xref: /netbsd-src/sys/arch/shark/ofw/ofw.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*	$NetBSD: ofw.c,v 1.56 2011/07/19 15:07:43 dyoung Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37  *  Routines for interfacing between NetBSD and OFW.
38  *
39  *  Parts of this could be moved to an MI file in time. -JJK
40  *
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.56 2011/07/19 15:07:43 dyoung Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/kernel.h>
50 #include <sys/reboot.h>
51 #include <sys/mbuf.h>
52 
53 #include <uvm/uvm.h>
54 
55 #include <dev/cons.h>
56 
57 #define	_ARM32_BUS_DMA_PRIVATE
58 #include <sys/bus.h>
59 #include <machine/frame.h>
60 #include <machine/bootconfig.h>
61 #include <machine/cpu.h>
62 #include <machine/intr.h>
63 #include <machine/irqhandler.h>
64 
65 #include <dev/ofw/openfirm.h>
66 #include <machine/ofw.h>
67 
68 #include <netinet/in.h>
69 
70 #if	BOOT_FW_DHCP
71 #include <nfs/bootdata.h>
72 #endif
73 
74 #ifdef SHARK
75 #include "machine/pio.h"
76 #include "machine/isa_machdep.h"
77 #endif
78 
79 #include "isadma.h"
80 #include "igsfb_ofbus.h"
81 #include "chipsfb_ofbus.h"
82 #include "vga_ofbus.h"
83 
84 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
85 #define IO_VIRT_SIZE 0x01000000
86 
87 #define	KERNEL_IMG_PTS		2
88 #define	KERNEL_VMDATA_PTS	(KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
89 #define	KERNEL_OFW_PTS		4
90 #define	KERNEL_IO_PTS		4
91 
92 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
93 /*
94  * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
95  * OFW sits at 0xf7000000
96  */
97 #define	KERNEL_VM_SIZE		0x06000000
98 
99 /*
100  *  Imported variables
101  */
102 extern BootConfig bootconfig;	/* temporary, I hope */
103 
104 #ifdef	DIAGNOSTIC
105 /* NOTE: These variables will be removed, well some of them */
106 extern u_int current_mask;
107 #endif
108 
109 extern int ofw_handleticks;
110 
111 
112 /*
113  *  Imported routines
114  */
115 extern void dump_spl_masks(void);
116 extern void dumpsys(void);
117 extern void dotickgrovelling(vaddr_t);
118 
119 #define WriteWord(a, b) \
120 *((volatile unsigned int *)(a)) = (b)
121 
122 #define ReadWord(a) \
123 (*((volatile unsigned int *)(a)))
124 
125 
126 /*
127  *  Exported variables
128  */
129 /* These should all be in a meminfo structure. */
130 paddr_t physical_start;
131 paddr_t physical_freestart;
132 paddr_t physical_freeend;
133 paddr_t physical_end;
134 u_int free_pages;
135 #ifndef	OFWGENCFG
136 pv_addr_t irqstack;
137 #endif
138 pv_addr_t undstack;
139 pv_addr_t abtstack;
140 pv_addr_t kernelstack;
141 
142 paddr_t msgbufphys;
143 
144 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
145 static vaddr_t  virt_freeptr;
146 
147 int ofw_callbacks = 0;		/* debugging counter */
148 
149 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
150 int console_ihandle = 0;
151 static void reset_screen(void);
152 #endif
153 
154 /**************************************************************/
155 
156 
157 /*
158  *  Declarations and definitions private to this module
159  *
160  */
161 
162 struct mem_region {
163 	paddr_t start;
164 	psize_t size;
165 };
166 
167 struct mem_translation {
168 	vaddr_t virt;
169 	vsize_t size;
170 	paddr_t phys;
171 	unsigned int mode;
172 };
173 
174 struct isa_range {
175 	paddr_t isa_phys_hi;
176 	paddr_t isa_phys_lo;
177 	paddr_t parent_phys_start;
178 	psize_t isa_size;
179 };
180 
181 struct vl_range {
182 	paddr_t vl_phys_hi;
183 	paddr_t vl_phys_lo;
184 	paddr_t parent_phys_start;
185 	psize_t vl_size;
186 };
187 
188 struct vl_isa_range {
189 	paddr_t isa_phys_hi;
190 	paddr_t isa_phys_lo;
191 	paddr_t parent_phys_hi;
192 	paddr_t parent_phys_lo;
193 	psize_t isa_size;
194 };
195 
196 struct dma_range {
197 	paddr_t start;
198 	psize_t   size;
199 };
200 
201 struct ofw_cbargs {
202 	char *name;
203 	int nargs;
204 	int nreturns;
205 	int args_n_results[12];
206 };
207 
208 
209 /* Memory info */
210 static int nOFphysmem;
211 static struct mem_region *OFphysmem;
212 static int nOFphysavail;
213 static struct mem_region *OFphysavail;
214 static int nOFtranslations;
215 static struct mem_translation *OFtranslations;
216 static int nOFdmaranges;
217 static struct dma_range *OFdmaranges;
218 
219 /* The OFW client services handle. */
220 /* Initialized by ofw_init(). */
221 static ofw_handle_t ofw_client_services_handle;
222 
223 
224 static void ofw_callbackhandler(void *);
225 static void ofw_construct_proc0_addrspace(void);
226 static void ofw_getphysmeminfo(void);
227 static void ofw_getvirttranslations(void);
228 static void *ofw_malloc(vsize_t size);
229 static void ofw_claimpages(vaddr_t *, pv_addr_t *, vsize_t);
230 static void ofw_discardmappings(vaddr_t, vaddr_t, vsize_t);
231 static int ofw_mem_ihandle(void);
232 static int ofw_mmu_ihandle(void);
233 static paddr_t ofw_claimphys(paddr_t, psize_t, paddr_t);
234 #if 0
235 static paddr_t ofw_releasephys(paddr_t, psize_t);
236 #endif
237 static vaddr_t ofw_claimvirt(vaddr_t, vsize_t, vaddr_t);
238 static void ofw_settranslation(vaddr_t, paddr_t, vsize_t, int);
239 static void ofw_initallocator(void);
240 static void ofw_configisaonly(paddr_t *, paddr_t *);
241 static void ofw_configvl(int, paddr_t *, paddr_t *);
242 static vaddr_t ofw_valloc(vsize_t, vaddr_t);
243 
244 
245 /*
246  * DHCP hooks.  For a first cut, we look to see if there is a DHCP
247  * packet that was saved by the firmware.  If not, we proceed as before,
248  * getting hand-configured data from NVRAM.  If there is one, we get the
249  * packet, and extract the data from it.  For now, we hand that data up
250  * in the boot_args string as before.
251  */
252 
253 
254 /**************************************************************/
255 
256 
257 /*
258  *
259  *  Support routines for xxx_machdep.c
260  *
261  *  The intent is that all OFW-based configurations use the
262  *  exported routines in this file to do their business.  If
263  *  they need to override some function they are free to do so.
264  *
265  *  The exported routines are:
266  *
267  *    openfirmware
268  *    ofw_init
269  *    ofw_boot
270  *    ofw_getbootinfo
271  *    ofw_configmem
272  *    ofw_configisa
273  *    ofw_configisadma
274  *    ofw_gettranslation
275  *    ofw_map
276  *    ofw_getcleaninfo
277  */
278 
279 
280 int
281 openfirmware(void *args)
282 {
283 	int ofw_result;
284 	u_int saved_irq_state;
285 
286 	/* OFW is not re-entrant, so we wrap a mutex around the call. */
287 	saved_irq_state = disable_interrupts(I32_bit);
288 	ofw_result = ofw_client_services_handle(args);
289 	(void)restore_interrupts(saved_irq_state);
290 
291 	return(ofw_result);
292 }
293 
294 
295 void
296 ofw_init(ofw_handle_t ofw_handle)
297 {
298 	ofw_client_services_handle = ofw_handle;
299 
300 	/*  Everything we allocate in the remainder of this block is
301 	 *  constrained to be in the "kernel-static" portion of the
302 	 *  virtual address space (i.e., 0xF0000000 - 0xF1000000).
303 	 *  This is because all such objects are expected to be in
304 	 *  that range by NetBSD, or the objects will be re-mapped
305 	 *  after the page-table-switch to other specific locations.
306 	 *  In the latter case, it's simplest if our pre-switch handles
307 	 *  on those objects are in regions that are already "well-
308 	 *  known."  (Otherwise, the cloning of the OFW-managed address-
309 	 *  space becomes more awkward.)  To minimize the number of L2
310 	 *  page tables that we use, we are further restricting the
311 	 *  remaining allocations in this block to the bottom quarter of
312 	 *  the legal range.  OFW will have loaded the kernel text+data+bss
313 	 *  starting at the bottom of the range, and we will allocate
314 	 *  objects from the top, moving downwards.  The two sub-regions
315 	 *  will collide if their total sizes hit 8MB.  The current total
316 	 *  is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
317 	 *  limit.  The variable virt-freeptr represents the next free va
318 	 *  (moving downwards).
319 	 */
320 	virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
321 }
322 
323 
324 void
325 ofw_boot(int howto, char *bootstr)
326 {
327 
328 #ifdef DIAGNOSTIC
329 	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
330 	printf("current_mask=%08x\n", current_mask);
331 
332 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
333 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
334 	    irqmasks[IPL_VM]);
335 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
336 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
337 
338 	dump_spl_masks();
339 #endif
340 
341 	/*
342 	 * If we are still cold then hit the air brakes
343 	 * and crash to earth fast
344 	 */
345 	if (cold) {
346 		doshutdownhooks();
347 		pmf_system_shutdown(boothowto);
348 		printf("Halted while still in the ICE age.\n");
349 		printf("The operating system has halted.\n");
350 		goto ofw_exit;
351 		/*NOTREACHED*/
352 	}
353 
354 	/*
355 	 * If RB_NOSYNC was not specified sync the discs.
356 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
357 	 * It looks like syslogd is getting woken up only to find that it cannot
358 	 * page part of the binary in as the filesystem has been unmounted.
359 	 */
360 	if (!(howto & RB_NOSYNC))
361 		bootsync();
362 
363 	/* Say NO to interrupts */
364 	splhigh();
365 
366 	/* Do a dump if requested. */
367 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
368 		dumpsys();
369 
370 	/* Run any shutdown hooks */
371 	doshutdownhooks();
372 
373 	pmf_system_shutdown(boothowto);
374 
375 	/* Make sure IRQ's are disabled */
376 	IRQdisable;
377 
378 	if (howto & RB_HALT) {
379 		printf("The operating system has halted.\n");
380 		goto ofw_exit;
381 	}
382 
383 	/* Tell the user we are booting */
384 	printf("rebooting...\n");
385 
386 	/* Jump into the OFW boot routine. */
387 	{
388 		static char str[256];
389 		char *ap = str, *ap1 = ap;
390 
391 		if (bootstr && *bootstr) {
392 			if (strlen(bootstr) > sizeof str - 5)
393 				printf("boot string too large, ignored\n");
394 			else {
395 				strcpy(str, bootstr);
396 				ap1 = ap = str + strlen(str);
397 				*ap++ = ' ';
398 			}
399 		}
400 		*ap++ = '-';
401 		if (howto & RB_SINGLE)
402 			*ap++ = 's';
403 		if (howto & RB_KDB)
404 			*ap++ = 'd';
405 		*ap++ = 0;
406 		if (ap[-2] == '-')
407 			*ap1 = 0;
408 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
409 		reset_screen();
410 #endif
411 		OF_boot(str);
412 		/*NOTREACHED*/
413 	}
414 
415 ofw_exit:
416 	printf("Calling OF_exit...\n");
417 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
418 	reset_screen();
419 #endif
420 	OF_exit();
421 	/*NOTREACHED*/
422 }
423 
424 
425 #if	BOOT_FW_DHCP
426 
427 extern	char	*ip2dotted(struct in_addr);
428 
429 /*
430  * Get DHCP data from OFW
431  */
432 
433 void
434 get_fw_dhcp_data(struct bootdata *bdp)
435 {
436 	int chosen;
437 	int dhcplen;
438 
439 	memset((char *)bdp, 0, sizeof(*bdp));
440 	if ((chosen = OF_finddevice("/chosen")) == -1)
441 		panic("no /chosen from OFW");
442 	if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
443 		u_char *cp;
444 		int dhcp_type = 0;
445 		char *ip;
446 
447 		/*
448 		 * OFW saved a DHCP (or BOOTP) packet for us.
449 		 */
450 		if (dhcplen > sizeof(bdp->dhcp_packet))
451 			panic("DHCP packet too large");
452 		OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
453 		    sizeof(bdp->dhcp_packet));
454 		SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
455 		/*
456 		 * Collect the interesting data from DHCP into
457 		 * the bootdata structure.
458 		 */
459 		bdp->ip_address = bdp->dhcp_packet.yiaddr;
460 		ip = ip2dotted(bdp->ip_address);
461 		if (memcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
462 			parse_dhcp_options(&bdp->dhcp_packet,
463 			    bdp->dhcp_packet.options + 4,
464 			    &bdp->dhcp_packet.options[dhcplen
465 			    - DHCP_FIXED_NON_UDP], bdp, ip);
466 		if (bdp->root_ip.s_addr == 0)
467 			bdp->root_ip = bdp->dhcp_packet.siaddr;
468 		if (bdp->swap_ip.s_addr == 0)
469 			bdp->swap_ip = bdp->dhcp_packet.siaddr;
470 	}
471 	/*
472 	 * If the DHCP packet did not contain all the necessary data,
473 	 * look in NVRAM for the missing parts.
474 	 */
475 	{
476 		int options;
477 		int proplen;
478 #define BOOTJUNKV_SIZE	256
479 		char bootjunkv[BOOTJUNKV_SIZE];	/* minimize stack usage */
480 
481 
482 		if ((options = OF_finddevice("/options")) == -1)
483 			panic("can't find /options");
484 		if (bdp->ip_address.s_addr == 0 &&
485 		    (proplen = OF_getprop(options, "ipaddr",
486 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
487 			bootjunkv[proplen] = '\0';
488 			if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
489 				bdp->ip_address.s_addr = 0;
490 		}
491 		if (bdp->ip_mask.s_addr == 0 &&
492 		    (proplen = OF_getprop(options, "netmask",
493 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
494 			bootjunkv[proplen] = '\0';
495 			if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
496 				bdp->ip_mask.s_addr = 0;
497 		}
498 		if (bdp->hostname[0] == '\0' &&
499 		    (proplen = OF_getprop(options, "hostname",
500 		    bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
501 			bdp->hostname[proplen] = '\0';
502 		}
503 		if (bdp->root[0] == '\0' &&
504 		    (proplen = OF_getprop(options, "rootfs",
505 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
506 			bootjunkv[proplen] = '\0';
507 			parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
508 		}
509 		if (bdp->swap[0] == '\0' &&
510 		    (proplen = OF_getprop(options, "swapfs",
511 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
512 			bootjunkv[proplen] = '\0';
513 			parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
514 		}
515 	}
516 }
517 
518 #endif	/* BOOT_FW_DHCP */
519 
520 void
521 ofw_getbootinfo(char **bp_pp, char **ba_pp)
522 {
523 	int chosen;
524 	int bp_len;
525 	int ba_len;
526 	char *bootpathv;
527 	char *bootargsv;
528 
529 	/* Read the bootpath and bootargs out of OFW. */
530 	/* XXX is bootpath still interesting?  --emg */
531 	if ((chosen = OF_finddevice("/chosen")) == -1)
532 		panic("no /chosen from OFW");
533 	bp_len = OF_getproplen(chosen, "bootpath");
534 	ba_len = OF_getproplen(chosen, "bootargs");
535 	if (bp_len < 0 || ba_len < 0)
536 		panic("can't get boot data from OFW");
537 
538 	bootpathv = (char *)ofw_malloc(bp_len);
539 	bootargsv = (char *)ofw_malloc(ba_len);
540 
541 	if (bp_len)
542 		OF_getprop(chosen, "bootpath", bootpathv, bp_len);
543 	else
544 		bootpathv[0] = '\0';
545 
546 	if (ba_len)
547 		OF_getprop(chosen, "bootargs", bootargsv, ba_len);
548 	else
549 		bootargsv[0] = '\0';
550 
551 	*bp_pp = bootpathv;
552 	*ba_pp = bootargsv;
553 #ifdef DIAGNOSTIC
554 	printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
555 #endif
556 }
557 
558 paddr_t
559 ofw_getcleaninfo(void)
560 {
561 	int cpu;
562 	vaddr_t vclean;
563 	paddr_t pclean;
564 
565 	if ((cpu = OF_finddevice("/cpu")) == -1)
566 		panic("no /cpu from OFW");
567 
568 	if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
569 	    sizeof(vclean))) != sizeof(vclean)) {
570 #ifdef DEBUG
571 		printf("no OFW d-cache-flush-address property\n");
572 #endif
573 		return -1;
574 	}
575 
576 	if ((pclean = ofw_gettranslation(
577 	    of_decode_int((unsigned char *)&vclean))) == -1)
578 	panic("OFW failed to translate cache flush address");
579 
580 	return pclean;
581 }
582 
583 void
584 ofw_configisa(paddr_t *pio, paddr_t *pmem)
585 {
586 	int vl;
587 
588 	if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
589 		ofw_configisaonly(pio, pmem);
590 	else /* old style OFW dev info tree */
591 		ofw_configvl(vl, pio, pmem);
592 }
593 
594 static void
595 ofw_configisaonly(paddr_t *pio, paddr_t *pmem)
596 {
597 	int isa;
598 	int rangeidx;
599 	int size;
600 	paddr_t hi, start;
601 	struct isa_range ranges[2];
602 
603 	if ((isa = OF_finddevice("/isa")) == -1)
604 	panic("OFW has no /isa device node");
605 
606 	/* expect to find two isa ranges: IO/data and memory/data */
607 	if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
608 	    != sizeof(ranges))
609 		panic("unexpected size of OFW /isa ranges property: %d", size);
610 
611 	*pio = *pmem = -1;
612 
613 	for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
614 		hi    = of_decode_int((unsigned char *)
615 		    &ranges[rangeidx].isa_phys_hi);
616 		start = of_decode_int((unsigned char *)
617 		    &ranges[rangeidx].parent_phys_start);
618 
619 	if (hi & 1) { /* then I/O space */
620 		*pio = start;
621 	} else {
622 		*pmem = start;
623 	}
624 	} /* END for */
625 
626 	if ((*pio == -1) || (*pmem == -1))
627 		panic("bad OFW /isa ranges property");
628 
629 }
630 
631 static void
632 ofw_configvl(int vl, paddr_t *pio, paddr_t *pmem)
633 {
634 	int isa;
635 	int ir, vr;
636 	int size;
637 	paddr_t hi, start;
638 	struct vl_isa_range isa_ranges[2];
639 	struct vl_range     vl_ranges[2];
640 
641 	if ((isa = OF_finddevice("/vlbus/isa")) == -1)
642 		panic("OFW has no /vlbus/isa device node");
643 
644 	/* expect to find two isa ranges: IO/data and memory/data */
645 	if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
646 	    != sizeof(isa_ranges))
647 		panic("unexpected size of OFW /vlbus/isa ranges property: %d",
648 		     size);
649 
650 	/* expect to find two vl ranges: IO/data and memory/data */
651 	if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
652 	    != sizeof(vl_ranges))
653 		panic("unexpected size of OFW /vlbus ranges property: %d", size);
654 
655 	*pio = -1;
656 	*pmem = -1;
657 
658 	for (ir = 0; ir < 2; ++ir) {
659 		for (vr = 0; vr < 2; ++vr) {
660 			if ((isa_ranges[ir].parent_phys_hi
661 			    == vl_ranges[vr].vl_phys_hi) &&
662 			    (isa_ranges[ir].parent_phys_lo
663 			    == vl_ranges[vr].vl_phys_lo)) {
664 				hi    = of_decode_int((unsigned char *)
665 				    &isa_ranges[ir].isa_phys_hi);
666 				start = of_decode_int((unsigned char *)
667 				    &vl_ranges[vr].parent_phys_start);
668 
669 				if (hi & 1) { /* then I/O space */
670 					*pio = start;
671 				} else {
672 					*pmem = start;
673 				}
674 			} /* END if */
675 		} /* END for */
676 	} /* END for */
677 
678 	if ((*pio == -1) || (*pmem == -1))
679 		panic("bad OFW /isa ranges property");
680 }
681 
682 #if NISADMA > 0
683 struct arm32_dma_range *shark_isa_dma_ranges;
684 int shark_isa_dma_nranges;
685 #endif
686 
687 void
688 ofw_configisadma(paddr_t *pdma)
689 {
690 	int root;
691 	int rangeidx;
692 	int size;
693 	struct dma_range *dr;
694 
695 	if ((root = OF_finddevice("/")) == -1 ||
696 	    (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
697 	    (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
698  	    OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
699 		panic("bad / dma-ranges property");
700 
701 	nOFdmaranges = size / sizeof(struct dma_range);
702 
703 #if NISADMA > 0
704 	/* Allocate storage for non-OFW representation of the range. */
705 	shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
706 	    sizeof(*shark_isa_dma_ranges));
707 	if (shark_isa_dma_ranges == NULL)
708 		panic("unable to allocate shark_isa_dma_ranges");
709 	shark_isa_dma_nranges = nOFdmaranges;
710 #endif
711 
712 	for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
713 	    ++rangeidx, ++dr) {
714 		dr->start = of_decode_int((unsigned char *)&dr->start);
715 		dr->size = of_decode_int((unsigned char *)&dr->size);
716 #if NISADMA > 0
717 		shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
718 		shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
719 		shark_isa_dma_ranges[rangeidx].dr_len  = dr->size;
720 #endif
721 	}
722 
723 #ifdef DEBUG
724 	printf("DMA ranges size = %d\n", size);
725 
726 	for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
727 		printf("%08lx %08lx\n",
728 		(u_long)OFdmaranges[rangeidx].start,
729 		(u_long)OFdmaranges[rangeidx].size);
730 	}
731 #endif
732 }
733 
734 /*
735  *  Memory configuration:
736  *
737  *  We start off running in the environment provided by OFW.
738  *  This has the MMU turned on, the kernel code and data
739  *  mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
740  *  data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
741  *  page0 mapped-in at 0x0.
742  *
743  *  The strategy is to set-up the address space for proc0 --
744  *  including the allocation of space for new page tables -- while
745  *  memory is still managed by OFW.  We then effectively create a
746  *  copy of the address space by dumping all of OFW's translations
747  *  and poking them into the new page tables.  We then notify OFW
748  *  that we are assuming control of memory-management by installing
749  *  our callback-handler, and switch to the NetBSD-managed page
750  *  tables with the cpu_setttb() call.
751  *
752  *  This scheme may cause some amount of memory to be wasted within
753  *  OFW as dead page tables, but it shouldn't be more than about
754  *  20-30KB.  (It's also possible that OFW will re-use the space.)
755  */
756 void
757 ofw_configmem(void)
758 {
759 	int i;
760 
761 	/* Set-up proc0 address space. */
762 	ofw_construct_proc0_addrspace();
763 
764 	/*
765 	 * Get a dump of OFW's picture of physical memory.
766 	 * This is used below to initialize a load of variables used by pmap.
767 	 * We get it now rather than later because we are about to
768 	 * tell OFW to stop managing memory.
769 	 */
770 	ofw_getphysmeminfo();
771 
772 	/* We are about to take control of memory-management from OFW.
773 	 * Establish callbacks for OFW to use for its future memory needs.
774 	 * This is required for us to keep using OFW services.
775 	 */
776 
777 	/* First initialize our callback memory allocator. */
778 	ofw_initallocator();
779 
780 	OF_set_callback(ofw_callbackhandler);
781 
782 	/* Switch to the proc0 pagetables. */
783 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
784 	cpu_setttb(kernel_l1pt.pv_pa);
785 	cpu_tlb_flushID();
786 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
787 
788 	/*
789 	 * Moved from cpu_startup() as data_abort_handler() references
790 	 * this during uvm init
791 	 */
792 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
793 
794 	/* Set-up the various globals which describe physical memory for pmap. */
795 	{
796 		struct mem_region *mp;
797 		int totalcnt;
798 		int availcnt;
799 
800 		/* physmem, physical_start, physical_end */
801 		physmem = 0;
802 		for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
803 		    totalcnt++, mp++) {
804 #ifdef	OLDPRINTFS
805 			printf("physmem: %x, %x\n", mp->start, mp->size);
806 #endif
807 			physmem += btoc(mp->size);
808 		}
809 		physical_start = OFphysmem[0].start;
810 		mp--;
811 		physical_end = mp->start + mp->size;
812 
813 		/* free_pages, physical_freestart, physical_freeend */
814 		free_pages = 0;
815 		for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
816 		    availcnt++, mp++) {
817 #ifdef	OLDPRINTFS
818 			printf("physavail: %x, %x\n", mp->start, mp->size);
819 #endif
820 			free_pages += btoc(mp->size);
821 		}
822 		physical_freestart = OFphysavail[0].start;
823 		mp--;
824 		physical_freeend = mp->start + mp->size;
825 #ifdef	OLDPRINTFS
826 		printf("pmap_bootstrap:  physmem = %x, free_pages = %x\n",
827 		    physmem, free_pages);
828 #endif
829 
830 		/*
831 		 *  This is a hack to work with the existing pmap code.
832 		 *  That code depends on a RiscPC BootConfig structure
833 		 *  containing, among other things, an array describing
834 		 *  the regions of physical memory.  So, for now, we need
835 		 *  to stuff our OFW-derived physical memory info into a
836 		 *  "fake" BootConfig structure.
837 		 *
838 		 *  An added twist is that we initialize the BootConfig
839 		 *  structure with our "available" physical memory regions
840 		 *  rather than the "total" physical memory regions.  Why?
841 		 *  Because:
842 		 *
843 		 *   (a) the VM code requires that the "free" pages it is
844 		 *       initialized with have consecutive indices.  This
845 		 *       allows it to use more efficient data structures
846 		 *       (presumably).
847 		 *   (b) the current pmap routines which report the initial
848 		 *       set of free page indices (pmap_next_page) and
849 		 *       which map addresses to indices (pmap_page_index)
850 		 *       assume that the free pages are consecutive across
851 		 *       memory region boundaries.
852 		 *
853 		 *  This means that memory which is "stolen" at startup time
854 		 *  (say, for page descriptors) MUST come from either the
855 		 *  bottom of the first region or the top of the last.
856 		 *
857 		 *  This requirement doesn't mesh well with OFW (or at least
858 		 *  our use of it).  We can get around it for the time being
859 		 *  by pretending that our "available" region array describes
860 		 *  all of our physical memory.  This may cause some important
861 		 *  information to be excluded from a dump file, but so far
862 		 *  I haven't come across any other negative effects.
863 		 *
864 		 *  In the long-run we should fix the index
865 		 *  generation/translation code in the pmap module.
866 		 */
867 
868 		if (DRAM_BLOCKS < (availcnt + 1))
869 			panic("more ofw memory regions than bootconfig blocks");
870 
871 		for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
872 			bootconfig.dram[i].address = mp->start;
873 			bootconfig.dram[i].pages = btoc(mp->size);
874 		}
875 		bootconfig.dramblocks = availcnt;
876 	}
877 
878 	/* Load memory into UVM. */
879 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
880 
881 	/* XXX Please kill this code dead. */
882 	for (i = 0; i < bootconfig.dramblocks; i++) {
883 		paddr_t start = (paddr_t)bootconfig.dram[i].address;
884 		paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
885 #if NISADMA > 0
886 		paddr_t istart, isize;
887 #endif
888 
889 		if (start < physical_freestart)
890 			start = physical_freestart;
891 		if (end > physical_freeend)
892 			end = physical_freeend;
893 
894 #if 0
895 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
896 #endif
897 
898 #if NISADMA > 0
899 		if (arm32_dma_range_intersect(shark_isa_dma_ranges,
900 					      shark_isa_dma_nranges,
901 					      start, end - start,
902 					      &istart, &isize)) {
903 			/*
904 			 * Place the pages that intersect with the
905 			 * ISA DMA range onto the ISA DMA free list.
906 			 */
907 #if 0
908 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
909 			    istart + isize - 1);
910 #endif
911 			uvm_page_physload(atop(istart),
912 			    atop(istart + isize), atop(istart),
913 			    atop(istart + isize), VM_FREELIST_ISADMA);
914 
915 			/*
916 			 * Load the pieces that come before the
917 			 * intersection onto the default free list.
918 			 */
919 			if (start < istart) {
920 #if 0
921 				printf("    BEFORE 0x%lx -> 0x%lx\n",
922 				    start, istart - 1);
923 #endif
924 				uvm_page_physload(atop(start),
925 				    atop(istart), atop(start),
926 				    atop(istart), VM_FREELIST_DEFAULT);
927 			}
928 
929 			/*
930 			 * Load the pieces that come after the
931 			 * intersection onto the default free list.
932 			 */
933 			if ((istart + isize) < end) {
934 #if 0
935 				printf("     AFTER 0x%lx -> 0x%lx\n",
936 				    (istart + isize), end - 1);
937 #endif
938 				uvm_page_physload(atop(istart + isize),
939 				    atop(end), atop(istart + isize),
940 				    atop(end), VM_FREELIST_DEFAULT);
941 			}
942 		} else {
943 			uvm_page_physload(atop(start), atop(end),
944 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
945 		}
946 #else /* NISADMA > 0 */
947 		uvm_page_physload(atop(start), atop(end),
948 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
949 #endif /* NISADMA > 0 */
950 	}
951 
952 	/* Initialize pmap module. */
953 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
954 }
955 
956 
957 /*
958  ************************************************************
959 
960   Routines private to this module
961 
962  ************************************************************
963  */
964 
965 /* N.B.  Not supposed to call printf in callback-handler!  Could deadlock! */
966 static void
967 ofw_callbackhandler(void *v)
968 {
969 	struct ofw_cbargs *args = v;
970 	char *name = args->name;
971 	int nargs = args->nargs;
972 	int nreturns = args->nreturns;
973 	int *args_n_results = args->args_n_results;
974 
975 	ofw_callbacks++;
976 
977 #if defined(OFWGENCFG)
978 	/* Check this first, so that we don't waste IRQ time parsing. */
979 	if (strcmp(name, "tick") == 0) {
980 		vaddr_t frame;
981 
982 		/* Check format. */
983 		if (nargs != 1 || nreturns < 1) {
984 			args_n_results[nargs] = -1;
985 			args->nreturns = 1;
986 			return;
987 		}
988 		args_n_results[nargs] =	0;	/* properly formatted request */
989 
990 		/*
991 		 *  Note that we are running in the IRQ frame, with interrupts
992 		 *  disabled.
993 		 *
994 		 *  We need to do two things here:
995 		 *    - copy a few words out of the input frame into a global
996 		 *      area, for later use by our real tick-handling code
997 		 *    - patch a few words in the frame so that when OFW returns
998 		 *      from the interrupt it will resume with our handler
999 		 *      rather than the code that was actually interrupted.
1000 		 *      Our handler will resume when it finishes with the code
1001 		 *      that was actually interrupted.
1002 		 *
1003 		 *  It's simplest to do this in assembler, since it requires
1004 		 *  switching frames and grovelling about with registers.
1005 		 */
1006 		frame = (vaddr_t)args_n_results[0];
1007 		if (ofw_handleticks)
1008 			dotickgrovelling(frame);
1009 		args_n_results[nargs + 1] = frame;
1010 		args->nreturns = 1;
1011 	} else
1012 #endif
1013 
1014 	if (strcmp(name, "map") == 0) {
1015 		vaddr_t va;
1016 		paddr_t pa;
1017 		vsize_t size;
1018 		int mode;
1019 		int ap_bits;
1020 		int dom_bits;
1021 		int cb_bits;
1022 
1023 		/* Check format. */
1024 		if (nargs != 4 || nreturns < 2) {
1025 			args_n_results[nargs] = -1;
1026 			args->nreturns = 1;
1027 			return;
1028 		}
1029 		args_n_results[nargs] =	0;	/* properly formatted request */
1030 
1031 		pa = (paddr_t)args_n_results[0];
1032 		va = (vaddr_t)args_n_results[1];
1033 		size = (vsize_t)args_n_results[2];
1034 		mode = args_n_results[3];
1035 		ap_bits =  (mode & 0x00000C00);
1036 		dom_bits = (mode & 0x000001E0);
1037 		cb_bits =  (mode & 0x000000C0);
1038 
1039 		/* Sanity checks. */
1040 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1041 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1042 		    (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1043 		    size == 0 || (dom_bits >> 5) != 0) {
1044 			args_n_results[nargs + 1] = -1;
1045 			args->nreturns = 1;
1046 			return;
1047 		}
1048 
1049 		/* Write-back anything stuck in the cache. */
1050 		cpu_idcache_wbinv_all();
1051 
1052 		/* Install new mappings. */
1053 		{
1054 			pt_entry_t *pte = vtopte(va);
1055 			int npages = size >> PGSHIFT;
1056 
1057 			ap_bits >>= 10;
1058 			for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1059 				*pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1060 				    cb_bits);
1061 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1062 		}
1063 
1064 		/* Clean out tlb. */
1065 		tlb_flush();
1066 
1067 		args_n_results[nargs + 1] = 0;
1068 		args->nreturns = 2;
1069 	} else if (strcmp(name, "unmap") == 0) {
1070 		vaddr_t va;
1071 		vsize_t size;
1072 
1073 		/* Check format. */
1074 		if (nargs != 2 || nreturns < 1) {
1075 			args_n_results[nargs] = -1;
1076 			args->nreturns = 1;
1077 			return;
1078 		}
1079 		args_n_results[nargs] =	0;	/* properly formatted request */
1080 
1081 		va = (vaddr_t)args_n_results[0];
1082 		size = (vsize_t)args_n_results[1];
1083 
1084 		/* Sanity checks. */
1085 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1086 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1087 		    (size & PGOFSET) != 0 || size == 0) {
1088 			args_n_results[nargs + 1] = -1;
1089 			args->nreturns = 1;
1090 			return;
1091 		}
1092 
1093 		/* Write-back anything stuck in the cache. */
1094 		cpu_idcache_wbinv_all();
1095 
1096 		/* Zero the mappings. */
1097 		{
1098 			pt_entry_t *pte = vtopte(va);
1099 			int npages = size >> PGSHIFT;
1100 
1101 			for (; npages > 0; pte++, npages--)
1102 				*pte = 0;
1103 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1104 		}
1105 
1106 		/* Clean out tlb. */
1107 		tlb_flush();
1108 
1109 		args->nreturns = 1;
1110 	} else if (strcmp(name, "translate") == 0) {
1111 		vaddr_t va;
1112 		paddr_t pa;
1113 		int mode;
1114 		pt_entry_t pte;
1115 
1116 		/* Check format. */
1117 		if (nargs != 1 || nreturns < 4) {
1118 			args_n_results[nargs] = -1;
1119 			args->nreturns = 1;
1120 			return;
1121 		}
1122 		args_n_results[nargs] =	0;	/* properly formatted request */
1123 
1124 		va = (vaddr_t)args_n_results[0];
1125 
1126 		/* Sanity checks.
1127 		 * For now, I am only willing to translate va's in the
1128 		 * "ofw range." Eventually, I may be more generous. -JJK
1129 		 */
1130 		if ((va & PGOFSET) != 0 ||  va < OFW_VIRT_BASE ||
1131 		    va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1132 			args_n_results[nargs + 1] = -1;
1133 			args->nreturns = 1;
1134 			return;
1135 		}
1136 
1137 		/* Lookup mapping. */
1138 		pte = *vtopte(va);
1139 		if (pte == 0) {
1140 			/* No mapping. */
1141 			args_n_results[nargs + 1] = -1;
1142 			args->nreturns = 2;
1143 		} else {
1144 			/* Existing mapping. */
1145 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1146 			mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C);	/* AP | DOM | CB */
1147 
1148 			args_n_results[nargs + 1] = 0;
1149 			args_n_results[nargs + 2] = pa;
1150 			args_n_results[nargs + 3] =	mode;
1151 			args->nreturns = 4;
1152 		}
1153 	} else if (strcmp(name, "claim-phys") == 0) {
1154 		struct pglist alloclist;
1155 		paddr_t low, high, align;
1156 		psize_t size;
1157 
1158 		/*
1159 		 * XXX
1160 		 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1161 		 * XXX
1162 		 */
1163 
1164 		/* Check format. */
1165 		if (nargs != 4 || nreturns < 3) {
1166 			args_n_results[nargs] = -1;
1167 			args->nreturns = 1;
1168 			return;
1169 		}
1170 		args_n_results[nargs] =	0;	/* properly formatted request */
1171 
1172 		low = args_n_results[0];
1173 		size = args_n_results[2];
1174 		align = args_n_results[3];
1175 		high = args_n_results[1] + size;
1176 
1177 #if 0
1178 		printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1179 		    low, size, align, high);
1180 		align = size;
1181 		printf("forcing align to be 0x%x\n", align);
1182 #endif
1183 
1184 		args_n_results[nargs + 1] =
1185 		uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1186 #if 0
1187 		printf(" -> 0x%lx", args_n_results[nargs + 1]);
1188 #endif
1189 		if (args_n_results[nargs + 1] != 0) {
1190 #if 0
1191 			printf("(failed)\n");
1192 #endif
1193 			args_n_results[nargs + 1] = -1;
1194 			args->nreturns = 2;
1195 			return;
1196 		}
1197 		args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1198 #if 0
1199 		printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1200 #endif
1201 		args->nreturns = 3;
1202 
1203 	} else if (strcmp(name, "release-phys") == 0) {
1204 		printf("unimplemented ofw callback - %s\n", name);
1205 		args_n_results[nargs] = -1;
1206 		args->nreturns = 1;
1207 	} else if (strcmp(name, "claim-virt") == 0) {
1208 		vaddr_t va;
1209 		vsize_t size;
1210 		vaddr_t align;
1211 
1212 		/* XXX - notyet */
1213 /*		printf("unimplemented ofw callback - %s\n", name);*/
1214 		args_n_results[nargs] = -1;
1215 		args->nreturns = 1;
1216 		return;
1217 
1218 		/* Check format. */
1219 		if (nargs != 2 || nreturns < 3) {
1220 		    args_n_results[nargs] = -1;
1221 		    args->nreturns = 1;
1222 		    return;
1223 		}
1224 		args_n_results[nargs] =	0;	/* properly formatted request */
1225 
1226 		/* Allocate size bytes with specified alignment. */
1227 		size = (vsize_t)args_n_results[0];
1228 		align = (vaddr_t)args_n_results[1];
1229 		if (align % PAGE_SIZE != 0) {
1230 			args_n_results[nargs + 1] = -1;
1231 			args->nreturns = 2;
1232 			return;
1233 		}
1234 
1235 		if (va == 0) {
1236 			/* Couldn't allocate. */
1237 			args_n_results[nargs + 1] = -1;
1238 			args->nreturns = 2;
1239 		} else {
1240 			/* Successful allocation. */
1241 			args_n_results[nargs + 1] = 0;
1242 			args_n_results[nargs + 2] = va;
1243 			args->nreturns = 3;
1244 		}
1245 	} else if (strcmp(name, "release-virt") == 0) {
1246 		vaddr_t va;
1247 		vsize_t size;
1248 
1249 		/* XXX - notyet */
1250 		printf("unimplemented ofw callback - %s\n", name);
1251 		args_n_results[nargs] = -1;
1252 		args->nreturns = 1;
1253 		return;
1254 
1255 		/* Check format. */
1256 		if (nargs != 2 || nreturns < 1) {
1257 			args_n_results[nargs] = -1;
1258 			args->nreturns = 1;
1259 			return;
1260 		}
1261 		args_n_results[nargs] =	0;	/* properly formatted request */
1262 
1263 		/* Release bytes. */
1264 		va = (vaddr_t)args_n_results[0];
1265 		size = (vsize_t)args_n_results[1];
1266 
1267 		args->nreturns = 1;
1268 	} else {
1269 		args_n_results[nargs] = -1;
1270 		args->nreturns = 1;
1271 	}
1272 }
1273 
1274 static void
1275 ofw_construct_proc0_addrspace(void)
1276 {
1277 	int i, oft;
1278 	static pv_addr_t proc0_pt_sys;
1279 	static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1280 	static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1281 	static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1282 	static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1283 	static pv_addr_t msgbuf;
1284 	vaddr_t L1pagetable;
1285 	struct mem_translation *tp;
1286 
1287 	/* Set-up the system page. */
1288 	KASSERT(vector_page == 0);	/* XXX for now */
1289 	systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1290 	if (systempage.pv_va == -1) {
1291 		/* Something was already mapped to vector_page's VA. */
1292 		systempage.pv_va = vector_page;
1293 		systempage.pv_pa = ofw_gettranslation(vector_page);
1294 		if (systempage.pv_pa == -1)
1295 			panic("bogus result from gettranslation(vector_page)");
1296 	} else {
1297 		/* We were just allocated the page-length range at VA 0. */
1298 		if (systempage.pv_va != vector_page)
1299 			panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1300 
1301 		/* Now allocate a physical page, and establish the mapping. */
1302 		systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1303 		if (systempage.pv_pa == -1)
1304 			panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1305 		ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1306 		    PAGE_SIZE, -1);	/* XXX - mode? -JJK */
1307 
1308 		/* Zero the memory. */
1309 		memset((char *)systempage.pv_va, 0, PAGE_SIZE);
1310 	}
1311 
1312 	/* Allocate/initialize space for the proc0, NetBSD-managed */
1313 	/* page tables that we will be switching to soon. */
1314 	ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE);
1315 	ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1316 	for (i = 0; i < KERNEL_IMG_PTS; i++)
1317 		ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1318 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1319 		ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1320 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1321 		ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1322 	for (i = 0; i < KERNEL_IO_PTS; i++)
1323 		ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1324 
1325 	/* Allocate/initialize space for stacks. */
1326 #ifndef	OFWGENCFG
1327 	ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1328 #endif
1329 	ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1330 	ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1331 	ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1332 
1333 	/* Allocate/initialize space for msgbuf area. */
1334 	ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1335 	msgbufphys = msgbuf.pv_pa;
1336 
1337 	/* Construct the proc0 L1 pagetable. */
1338 	L1pagetable = kernel_l1pt.pv_va;
1339 
1340 	pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1341 	for (i = 0; i < KERNEL_IMG_PTS; i++)
1342 		pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1343 		    &proc0_pt_kernel[i]);
1344 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1345 		pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1346 		    &proc0_pt_vmdata[i]);
1347 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1348 		pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1349 		    &proc0_pt_ofw[i]);
1350 	for (i = 0; i < KERNEL_IO_PTS; i++)
1351 		pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1352 		    &proc0_pt_io[i]);
1353 
1354 	/*
1355 	 * OK, we're done allocating.
1356 	 * Get a dump of OFW's translations, and make the appropriate
1357 	 * entries in the L2 pagetables that we just allocated.
1358 	 */
1359 
1360 	ofw_getvirttranslations();
1361 
1362 	for (oft = 0,  tp = OFtranslations; oft < nOFtranslations;
1363 	    oft++, tp++) {
1364 
1365 		vaddr_t va;
1366 		paddr_t pa;
1367 		int npages = tp->size / PAGE_SIZE;
1368 
1369 		/* Size must be an integral number of pages. */
1370 		if (npages == 0 || tp->size % PAGE_SIZE != 0)
1371 			panic("illegal ofw translation (size)");
1372 
1373 		/* Make an entry for each page in the appropriate table. */
1374 		for (va = tp->virt, pa = tp->phys; npages > 0;
1375 		    va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1376 			/*
1377 			 * Map the top bits to the appropriate L2 pagetable.
1378 			 * The only allowable regions are page0, the
1379 			 * kernel-static area, and the ofw area.
1380 			 */
1381 			switch (va >> (L1_S_SHIFT + 2)) {
1382 			case 0:
1383 				/* page0 */
1384 				break;
1385 
1386 #if KERNEL_IMG_PTS != 2
1387 #error "Update ofw translation range list"
1388 #endif
1389 			case ( KERNEL_BASE                 >> (L1_S_SHIFT + 2)):
1390 			case ((KERNEL_BASE   + 0x00400000) >> (L1_S_SHIFT + 2)):
1391 				/* kernel static area */
1392 				break;
1393 
1394 			case ( OFW_VIRT_BASE               >> (L1_S_SHIFT + 2)):
1395 			case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1396 			case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1397 			case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1398 				/* ofw area */
1399 				break;
1400 
1401 			case ( IO_VIRT_BASE               >> (L1_S_SHIFT + 2)):
1402 			case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1403 			case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1404 			case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1405 				/* io area */
1406 				break;
1407 
1408 			default:
1409 				/* illegal */
1410 				panic("illegal ofw translation (addr) %#lx",
1411 				    va);
1412 			}
1413 
1414 			/* Make the entry. */
1415 			pmap_map_entry(L1pagetable, va, pa,
1416 			    VM_PROT_READ|VM_PROT_WRITE,
1417 			    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1418 						    : PTE_NOCACHE);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * We don't actually want some of the mappings that we just
1424 	 * set up to appear in proc0's address space.  In particular,
1425 	 * we don't want aliases to physical addresses that the kernel
1426 	 * has-mapped/will-map elsewhere.
1427 	 */
1428 	ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1429 	    msgbuf.pv_va, MSGBUFSIZE);
1430 
1431 	/* update the top of the kernel VM */
1432 	pmap_curmaxkvaddr =
1433 	    KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1434 
1435 	/*
1436          * gross hack for the sake of not thrashing the TLB and making
1437 	 * cache flush more efficient: blast l1 ptes for sections.
1438          */
1439 	for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1440 		vaddr_t va = tp->virt;
1441 		paddr_t pa = tp->phys;
1442 
1443 		if (((va | pa) & L1_S_OFFSET) == 0) {
1444 			int nsections = tp->size / L1_S_SIZE;
1445 
1446 			while (nsections--) {
1447 				/* XXXJRT prot?? */
1448 				pmap_map_section(L1pagetable, va, pa,
1449 				    VM_PROT_READ|VM_PROT_WRITE,
1450 				    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1451 							    : PTE_NOCACHE);
1452 				va += L1_S_SIZE;
1453 				pa += L1_S_SIZE;
1454 			}
1455 		}
1456 	}
1457 }
1458 
1459 
1460 static void
1461 ofw_getphysmeminfo(void)
1462 {
1463 	int phandle;
1464 	int mem_len;
1465 	int avail_len;
1466 	int i;
1467 
1468 	if ((phandle = OF_finddevice("/memory")) == -1 ||
1469 	    (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1470 	    (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1471 	    OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1472 	    (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1473  	    (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1474 	    OF_getprop(phandle, "available", OFphysavail, avail_len)
1475 	    != avail_len)
1476 		panic("can't get physmeminfo from OFW");
1477 
1478 	nOFphysmem = mem_len / sizeof(struct mem_region);
1479 	nOFphysavail = avail_len / sizeof(struct mem_region);
1480 
1481 	/*
1482 	 * Sort the blocks in each array into ascending address order.
1483 	 * Also, page-align all blocks.
1484 	 */
1485 	for (i = 0; i < 2; i++) {
1486 		struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1487 		struct mem_region *mp;
1488 		int cnt =  (i == 0) ? nOFphysmem : nOFphysavail;
1489 		int j;
1490 
1491 #ifdef	OLDPRINTFS
1492 		printf("ofw_getphysmeminfo:  %d blocks\n", cnt);
1493 #endif
1494 
1495 		/* XXX - Convert all the values to host order. -JJK */
1496 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1497 			mp->start = of_decode_int((unsigned char *)&mp->start);
1498 			mp->size = of_decode_int((unsigned char *)&mp->size);
1499 		}
1500 
1501 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1502 			u_int s, sz;
1503 			struct mem_region *mp1;
1504 
1505 			/* Page-align start of the block. */
1506 			s = mp->start % PAGE_SIZE;
1507 			if (s != 0) {
1508 				s = (PAGE_SIZE - s);
1509 
1510 				if (mp->size >= s) {
1511 					mp->start += s;
1512 					mp->size -= s;
1513 				}
1514 			}
1515 
1516 			/* Page-align the size. */
1517 			mp->size -= mp->size % PAGE_SIZE;
1518 
1519 			/* Handle empty block. */
1520 			if (mp->size == 0) {
1521 				memmove(mp, mp + 1, (cnt - (mp - tmp))
1522 				    * sizeof(struct mem_region));
1523 				cnt--;
1524 				mp--;
1525 				continue;
1526 			}
1527 
1528 			/* Bubble sort. */
1529 			s = mp->start;
1530 			sz = mp->size;
1531 			for (mp1 = tmp; mp1 < mp; mp1++)
1532 				if (s < mp1->start)
1533 					break;
1534 			if (mp1 < mp) {
1535 				memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1536 				mp1->start = s;
1537 				mp1->size = sz;
1538 			}
1539 		}
1540 
1541 #ifdef	OLDPRINTFS
1542 		for (mp = tmp; mp->size; mp++) {
1543 			printf("%x, %x\n", mp->start, mp->size);
1544 		}
1545 #endif
1546 	}
1547 }
1548 
1549 
1550 static void
1551 ofw_getvirttranslations(void)
1552 {
1553 	int mmu_phandle;
1554 	int mmu_ihandle;
1555 	int trans_len;
1556 	int over, len;
1557 	int i;
1558 	struct mem_translation *tp;
1559 
1560 	mmu_ihandle = ofw_mmu_ihandle();
1561 
1562 	/* overallocate to avoid increases during allocation */
1563 	over = 4 * sizeof(struct mem_translation);
1564 	if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1565 	    (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1566 	    (OFtranslations = ofw_malloc(len + over)) == 0 ||
1567 	    (trans_len = OF_getprop(mmu_phandle, "translations",
1568 	    OFtranslations, len + over)) > (len + over))
1569 		panic("can't get virttranslations from OFW");
1570 
1571 	/* XXX - Convert all the values to host order. -JJK */
1572 	nOFtranslations = trans_len / sizeof(struct mem_translation);
1573 #ifdef	OLDPRINTFS
1574 	printf("ofw_getvirtmeminfo:  %d blocks\n", nOFtranslations);
1575 #endif
1576 	for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1577 		tp->virt = of_decode_int((unsigned char *)&tp->virt);
1578 		tp->size = of_decode_int((unsigned char *)&tp->size);
1579 		tp->phys = of_decode_int((unsigned char *)&tp->phys);
1580 		tp->mode = of_decode_int((unsigned char *)&tp->mode);
1581 	}
1582 }
1583 
1584 /*
1585  * ofw_valloc: allocate blocks of VM for IO and other special purposes
1586  */
1587 typedef struct _vfree {
1588 	struct _vfree *pNext;
1589 	vaddr_t start;
1590 	vsize_t size;
1591 } VFREE, *PVFREE;
1592 
1593 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1594 
1595 static PVFREE vflist = &vfinitial;
1596 
1597 static vaddr_t
1598 ofw_valloc(vsize_t size, vaddr_t align)
1599 {
1600 	PVFREE        *ppvf;
1601 	PVFREE        pNew;
1602 	vaddr_t       new;
1603 	vaddr_t       lead;
1604 
1605 	for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1606 		if (align == 0) {
1607 			new = (*ppvf)->start;
1608 			lead = 0;
1609 		} else {
1610 			new  = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1611 			lead = new - (*ppvf)->start;
1612 		}
1613 
1614 		if (((*ppvf)->size - lead) >= size) {
1615  			if (lead == 0) {
1616 				/* using whole block */
1617 				if (size == (*ppvf)->size) {
1618 					/* splice out of list */
1619 					(*ppvf) = (*ppvf)->pNext;
1620 				} else { /* tail of block is free */
1621 					(*ppvf)->start = new + size;
1622 					(*ppvf)->size -= size;
1623 				}
1624 			} else {
1625 				vsize_t tail = ((*ppvf)->start
1626 				    + (*ppvf)->size) - (new + size);
1627 				/* free space at beginning */
1628 				(*ppvf)->size = lead;
1629 
1630 				if (tail != 0) {
1631 					/* free space at tail */
1632 					pNew = ofw_malloc(sizeof(VFREE));
1633 					pNew->pNext  = (*ppvf)->pNext;
1634 					(*ppvf)->pNext = pNew;
1635 					pNew->start  = new + size;
1636 					pNew->size   = tail;
1637 				}
1638 			}
1639 			return new;
1640 		} /* END if */
1641 	} /* END for */
1642 
1643 	return -1;
1644 }
1645 
1646 vaddr_t
1647 ofw_map(paddr_t pa, vsize_t size, int cb_bits)
1648 {
1649 	vaddr_t va;
1650 
1651 	if ((va = ofw_valloc(size, size)) == -1)
1652 		panic("cannot alloc virtual memory for %#lx", pa);
1653 
1654 	ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1655 
1656 	ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1657 
1658 	return va;
1659 }
1660 
1661 static int
1662 ofw_mem_ihandle(void)
1663 {
1664 	static int mem_ihandle = 0;
1665 	int chosen;
1666 
1667 	if (mem_ihandle != 0)
1668 		return(mem_ihandle);
1669 
1670 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1671 	    OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1672 		panic("ofw_mem_ihandle");
1673 
1674 	mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1675 
1676 	return(mem_ihandle);
1677 }
1678 
1679 
1680 static int
1681 ofw_mmu_ihandle(void)
1682 {
1683 	static int mmu_ihandle = 0;
1684 	int chosen;
1685 
1686 	if (mmu_ihandle != 0)
1687 		return(mmu_ihandle);
1688 
1689 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1690 	    OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1691 		panic("ofw_mmu_ihandle");
1692 
1693 	mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1694 
1695 	return(mmu_ihandle);
1696 }
1697 
1698 
1699 /* Return -1 on failure. */
1700 static paddr_t
1701 ofw_claimphys(paddr_t pa, psize_t size, paddr_t align)
1702 {
1703 	int mem_ihandle = ofw_mem_ihandle();
1704 
1705 /*	printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1706 	if (align == 0) {
1707 		/* Allocate at specified base; alignment is ignored. */
1708 		pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1709 	} else {
1710 		/* Allocate anywhere, with specified alignment. */
1711 		pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1712 	}
1713 
1714 /*	printf("%x\n", pa);*/
1715 	return(pa);
1716 }
1717 
1718 
1719 #if 0
1720 /* Return -1 on failure. */
1721 static paddr_t
1722 ofw_releasephys(paddr_t pa, psize_t size)
1723 {
1724 	int mem_ihandle = ofw_mem_ihandle();
1725 
1726 /*	printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1727 
1728 	return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1729 }
1730 #endif
1731 
1732 /* Return -1 on failure. */
1733 static vaddr_t
1734 ofw_claimvirt(vaddr_t va, vsize_t size, vaddr_t align)
1735 {
1736 	int mmu_ihandle = ofw_mmu_ihandle();
1737 
1738 	/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1739 	if (align == 0) {
1740 		/* Allocate at specified base; alignment is ignored. */
1741 		va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1742 	} else {
1743 		/* Allocate anywhere, with specified alignment. */
1744 		va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1745 	}
1746 
1747 	/*printf("%x\n", va);*/
1748 	return(va);
1749 }
1750 
1751 /* Return -1 if no mapping. */
1752 paddr_t
1753 ofw_gettranslation(vaddr_t va)
1754 {
1755 	int mmu_ihandle = ofw_mmu_ihandle();
1756 	paddr_t pa;
1757 	int mode;
1758 	int exists;
1759 
1760 #ifdef OFW_DEBUG
1761 	printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1762 #endif
1763 	exists = 0;	    /* gets set to true if translation exists */
1764 	if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1765 	    &exists) != 0)
1766 		return(-1);
1767 
1768 #ifdef OFW_DEBUG
1769 	printf("%d %x\n", exists, (uint32_t)pa);
1770 #endif
1771 	return(exists ? pa : -1);
1772 }
1773 
1774 
1775 static void
1776 ofw_settranslation(vaddr_t va, paddr_t pa, vsize_t size, int mode)
1777 {
1778 	int mmu_ihandle = ofw_mmu_ihandle();
1779 
1780 #ifdef OFW_DEBUG
1781 	printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1782 	    (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1783 #endif
1784 	if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1785 		panic("ofw_settranslation failed");
1786 }
1787 
1788 /*
1789  *  Allocation routine used before the kernel takes over memory.
1790  *  Use this for efficient storage for things that aren't rounded to
1791  *  page size.
1792  *
1793  *  The point here is not necessarily to be very efficient (even though
1794  *  that's sort of nice), but to do proper dynamic allocation to avoid
1795  *  size-limitation errors.
1796  *
1797  */
1798 
1799 typedef struct _leftover {
1800 	struct _leftover *pNext;
1801 	vsize_t size;
1802 } LEFTOVER, *PLEFTOVER;
1803 
1804 /* leftover bits of pages.  first word is pointer to next.
1805    second word is size of leftover */
1806 static PLEFTOVER leftovers = NULL;
1807 
1808 static void *
1809 ofw_malloc(vsize_t size)
1810 {
1811 	PLEFTOVER   *ppLeftover;
1812 	PLEFTOVER   pLeft;
1813 	pv_addr_t   new;
1814 	vsize_t   newSize, claim_size;
1815 
1816 	/* round and set minimum size */
1817 	size = max(sizeof(LEFTOVER),
1818 	    ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1819 
1820 	for (ppLeftover = &leftovers; *ppLeftover;
1821 	    ppLeftover = &((*ppLeftover)->pNext))
1822 		if ((*ppLeftover)->size >= size)
1823 			break;
1824 
1825 	if (*ppLeftover) { /* have a leftover of the right size */
1826 		/* remember the leftover */
1827 		new.pv_va = (vaddr_t)*ppLeftover;
1828 		if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1829 			/* splice out of chain */
1830 			*ppLeftover = (*ppLeftover)->pNext;
1831 		} else {
1832 			/* remember the next pointer */
1833 			pLeft = (*ppLeftover)->pNext;
1834 			newSize = (*ppLeftover)->size - size; /* reduce size */
1835 			/* move pointer */
1836 			*ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1837 			    + size);
1838 			(*ppLeftover)->pNext = pLeft;
1839 			(*ppLeftover)->size  = newSize;
1840 		}
1841 	} else {
1842 		claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1843 		ofw_claimpages(&virt_freeptr, &new, claim_size);
1844 		if ((size + sizeof(LEFTOVER)) <= claim_size) {
1845 			pLeft = (PLEFTOVER)(new.pv_va + size);
1846 			pLeft->pNext = leftovers;
1847 			pLeft->size = claim_size - size;
1848 			leftovers = pLeft;
1849 		}
1850 	}
1851 
1852 	return (void *)(new.pv_va);
1853 }
1854 
1855 /*
1856  *  Here is a really, really sleazy free.  It's not used right now,
1857  *  because it's not worth the extra complexity for just a few bytes.
1858  *
1859  */
1860 #if 0
1861 static void
1862 ofw_free(vaddr_t addr, vsize_t size)
1863 {
1864 	PLEFTOVER pLeftover = (PLEFTOVER)addr;
1865 
1866 	/* splice right into list without checks or compaction */
1867 	pLeftover->pNext = leftovers;
1868 	pLeftover->size  = size;
1869 	leftovers        = pLeftover;
1870 }
1871 #endif
1872 
1873 /*
1874  *  Allocate and zero round(size)/PAGE_SIZE pages of memory.
1875  *  We guarantee that the allocated memory will be
1876  *  aligned to a boundary equal to the smallest power of
1877  *  2 greater than or equal to size.
1878  *  free_pp is an IN/OUT parameter which points to the
1879  *  last allocated virtual address in an allocate-downwards
1880  *  stack.  pv_p is an OUT parameter which contains the
1881  *  virtual and physical base addresses of the allocated
1882  *  memory.
1883  */
1884 static void
1885 ofw_claimpages(vaddr_t *free_pp, pv_addr_t *pv_p, vsize_t size)
1886 {
1887 	/* round-up to page boundary */
1888 	vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1889 	vsize_t aligned_size;
1890 	vaddr_t va;
1891 	paddr_t pa;
1892 
1893 	if (alloc_size == 0)
1894 		panic("ofw_claimpages zero");
1895 
1896 	for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1897 		;
1898 
1899 	/*  The only way to provide the alignment guarantees is to
1900 	 *  allocate the virtual and physical ranges separately,
1901 	 *  then do an explicit map call.
1902 	 */
1903 	va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1904 	if (ofw_claimvirt(va, alloc_size, 0) != va)
1905 		panic("ofw_claimpages va alloc");
1906 	pa = ofw_claimphys(0, alloc_size, aligned_size);
1907 	if (pa == -1)
1908 		panic("ofw_claimpages pa alloc");
1909 	/* XXX - what mode? -JJK */
1910 	ofw_settranslation(va, pa, alloc_size, -1);
1911 
1912 	/* The memory's mapped-in now, so we can zero it. */
1913 	memset((char *)va, 0, alloc_size);
1914 
1915 	/* Set OUT parameters. */
1916 	*free_pp = va;
1917 	pv_p->pv_va = va;
1918 	pv_p->pv_pa = pa;
1919 }
1920 
1921 
1922 static void
1923 ofw_discardmappings(vaddr_t L2pagetable, vaddr_t va, vsize_t size)
1924 {
1925 	/* round-up to page boundary */
1926 	vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1927 	int npages = alloc_size / PAGE_SIZE;
1928 
1929 	if (npages == 0)
1930 		panic("ofw_discardmappings zero");
1931 
1932 	/* Discard each mapping. */
1933 	for (; npages > 0; va += PAGE_SIZE, npages--) {
1934 		/* Sanity. The current entry should be non-null. */
1935 		if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1936 			panic("ofw_discardmappings zero entry");
1937 
1938 		/* Clear the entry. */
1939 		WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1940 	}
1941 }
1942 
1943 
1944 static void
1945 ofw_initallocator(void)
1946 {
1947 
1948 }
1949 
1950 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
1951 static void
1952 reset_screen(void)
1953 {
1954 
1955 	if ((console_ihandle == 0) || (console_ihandle == -1))
1956 		return;
1957 
1958 	OF_call_method("install", console_ihandle, 0, 0);
1959 }
1960 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
1961