (prom_version()) {
887 	case PROM_OLDMON:
888 	case PROM_OBP_V0:
889 		/*
890 		 * Use `promunit' and `channel' to derive the PROM
891 		 * stdio handles that correspond to this device.
892 		 */
893 		if (promunit == 0)
894 			cookie = PROMDEV_TTYA + channel;
895 		else if (promunit == 1 && channel == 0)
896 			cookie = PROMDEV_KBD;
897 		else
898 			cookie = -1;
899 
900 		if (cookie == prom_stdin())
901 			flags |= ZS_HWFLAG_CONSOLE_INPUT;
902 
903 		/*
904 		 * Prevent the keyboard from matching the output device
905 		 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
906 		 */
907 		if (cookie != PROMDEV_KBD && cookie == prom_stdout())
908 			flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
909 
910 		break;
911 
912 	case PROM_OBP_V2:
913 	case PROM_OBP_V3:
914 	case PROM_OPENFIRM:
915 
916 		/*
917 		 * Match the nodes and device arguments prepared by
918 		 * consinit() against our device node and channel.
919 		 * (The device argument is the part of the OBP path
920 		 * following the colon, as in `/obio/zs@0,100000:a')
921 		 */
922 
923 		/* Default to channel 0 if there are no explicit prom args */
924 		cookie = 0;
925 
926 		if (node == prom_stdin_node) {
927 			if (prom_stdin_args[0] != '\0')
928 				/* Translate (a,b) -> (0,1) */
929 				cookie = prom_stdin_args[0] - 'a';
930 
931 			if (channel == cookie)
932 				flags |= ZS_HWFLAG_CONSOLE_INPUT;
933 		}
934 
935 		if (node == prom_stdout_node) {
936 			if (prom_stdout_args[0] != '\0')
937 				/* Translate (a,b) -> (0,1) */
938 				cookie = prom_stdout_args[0] - 'a';
939 
940 			if (channel == cookie)
941 				flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
942 		}
943 
944 		break;
945 
946 	default:
947 		break;
948 	}
949 
950 	return (flags);
951 }
952 
953 /*
954  * Power management hooks for zsopen() and zsclose().
955  * We use them to power on/off the ports, if necessary.
956  */
957 int
958 zs_enable(cs)
959 	struct zs_chanstate *cs;
960 {
961 	auxiotwoserialendis (ZS_ENABLE);
962 	cs->enabled = 1;
963 	return(0);
964 }
965 
966 void
967 zs_disable(cs)
968 	struct zs_chanstate *cs;
969 {
970 	auxiotwoserialendis (ZS_DISABLE);
971 	cs->enabled = 0;
972 }
973