1 /* $NetBSD: ofw.c,v 1.35 2005/12/08 22:41:44 yamt Exp $ */ 2 3 /* 4 * Copyright 1997 5 * Digital Equipment Corporation. All rights reserved. 6 * 7 * This software is furnished under license and may be used and 8 * copied only in accordance with the following terms and conditions. 9 * Subject to these conditions, you may download, copy, install, 10 * use, modify and distribute this software in source and/or binary 11 * form. No title or ownership is transferred hereby. 12 * 13 * 1) Any source code used, modified or distributed must reproduce 14 * and retain this copyright notice and list of conditions as 15 * they appear in the source file. 16 * 17 * 2) No right is granted to use any trade name, trademark, or logo of 18 * Digital Equipment Corporation. Neither the "Digital Equipment 19 * Corporation" name nor any trademark or logo of Digital Equipment 20 * Corporation may be used to endorse or promote products derived 21 * from this software without the prior written permission of 22 * Digital Equipment Corporation. 23 * 24 * 3) This software is provided "AS-IS" and any express or implied 25 * warranties, including but not limited to, any implied warranties 26 * of merchantability, fitness for a particular purpose, or 27 * non-infringement are disclaimed. In no event shall DIGITAL be 28 * liable for any damages whatsoever, and in particular, DIGITAL 29 * shall not be liable for special, indirect, consequential, or 30 * incidental damages or damages for lost profits, loss of 31 * revenue or loss of use, whether such damages arise in contract, 32 * negligence, tort, under statute, in equity, at law or otherwise, 33 * even if advised of the possibility of such damage. 34 */ 35 36 /* 37 * Routines for interfacing between NetBSD and OFW. 38 * 39 * Parts of this could be moved to an MI file in time. -JJK 40 * 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.35 2005/12/08 22:41:44 yamt Exp $"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/reboot.h> 50 #include <sys/mbuf.h> 51 52 #include <uvm/uvm_extern.h> 53 54 #include <dev/cons.h> 55 56 #define _ARM32_BUS_DMA_PRIVATE 57 #include <machine/bus.h> 58 #include <machine/frame.h> 59 #include <machine/bootconfig.h> 60 #include <machine/cpu.h> 61 #include <machine/intr.h> 62 63 #include <dev/ofw/openfirm.h> 64 #include <machine/ofw.h> 65 66 #include <netinet/in.h> 67 68 #if BOOT_FW_DHCP 69 #include <nfs/bootdata.h> 70 #endif 71 72 #ifdef SHARK 73 #include "machine/pio.h" 74 #include "machine/isa_machdep.h" 75 #endif 76 77 #include "pc.h" 78 #include "isadma.h" 79 80 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE) 81 #define IO_VIRT_SIZE 0x01000000 82 83 #define KERNEL_IMG_PTS 2 84 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2)) 85 #define KERNEL_OFW_PTS 4 86 #define KERNEL_IO_PTS 4 87 88 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 89 /* 90 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space 91 * OFW sits at 0xf7000000 92 */ 93 #define KERNEL_VM_SIZE 0x06000000 94 95 /* 96 * Imported variables 97 */ 98 extern BootConfig bootconfig; /* temporary, I hope */ 99 100 #ifdef DIAGNOSTIC 101 /* NOTE: These variables will be removed, well some of them */ 102 extern u_int spl_mask; 103 extern u_int current_mask; 104 #endif 105 106 extern int ofw_handleticks; 107 108 109 /* 110 * Imported routines 111 */ 112 extern void dump_spl_masks __P((void)); 113 extern void dumpsys __P((void)); 114 extern void dotickgrovelling __P((vaddr_t)); 115 #if defined(SHARK) && (NPC > 0) 116 extern void shark_screen_cleanup __P((int)); 117 #endif 118 119 #define WriteWord(a, b) \ 120 *((volatile unsigned int *)(a)) = (b) 121 122 #define ReadWord(a) \ 123 (*((volatile unsigned int *)(a))) 124 125 126 /* 127 * Exported variables 128 */ 129 /* These should all be in a meminfo structure. */ 130 paddr_t physical_start; 131 paddr_t physical_freestart; 132 paddr_t physical_freeend; 133 paddr_t physical_end; 134 u_int free_pages; 135 int physmem; 136 pv_addr_t systempage; 137 #ifndef OFWGENCFG 138 pv_addr_t irqstack; 139 #endif 140 pv_addr_t undstack; 141 pv_addr_t abtstack; 142 pv_addr_t kernelstack; 143 144 paddr_t msgbufphys; 145 146 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */ 147 static vaddr_t virt_freeptr; 148 149 int ofw_callbacks = 0; /* debugging counter */ 150 151 /**************************************************************/ 152 153 154 /* 155 * Declarations and definitions private to this module 156 * 157 */ 158 159 struct mem_region { 160 paddr_t start; 161 psize_t size; 162 }; 163 164 struct mem_translation { 165 vaddr_t virt; 166 vsize_t size; 167 paddr_t phys; 168 unsigned int mode; 169 }; 170 171 struct isa_range { 172 paddr_t isa_phys_hi; 173 paddr_t isa_phys_lo; 174 paddr_t parent_phys_start; 175 psize_t isa_size; 176 }; 177 178 struct vl_range { 179 paddr_t vl_phys_hi; 180 paddr_t vl_phys_lo; 181 paddr_t parent_phys_start; 182 psize_t vl_size; 183 }; 184 185 struct vl_isa_range { 186 paddr_t isa_phys_hi; 187 paddr_t isa_phys_lo; 188 paddr_t parent_phys_hi; 189 paddr_t parent_phys_lo; 190 psize_t isa_size; 191 }; 192 193 struct dma_range { 194 paddr_t start; 195 psize_t size; 196 }; 197 198 struct ofw_cbargs { 199 char *name; 200 int nargs; 201 int nreturns; 202 int args_n_results[12]; 203 }; 204 205 206 /* Memory info */ 207 static int nOFphysmem; 208 static struct mem_region *OFphysmem; 209 static int nOFphysavail; 210 static struct mem_region *OFphysavail; 211 static int nOFtranslations; 212 static struct mem_translation *OFtranslations; 213 static int nOFdmaranges; 214 static struct dma_range *OFdmaranges; 215 216 /* The OFW client services handle. */ 217 /* Initialized by ofw_init(). */ 218 static ofw_handle_t ofw_client_services_handle; 219 220 221 static void ofw_callbackhandler __P((void *)); 222 static void ofw_construct_proc0_addrspace __P((pv_addr_t *)); 223 static void ofw_getphysmeminfo __P((void)); 224 static void ofw_getvirttranslations __P((void)); 225 static void *ofw_malloc(vsize_t size); 226 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t)); 227 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t)); 228 static int ofw_mem_ihandle __P((void)); 229 static int ofw_mmu_ihandle __P((void)); 230 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t)); 231 #if 0 232 static paddr_t ofw_releasephys __P((paddr_t, psize_t)); 233 #endif 234 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t)); 235 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int)); 236 static void ofw_initallocator __P((void)); 237 static void ofw_configisaonly __P((paddr_t *, paddr_t *)); 238 static void ofw_configvl __P((int, paddr_t *, paddr_t *)); 239 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t)); 240 241 242 /* 243 * DHCP hooks. For a first cut, we look to see if there is a DHCP 244 * packet that was saved by the firmware. If not, we proceed as before, 245 * getting hand-configured data from NVRAM. If there is one, we get the 246 * packet, and extract the data from it. For now, we hand that data up 247 * in the boot_args string as before. 248 */ 249 250 251 /**************************************************************/ 252 253 254 /* 255 * 256 * Support routines for xxx_machdep.c 257 * 258 * The intent is that all OFW-based configurations use the 259 * exported routines in this file to do their business. If 260 * they need to override some function they are free to do so. 261 * 262 * The exported routines are: 263 * 264 * openfirmware 265 * ofw_init 266 * ofw_boot 267 * ofw_getbootinfo 268 * ofw_configmem 269 * ofw_configisa 270 * ofw_configisadma 271 * ofw_gettranslation 272 * ofw_map 273 * ofw_getcleaninfo 274 */ 275 276 277 int 278 openfirmware(args) 279 void *args; 280 { 281 int ofw_result; 282 u_int saved_irq_state; 283 284 /* OFW is not re-entrant, so we wrap a mutex around the call. */ 285 saved_irq_state = disable_interrupts(I32_bit); 286 ofw_result = ofw_client_services_handle(args); 287 (void)restore_interrupts(saved_irq_state); 288 289 return(ofw_result); 290 } 291 292 293 void 294 ofw_init(ofw_handle) 295 ofw_handle_t ofw_handle; 296 { 297 ofw_client_services_handle = ofw_handle; 298 299 /* Everything we allocate in the remainder of this block is 300 * constrained to be in the "kernel-static" portion of the 301 * virtual address space (i.e., 0xF0000000 - 0xF1000000). 302 * This is because all such objects are expected to be in 303 * that range by NetBSD, or the objects will be re-mapped 304 * after the page-table-switch to other specific locations. 305 * In the latter case, it's simplest if our pre-switch handles 306 * on those objects are in regions that are already "well- 307 * known." (Otherwise, the cloning of the OFW-managed address- 308 * space becomes more awkward.) To minimize the number of L2 309 * page tables that we use, we are further restricting the 310 * remaining allocations in this block to the bottom quarter of 311 * the legal range. OFW will have loaded the kernel text+data+bss 312 * starting at the bottom of the range, and we will allocate 313 * objects from the top, moving downwards. The two sub-regions 314 * will collide if their total sizes hit 8MB. The current total 315 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB 316 * limit. The variable virt-freeptr represents the next free va 317 * (moving downwards). 318 */ 319 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS); 320 } 321 322 323 void 324 ofw_boot(howto, bootstr) 325 int howto; 326 char *bootstr; 327 { 328 329 #ifdef DIAGNOSTIC 330 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); 331 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask); 332 333 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n", 334 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], 335 irqmasks[IPL_VM]); 336 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", 337 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); 338 339 dump_spl_masks(); 340 #endif 341 342 /* 343 * If we are still cold then hit the air brakes 344 * and crash to earth fast 345 */ 346 if (cold) { 347 doshutdownhooks(); 348 printf("Halted while still in the ICE age.\n"); 349 printf("The operating system has halted.\n"); 350 goto ofw_exit; 351 /*NOTREACHED*/ 352 } 353 354 /* 355 * If RB_NOSYNC was not specified sync the discs. 356 * Note: Unless cold is set to 1 here, syslogd will die during the unmount. 357 * It looks like syslogd is getting woken up only to find that it cannot 358 * page part of the binary in as the filesystem has been unmounted. 359 */ 360 if (!(howto & RB_NOSYNC)) 361 bootsync(); 362 363 /* Say NO to interrupts */ 364 splhigh(); 365 366 /* Do a dump if requested. */ 367 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 368 dumpsys(); 369 370 /* Run any shutdown hooks */ 371 doshutdownhooks(); 372 373 /* Make sure IRQ's are disabled */ 374 IRQdisable; 375 376 if (howto & RB_HALT) { 377 printf("The operating system has halted.\n"); 378 goto ofw_exit; 379 } 380 381 /* Tell the user we are booting */ 382 printf("rebooting...\n"); 383 384 /* Jump into the OFW boot routine. */ 385 { 386 static char str[256]; 387 char *ap = str, *ap1 = ap; 388 389 if (bootstr && *bootstr) { 390 if (strlen(bootstr) > sizeof str - 5) 391 printf("boot string too large, ignored\n"); 392 else { 393 strcpy(str, bootstr); 394 ap1 = ap = str + strlen(str); 395 *ap++ = ' '; 396 } 397 } 398 *ap++ = '-'; 399 if (howto & RB_SINGLE) 400 *ap++ = 's'; 401 if (howto & RB_KDB) 402 *ap++ = 'd'; 403 *ap++ = 0; 404 if (ap[-2] == '-') 405 *ap1 = 0; 406 #if defined(SHARK) && (NPC > 0) 407 shark_screen_cleanup(0); 408 #endif 409 OF_boot(str); 410 /*NOTREACHED*/ 411 } 412 413 ofw_exit: 414 printf("Calling OF_exit...\n"); 415 #if defined(SHARK) && (NPC > 0) 416 shark_screen_cleanup(1); 417 #endif 418 OF_exit(); 419 /*NOTREACHED*/ 420 } 421 422 423 #if BOOT_FW_DHCP 424 425 extern char *ip2dotted __P((struct in_addr)); 426 427 /* 428 * Get DHCP data from OFW 429 */ 430 431 void 432 get_fw_dhcp_data(bdp) 433 struct bootdata *bdp; 434 { 435 int chosen; 436 int dhcplen; 437 438 bzero((char *)bdp, sizeof(*bdp)); 439 if ((chosen = OF_finddevice("/chosen")) == -1) 440 panic("no /chosen from OFW"); 441 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) { 442 u_char *cp; 443 int dhcp_type = 0; 444 char *ip; 445 446 /* 447 * OFW saved a DHCP (or BOOTP) packet for us. 448 */ 449 if (dhcplen > sizeof(bdp->dhcp_packet)) 450 panic("DHCP packet too large"); 451 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet, 452 sizeof(bdp->dhcp_packet)); 453 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet"); 454 /* 455 * Collect the interesting data from DHCP into 456 * the bootdata structure. 457 */ 458 bdp->ip_address = bdp->dhcp_packet.yiaddr; 459 ip = ip2dotted(bdp->ip_address); 460 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0) 461 parse_dhcp_options(&bdp->dhcp_packet, 462 bdp->dhcp_packet.options + 4, 463 &bdp->dhcp_packet.options[dhcplen 464 - DHCP_FIXED_NON_UDP], bdp, ip); 465 if (bdp->root_ip.s_addr == 0) 466 bdp->root_ip = bdp->dhcp_packet.siaddr; 467 if (bdp->swap_ip.s_addr == 0) 468 bdp->swap_ip = bdp->dhcp_packet.siaddr; 469 } 470 /* 471 * If the DHCP packet did not contain all the necessary data, 472 * look in NVRAM for the missing parts. 473 */ 474 { 475 int options; 476 int proplen; 477 #define BOOTJUNKV_SIZE 256 478 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */ 479 480 481 if ((options = OF_finddevice("/options")) == -1) 482 panic("can't find /options"); 483 if (bdp->ip_address.s_addr == 0 && 484 (proplen = OF_getprop(options, "ipaddr", 485 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 486 bootjunkv[proplen] = '\0'; 487 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0) 488 bdp->ip_address.s_addr = 0; 489 } 490 if (bdp->ip_mask.s_addr == 0 && 491 (proplen = OF_getprop(options, "netmask", 492 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 493 bootjunkv[proplen] = '\0'; 494 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0) 495 bdp->ip_mask.s_addr = 0; 496 } 497 if (bdp->hostname[0] == '\0' && 498 (proplen = OF_getprop(options, "hostname", 499 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) { 500 bdp->hostname[proplen] = '\0'; 501 } 502 if (bdp->root[0] == '\0' && 503 (proplen = OF_getprop(options, "rootfs", 504 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 505 bootjunkv[proplen] = '\0'; 506 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root); 507 } 508 if (bdp->swap[0] == '\0' && 509 (proplen = OF_getprop(options, "swapfs", 510 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 511 bootjunkv[proplen] = '\0'; 512 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap); 513 } 514 } 515 } 516 517 #endif /* BOOT_FW_DHCP */ 518 519 void 520 ofw_getbootinfo(bp_pp, ba_pp) 521 char **bp_pp; 522 char **ba_pp; 523 { 524 int chosen; 525 int bp_len; 526 int ba_len; 527 char *bootpathv; 528 char *bootargsv; 529 530 /* Read the bootpath and bootargs out of OFW. */ 531 /* XXX is bootpath still interesting? --emg */ 532 if ((chosen = OF_finddevice("/chosen")) == -1) 533 panic("no /chosen from OFW"); 534 bp_len = OF_getproplen(chosen, "bootpath"); 535 ba_len = OF_getproplen(chosen, "bootargs"); 536 if (bp_len < 0 || ba_len < 0) 537 panic("can't get boot data from OFW"); 538 539 bootpathv = (char *)ofw_malloc(bp_len); 540 bootargsv = (char *)ofw_malloc(ba_len); 541 542 if (bp_len) 543 OF_getprop(chosen, "bootpath", bootpathv, bp_len); 544 else 545 bootpathv[0] = '\0'; 546 547 if (ba_len) 548 OF_getprop(chosen, "bootargs", bootargsv, ba_len); 549 else 550 bootargsv[0] = '\0'; 551 552 *bp_pp = bootpathv; 553 *ba_pp = bootargsv; 554 #ifdef DIAGNOSTIC 555 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv); 556 #endif 557 } 558 559 paddr_t 560 ofw_getcleaninfo(void) 561 { 562 int cpu; 563 vaddr_t vclean; 564 paddr_t pclean; 565 566 if ((cpu = OF_finddevice("/cpu")) == -1) 567 panic("no /cpu from OFW"); 568 569 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean, 570 sizeof(vclean))) != sizeof(vclean)) { 571 #ifdef DEBUG 572 printf("no OFW d-cache-flush-address property\n"); 573 #endif 574 return -1; 575 } 576 577 if ((pclean = ofw_gettranslation( 578 of_decode_int((unsigned char *)&vclean))) == -1) 579 panic("OFW failed to translate cache flush address"); 580 581 return pclean; 582 } 583 584 void 585 ofw_configisa(pio, pmem) 586 paddr_t *pio; 587 paddr_t *pmem; 588 { 589 int vl; 590 591 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */ 592 ofw_configisaonly(pio, pmem); 593 else /* old style OFW dev info tree */ 594 ofw_configvl(vl, pio, pmem); 595 } 596 597 static void 598 ofw_configisaonly(pio, pmem) 599 paddr_t *pio; 600 paddr_t *pmem; 601 { 602 int isa; 603 int rangeidx; 604 int size; 605 paddr_t hi, start; 606 struct isa_range ranges[2]; 607 608 if ((isa = OF_finddevice("/isa")) == -1) 609 panic("OFW has no /isa device node"); 610 611 /* expect to find two isa ranges: IO/data and memory/data */ 612 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges))) 613 != sizeof(ranges)) 614 panic("unexpected size of OFW /isa ranges property: %d", size); 615 616 *pio = *pmem = -1; 617 618 for (rangeidx = 0; rangeidx < 2; ++rangeidx) { 619 hi = of_decode_int((unsigned char *) 620 &ranges[rangeidx].isa_phys_hi); 621 start = of_decode_int((unsigned char *) 622 &ranges[rangeidx].parent_phys_start); 623 624 if (hi & 1) { /* then I/O space */ 625 *pio = start; 626 } else { 627 *pmem = start; 628 } 629 } /* END for */ 630 631 if ((*pio == -1) || (*pmem == -1)) 632 panic("bad OFW /isa ranges property"); 633 634 } 635 636 static void 637 ofw_configvl(vl, pio, pmem) 638 int vl; 639 paddr_t *pio; 640 paddr_t *pmem; 641 { 642 int isa; 643 int ir, vr; 644 int size; 645 paddr_t hi, start; 646 struct vl_isa_range isa_ranges[2]; 647 struct vl_range vl_ranges[2]; 648 649 if ((isa = OF_finddevice("/vlbus/isa")) == -1) 650 panic("OFW has no /vlbus/isa device node"); 651 652 /* expect to find two isa ranges: IO/data and memory/data */ 653 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges))) 654 != sizeof(isa_ranges)) 655 panic("unexpected size of OFW /vlbus/isa ranges property: %d", 656 size); 657 658 /* expect to find two vl ranges: IO/data and memory/data */ 659 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges))) 660 != sizeof(vl_ranges)) 661 panic("unexpected size of OFW /vlbus ranges property: %d", size); 662 663 *pio = -1; 664 *pmem = -1; 665 666 for (ir = 0; ir < 2; ++ir) { 667 for (vr = 0; vr < 2; ++vr) { 668 if ((isa_ranges[ir].parent_phys_hi 669 == vl_ranges[vr].vl_phys_hi) && 670 (isa_ranges[ir].parent_phys_lo 671 == vl_ranges[vr].vl_phys_lo)) { 672 hi = of_decode_int((unsigned char *) 673 &isa_ranges[ir].isa_phys_hi); 674 start = of_decode_int((unsigned char *) 675 &vl_ranges[vr].parent_phys_start); 676 677 if (hi & 1) { /* then I/O space */ 678 *pio = start; 679 } else { 680 *pmem = start; 681 } 682 } /* END if */ 683 } /* END for */ 684 } /* END for */ 685 686 if ((*pio == -1) || (*pmem == -1)) 687 panic("bad OFW /isa ranges property"); 688 } 689 690 #if NISADMA > 0 691 struct arm32_dma_range *shark_isa_dma_ranges; 692 int shark_isa_dma_nranges; 693 #endif 694 695 void 696 ofw_configisadma(pdma) 697 paddr_t *pdma; 698 { 699 int root; 700 int rangeidx; 701 int size; 702 struct dma_range *dr; 703 704 if ((root = OF_finddevice("/")) == -1 || 705 (size = OF_getproplen(root, "dma-ranges")) <= 0 || 706 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 || 707 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size) 708 panic("bad / dma-ranges property"); 709 710 nOFdmaranges = size / sizeof(struct dma_range); 711 712 #if NISADMA > 0 713 /* Allocate storage for non-OFW representation of the range. */ 714 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges * 715 sizeof(*shark_isa_dma_ranges)); 716 if (shark_isa_dma_ranges == NULL) 717 panic("unable to allocate shark_isa_dma_ranges"); 718 shark_isa_dma_nranges = nOFdmaranges; 719 #endif 720 721 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges; 722 ++rangeidx, ++dr) { 723 dr->start = of_decode_int((unsigned char *)&dr->start); 724 dr->size = of_decode_int((unsigned char *)&dr->size); 725 #if NISADMA > 0 726 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start; 727 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start; 728 shark_isa_dma_ranges[rangeidx].dr_len = dr->size; 729 #endif 730 } 731 732 #ifdef DEBUG 733 printf("DMA ranges size = %d\n", size); 734 735 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) { 736 printf("%08lx %08lx\n", 737 (u_long)OFdmaranges[rangeidx].start, 738 (u_long)OFdmaranges[rangeidx].size); 739 } 740 #endif 741 } 742 743 /* 744 * Memory configuration: 745 * 746 * We start off running in the environment provided by OFW. 747 * This has the MMU turned on, the kernel code and data 748 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and 749 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly) 750 * page0 mapped-in at 0x0. 751 * 752 * The strategy is to set-up the address space for proc0 -- 753 * including the allocation of space for new page tables -- while 754 * memory is still managed by OFW. We then effectively create a 755 * copy of the address space by dumping all of OFW's translations 756 * and poking them into the new page tables. We then notify OFW 757 * that we are assuming control of memory-management by installing 758 * our callback-handler, and switch to the NetBSD-managed page 759 * tables with the setttb() call. 760 * 761 * This scheme may cause some amount of memory to be wasted within 762 * OFW as dead page tables, but it shouldn't be more than about 763 * 20-30KB. (It's also possible that OFW will re-use the space.) 764 */ 765 void 766 ofw_configmem(void) 767 { 768 pv_addr_t proc0_ttbbase; 769 int i; 770 771 /* Set-up proc0 address space. */ 772 ofw_construct_proc0_addrspace(&proc0_ttbbase); 773 774 /* 775 * Get a dump of OFW's picture of physical memory. 776 * This is used below to initialize a load of variables used by pmap. 777 * We get it now rather than later because we are about to 778 * tell OFW to stop managing memory. 779 */ 780 ofw_getphysmeminfo(); 781 782 /* We are about to take control of memory-management from OFW. 783 * Establish callbacks for OFW to use for its future memory needs. 784 * This is required for us to keep using OFW services. 785 */ 786 787 /* First initialize our callback memory allocator. */ 788 ofw_initallocator(); 789 790 OF_set_callback(ofw_callbackhandler); 791 792 /* Switch to the proc0 pagetables. */ 793 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 794 setttb(proc0_ttbbase.pv_pa); 795 cpu_tlb_flushID(); 796 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 797 798 /* 799 * Moved from cpu_startup() as data_abort_handler() references 800 * this during uvm init 801 */ 802 { 803 extern struct user *proc0paddr; 804 proc0paddr = (struct user *)kernelstack.pv_va; 805 lwp0.l_addr = proc0paddr; 806 } 807 808 /* Aaaaaaaah, running in the proc0 address space! */ 809 /* I feel good... */ 810 811 /* Set-up the various globals which describe physical memory for pmap. */ 812 { 813 struct mem_region *mp; 814 int totalcnt; 815 int availcnt; 816 817 /* physmem, physical_start, physical_end */ 818 physmem = 0; 819 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem; 820 totalcnt++, mp++) { 821 #ifdef OLDPRINTFS 822 printf("physmem: %x, %x\n", mp->start, mp->size); 823 #endif 824 physmem += btoc(mp->size); 825 } 826 physical_start = OFphysmem[0].start; 827 mp--; 828 physical_end = mp->start + mp->size; 829 830 /* free_pages, physical_freestart, physical_freeend */ 831 free_pages = 0; 832 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail; 833 availcnt++, mp++) { 834 #ifdef OLDPRINTFS 835 printf("physavail: %x, %x\n", mp->start, mp->size); 836 #endif 837 free_pages += btoc(mp->size); 838 } 839 physical_freestart = OFphysavail[0].start; 840 mp--; 841 physical_freeend = mp->start + mp->size; 842 #ifdef OLDPRINTFS 843 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n", 844 physmem, free_pages); 845 #endif 846 847 /* 848 * This is a hack to work with the existing pmap code. 849 * That code depends on a RiscPC BootConfig structure 850 * containing, among other things, an array describing 851 * the regions of physical memory. So, for now, we need 852 * to stuff our OFW-derived physical memory info into a 853 * "fake" BootConfig structure. 854 * 855 * An added twist is that we initialize the BootConfig 856 * structure with our "available" physical memory regions 857 * rather than the "total" physical memory regions. Why? 858 * Because: 859 * 860 * (a) the VM code requires that the "free" pages it is 861 * initialized with have consecutive indices. This 862 * allows it to use more efficient data structures 863 * (presumably). 864 * (b) the current pmap routines which report the initial 865 * set of free page indices (pmap_next_page) and 866 * which map addresses to indices (pmap_page_index) 867 * assume that the free pages are consecutive across 868 * memory region boundaries. 869 * 870 * This means that memory which is "stolen" at startup time 871 * (say, for page descriptors) MUST come from either the 872 * bottom of the first region or the top of the last. 873 * 874 * This requirement doesn't mesh well with OFW (or at least 875 * our use of it). We can get around it for the time being 876 * by pretending that our "available" region array describes 877 * all of our physical memory. This may cause some important 878 * information to be excluded from a dump file, but so far 879 * I haven't come across any other negative effects. 880 * 881 * In the long-run we should fix the index 882 * generation/translation code in the pmap module. 883 */ 884 885 if (DRAM_BLOCKS < (availcnt + 1)) 886 panic("more ofw memory regions than bootconfig blocks"); 887 888 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) { 889 bootconfig.dram[i].address = mp->start; 890 bootconfig.dram[i].pages = btoc(mp->size); 891 } 892 bootconfig.dramblocks = availcnt; 893 } 894 895 /* Load memory into UVM. */ 896 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 897 898 /* XXX Please kill this code dead. */ 899 for (i = 0; i < bootconfig.dramblocks; i++) { 900 paddr_t start = (paddr_t)bootconfig.dram[i].address; 901 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE); 902 #if NISADMA > 0 903 paddr_t istart, isize; 904 #endif 905 906 if (start < physical_freestart) 907 start = physical_freestart; 908 if (end > physical_freeend) 909 end = physical_freeend; 910 911 #if 0 912 printf("%d: %lx -> %lx\n", loop, start, end - 1); 913 #endif 914 915 #if NISADMA > 0 916 if (arm32_dma_range_intersect(shark_isa_dma_ranges, 917 shark_isa_dma_nranges, 918 start, end - start, 919 &istart, &isize)) { 920 /* 921 * Place the pages that intersect with the 922 * ISA DMA range onto the ISA DMA free list. 923 */ 924 #if 0 925 printf(" ISADMA 0x%lx -> 0x%lx\n", istart, 926 istart + isize - 1); 927 #endif 928 uvm_page_physload(atop(istart), 929 atop(istart + isize), atop(istart), 930 atop(istart + isize), VM_FREELIST_ISADMA); 931 932 /* 933 * Load the pieces that come before the 934 * intersection onto the default free list. 935 */ 936 if (start < istart) { 937 #if 0 938 printf(" BEFORE 0x%lx -> 0x%lx\n", 939 start, istart - 1); 940 #endif 941 uvm_page_physload(atop(start), 942 atop(istart), atop(start), 943 atop(istart), VM_FREELIST_DEFAULT); 944 } 945 946 /* 947 * Load the pieces that come after the 948 * intersection onto the default free list. 949 */ 950 if ((istart + isize) < end) { 951 #if 0 952 printf(" AFTER 0x%lx -> 0x%lx\n", 953 (istart + isize), end - 1); 954 #endif 955 uvm_page_physload(atop(istart + isize), 956 atop(end), atop(istart + isize), 957 atop(end), VM_FREELIST_DEFAULT); 958 } 959 } else { 960 uvm_page_physload(atop(start), atop(end), 961 atop(start), atop(end), VM_FREELIST_DEFAULT); 962 } 963 #else /* NISADMA > 0 */ 964 uvm_page_physload(atop(start), atop(end), 965 atop(start), atop(end), VM_FREELIST_DEFAULT); 966 #endif /* NISADMA > 0 */ 967 } 968 969 /* Initialize pmap module. */ 970 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE, 971 KERNEL_VM_BASE + KERNEL_VM_SIZE); 972 } 973 974 975 /* 976 ************************************************************ 977 978 Routines private to this module 979 980 ************************************************************ 981 */ 982 983 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */ 984 static void 985 ofw_callbackhandler(v) 986 void *v; 987 { 988 struct ofw_cbargs *args = v; 989 char *name = args->name; 990 int nargs = args->nargs; 991 int nreturns = args->nreturns; 992 int *args_n_results = args->args_n_results; 993 994 ofw_callbacks++; 995 996 #if defined(OFWGENCFG) 997 /* Check this first, so that we don't waste IRQ time parsing. */ 998 if (strcmp(name, "tick") == 0) { 999 vaddr_t frame; 1000 1001 /* Check format. */ 1002 if (nargs != 1 || nreturns < 1) { 1003 args_n_results[nargs] = -1; 1004 args->nreturns = 1; 1005 return; 1006 } 1007 args_n_results[nargs] = 0; /* properly formatted request */ 1008 1009 /* 1010 * Note that we are running in the IRQ frame, with interrupts 1011 * disabled. 1012 * 1013 * We need to do two things here: 1014 * - copy a few words out of the input frame into a global 1015 * area, for later use by our real tick-handling code 1016 * - patch a few words in the frame so that when OFW returns 1017 * from the interrupt it will resume with our handler 1018 * rather than the code that was actually interrupted. 1019 * Our handler will resume when it finishes with the code 1020 * that was actually interrupted. 1021 * 1022 * It's simplest to do this in assembler, since it requires 1023 * switching frames and grovelling about with registers. 1024 */ 1025 frame = (vaddr_t)args_n_results[0]; 1026 if (ofw_handleticks) 1027 dotickgrovelling(frame); 1028 args_n_results[nargs + 1] = frame; 1029 args->nreturns = 1; 1030 } else 1031 #endif 1032 1033 if (strcmp(name, "map") == 0) { 1034 vaddr_t va; 1035 paddr_t pa; 1036 vsize_t size; 1037 int mode; 1038 int ap_bits; 1039 int dom_bits; 1040 int cb_bits; 1041 1042 /* Check format. */ 1043 if (nargs != 4 || nreturns < 2) { 1044 args_n_results[nargs] = -1; 1045 args->nreturns = 1; 1046 return; 1047 } 1048 args_n_results[nargs] = 0; /* properly formatted request */ 1049 1050 pa = (paddr_t)args_n_results[0]; 1051 va = (vaddr_t)args_n_results[1]; 1052 size = (vsize_t)args_n_results[2]; 1053 mode = args_n_results[3]; 1054 ap_bits = (mode & 0x00000C00); 1055 dom_bits = (mode & 0x000001E0); 1056 cb_bits = (mode & 0x000000C0); 1057 1058 /* Sanity checks. */ 1059 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1060 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) || 1061 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 || 1062 size == 0 || (dom_bits >> 5) != 0) { 1063 args_n_results[nargs + 1] = -1; 1064 args->nreturns = 1; 1065 return; 1066 } 1067 1068 /* Write-back anything stuck in the cache. */ 1069 cpu_idcache_wbinv_all(); 1070 1071 /* Install new mappings. */ 1072 { 1073 pt_entry_t *pte = vtopte(va); 1074 int npages = size >> PGSHIFT; 1075 1076 ap_bits >>= 10; 1077 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--) 1078 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S | 1079 cb_bits); 1080 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT); 1081 } 1082 1083 /* Clean out tlb. */ 1084 tlb_flush(); 1085 1086 args_n_results[nargs + 1] = 0; 1087 args->nreturns = 2; 1088 } else if (strcmp(name, "unmap") == 0) { 1089 vaddr_t va; 1090 vsize_t size; 1091 1092 /* Check format. */ 1093 if (nargs != 2 || nreturns < 1) { 1094 args_n_results[nargs] = -1; 1095 args->nreturns = 1; 1096 return; 1097 } 1098 args_n_results[nargs] = 0; /* properly formatted request */ 1099 1100 va = (vaddr_t)args_n_results[0]; 1101 size = (vsize_t)args_n_results[1]; 1102 1103 /* Sanity checks. */ 1104 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1105 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) || 1106 (size & PGOFSET) != 0 || size == 0) { 1107 args_n_results[nargs + 1] = -1; 1108 args->nreturns = 1; 1109 return; 1110 } 1111 1112 /* Write-back anything stuck in the cache. */ 1113 cpu_idcache_wbinv_all(); 1114 1115 /* Zero the mappings. */ 1116 { 1117 pt_entry_t *pte = vtopte(va); 1118 int npages = size >> PGSHIFT; 1119 1120 for (; npages > 0; pte++, npages--) 1121 *pte = 0; 1122 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT); 1123 } 1124 1125 /* Clean out tlb. */ 1126 tlb_flush(); 1127 1128 args->nreturns = 1; 1129 } else if (strcmp(name, "translate") == 0) { 1130 vaddr_t va; 1131 paddr_t pa; 1132 int mode; 1133 pt_entry_t pte; 1134 1135 /* Check format. */ 1136 if (nargs != 1 || nreturns < 4) { 1137 args_n_results[nargs] = -1; 1138 args->nreturns = 1; 1139 return; 1140 } 1141 args_n_results[nargs] = 0; /* properly formatted request */ 1142 1143 va = (vaddr_t)args_n_results[0]; 1144 1145 /* Sanity checks. 1146 * For now, I am only willing to translate va's in the 1147 * "ofw range." Eventually, I may be more generous. -JJK 1148 */ 1149 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1150 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) { 1151 args_n_results[nargs + 1] = -1; 1152 args->nreturns = 1; 1153 return; 1154 } 1155 1156 /* Lookup mapping. */ 1157 pte = *vtopte(va); 1158 if (pte == 0) { 1159 /* No mapping. */ 1160 args_n_results[nargs + 1] = -1; 1161 args->nreturns = 2; 1162 } else { 1163 /* Existing mapping. */ 1164 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET); 1165 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */ 1166 1167 args_n_results[nargs + 1] = 0; 1168 args_n_results[nargs + 2] = pa; 1169 args_n_results[nargs + 3] = mode; 1170 args->nreturns = 4; 1171 } 1172 } else if (strcmp(name, "claim-phys") == 0) { 1173 struct pglist alloclist; 1174 paddr_t low, high, align; 1175 psize_t size; 1176 1177 /* 1178 * XXX 1179 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd 1180 * XXX 1181 */ 1182 1183 /* Check format. */ 1184 if (nargs != 4 || nreturns < 3) { 1185 args_n_results[nargs] = -1; 1186 args->nreturns = 1; 1187 return; 1188 } 1189 args_n_results[nargs] = 0; /* properly formatted request */ 1190 1191 low = args_n_results[0]; 1192 size = args_n_results[2]; 1193 align = args_n_results[3]; 1194 high = args_n_results[1] + size; 1195 1196 #if 0 1197 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n", 1198 low, size, align, high); 1199 align = size; 1200 printf("forcing align to be 0x%x\n", align); 1201 #endif 1202 1203 args_n_results[nargs + 1] = 1204 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0); 1205 #if 0 1206 printf(" -> 0x%lx", args_n_results[nargs + 1]); 1207 #endif 1208 if (args_n_results[nargs + 1] != 0) { 1209 #if 0 1210 printf("(failed)\n"); 1211 #endif 1212 args_n_results[nargs + 1] = -1; 1213 args->nreturns = 2; 1214 return; 1215 } 1216 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first); 1217 #if 0 1218 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]); 1219 #endif 1220 args->nreturns = 3; 1221 1222 } else if (strcmp(name, "release-phys") == 0) { 1223 printf("unimplemented ofw callback - %s\n", name); 1224 args_n_results[nargs] = -1; 1225 args->nreturns = 1; 1226 } else if (strcmp(name, "claim-virt") == 0) { 1227 vaddr_t va; 1228 vsize_t size; 1229 vaddr_t align; 1230 1231 /* XXX - notyet */ 1232 /* printf("unimplemented ofw callback - %s\n", name);*/ 1233 args_n_results[nargs] = -1; 1234 args->nreturns = 1; 1235 return; 1236 1237 /* Check format. */ 1238 if (nargs != 2 || nreturns < 3) { 1239 args_n_results[nargs] = -1; 1240 args->nreturns = 1; 1241 return; 1242 } 1243 args_n_results[nargs] = 0; /* properly formatted request */ 1244 1245 /* Allocate size bytes with specified alignment. */ 1246 size = (vsize_t)args_n_results[0]; 1247 align = (vaddr_t)args_n_results[1]; 1248 if (align % PAGE_SIZE != 0) { 1249 args_n_results[nargs + 1] = -1; 1250 args->nreturns = 2; 1251 return; 1252 } 1253 1254 if (va == 0) { 1255 /* Couldn't allocate. */ 1256 args_n_results[nargs + 1] = -1; 1257 args->nreturns = 2; 1258 } else { 1259 /* Successful allocation. */ 1260 args_n_results[nargs + 1] = 0; 1261 args_n_results[nargs + 2] = va; 1262 args->nreturns = 3; 1263 } 1264 } else if (strcmp(name, "release-virt") == 0) { 1265 vaddr_t va; 1266 vsize_t size; 1267 1268 /* XXX - notyet */ 1269 printf("unimplemented ofw callback - %s\n", name); 1270 args_n_results[nargs] = -1; 1271 args->nreturns = 1; 1272 return; 1273 1274 /* Check format. */ 1275 if (nargs != 2 || nreturns < 1) { 1276 args_n_results[nargs] = -1; 1277 args->nreturns = 1; 1278 return; 1279 } 1280 args_n_results[nargs] = 0; /* properly formatted request */ 1281 1282 /* Release bytes. */ 1283 va = (vaddr_t)args_n_results[0]; 1284 size = (vsize_t)args_n_results[1]; 1285 1286 args->nreturns = 1; 1287 } else { 1288 args_n_results[nargs] = -1; 1289 args->nreturns = 1; 1290 } 1291 } 1292 1293 static void 1294 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase) 1295 { 1296 int i, oft; 1297 static pv_addr_t proc0_pagedir; 1298 static pv_addr_t proc0_pt_sys; 1299 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS]; 1300 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS]; 1301 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS]; 1302 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS]; 1303 static pv_addr_t msgbuf; 1304 vaddr_t L1pagetable; 1305 struct mem_translation *tp; 1306 1307 /* Set-up the system page. */ 1308 KASSERT(vector_page == 0); /* XXX for now */ 1309 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0); 1310 if (systempage.pv_va == -1) { 1311 /* Something was already mapped to vector_page's VA. */ 1312 systempage.pv_va = vector_page; 1313 systempage.pv_pa = ofw_gettranslation(vector_page); 1314 if (systempage.pv_pa == -1) 1315 panic("bogus result from gettranslation(vector_page)"); 1316 } else { 1317 /* We were just allocated the page-length range at VA 0. */ 1318 if (systempage.pv_va != vector_page) 1319 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)"); 1320 1321 /* Now allocate a physical page, and establish the mapping. */ 1322 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE); 1323 if (systempage.pv_pa == -1) 1324 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)"); 1325 ofw_settranslation(systempage.pv_va, systempage.pv_pa, 1326 PAGE_SIZE, -1); /* XXX - mode? -JJK */ 1327 1328 /* Zero the memory. */ 1329 bzero((char *)systempage.pv_va, PAGE_SIZE); 1330 } 1331 1332 /* Allocate/initialize space for the proc0, NetBSD-managed */ 1333 /* page tables that we will be switching to soon. */ 1334 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE); 1335 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE); 1336 for (i = 0; i < KERNEL_IMG_PTS; i++) 1337 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE); 1338 for (i = 0; i < KERNEL_VMDATA_PTS; i++) 1339 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE); 1340 for (i = 0; i < KERNEL_OFW_PTS; i++) 1341 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE); 1342 for (i = 0; i < KERNEL_IO_PTS; i++) 1343 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE); 1344 1345 /* Allocate/initialize space for stacks. */ 1346 #ifndef OFWGENCFG 1347 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE); 1348 #endif 1349 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE); 1350 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE); 1351 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE); 1352 1353 /* Allocate/initialize space for msgbuf area. */ 1354 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE); 1355 msgbufphys = msgbuf.pv_pa; 1356 1357 /* Construct the proc0 L1 pagetable. */ 1358 L1pagetable = proc0_pagedir.pv_va; 1359 1360 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys); 1361 for (i = 0; i < KERNEL_IMG_PTS; i++) 1362 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000, 1363 &proc0_pt_kernel[i]); 1364 for (i = 0; i < KERNEL_VMDATA_PTS; i++) 1365 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000, 1366 &proc0_pt_vmdata[i]); 1367 for (i = 0; i < KERNEL_OFW_PTS; i++) 1368 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000, 1369 &proc0_pt_ofw[i]); 1370 for (i = 0; i < KERNEL_IO_PTS; i++) 1371 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000, 1372 &proc0_pt_io[i]); 1373 1374 /* 1375 * OK, we're done allocating. 1376 * Get a dump of OFW's translations, and make the appropriate 1377 * entries in the L2 pagetables that we just allocated. 1378 */ 1379 1380 ofw_getvirttranslations(); 1381 1382 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; 1383 oft++, tp++) { 1384 1385 vaddr_t va; 1386 paddr_t pa; 1387 int npages = tp->size / PAGE_SIZE; 1388 1389 /* Size must be an integral number of pages. */ 1390 if (npages == 0 || tp->size % PAGE_SIZE != 0) 1391 panic("illegal ofw translation (size)"); 1392 1393 /* Make an entry for each page in the appropriate table. */ 1394 for (va = tp->virt, pa = tp->phys; npages > 0; 1395 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) { 1396 /* 1397 * Map the top bits to the appropriate L2 pagetable. 1398 * The only allowable regions are page0, the 1399 * kernel-static area, and the ofw area. 1400 */ 1401 switch (va >> (L1_S_SHIFT + 2)) { 1402 case 0: 1403 /* page0 */ 1404 break; 1405 1406 #if KERNEL_IMG_PTS != 2 1407 #error "Update ofw translation range list" 1408 #endif 1409 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)): 1410 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1411 /* kernel static area */ 1412 break; 1413 1414 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)): 1415 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1416 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)): 1417 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)): 1418 /* ofw area */ 1419 break; 1420 1421 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)): 1422 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1423 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)): 1424 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)): 1425 /* io area */ 1426 break; 1427 1428 default: 1429 /* illegal */ 1430 panic("illegal ofw translation (addr) %#lx", 1431 va); 1432 } 1433 1434 /* Make the entry. */ 1435 pmap_map_entry(L1pagetable, va, pa, 1436 VM_PROT_READ|VM_PROT_WRITE, 1437 (tp->mode & 0xC) == 0xC ? PTE_CACHE 1438 : PTE_NOCACHE); 1439 } 1440 } 1441 1442 /* 1443 * We don't actually want some of the mappings that we just 1444 * set up to appear in proc0's address space. In particular, 1445 * we don't want aliases to physical addresses that the kernel 1446 * has-mapped/will-map elsewhere. 1447 */ 1448 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va, 1449 msgbuf.pv_va, MSGBUFSIZE); 1450 1451 /* update the top of the kernel VM */ 1452 pmap_curmaxkvaddr = 1453 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000); 1454 1455 /* 1456 * gross hack for the sake of not thrashing the TLB and making 1457 * cache flush more efficient: blast l1 ptes for sections. 1458 */ 1459 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) { 1460 vaddr_t va = tp->virt; 1461 paddr_t pa = tp->phys; 1462 1463 if (((va | pa) & L1_S_OFFSET) == 0) { 1464 int nsections = tp->size / L1_S_SIZE; 1465 1466 while (nsections--) { 1467 /* XXXJRT prot?? */ 1468 pmap_map_section(L1pagetable, va, pa, 1469 VM_PROT_READ|VM_PROT_WRITE, 1470 (tp->mode & 0xC) == 0xC ? PTE_CACHE 1471 : PTE_NOCACHE); 1472 va += L1_S_SIZE; 1473 pa += L1_S_SIZE; 1474 } 1475 } 1476 } 1477 1478 /* OUT parameters are the new ttbbase and the pt which maps pts. */ 1479 *proc0_ttbbase = proc0_pagedir; 1480 } 1481 1482 1483 static void 1484 ofw_getphysmeminfo() 1485 { 1486 int phandle; 1487 int mem_len; 1488 int avail_len; 1489 int i; 1490 1491 if ((phandle = OF_finddevice("/memory")) == -1 || 1492 (mem_len = OF_getproplen(phandle, "reg")) <= 0 || 1493 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 || 1494 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len || 1495 (avail_len = OF_getproplen(phandle, "available")) <= 0 || 1496 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 || 1497 OF_getprop(phandle, "available", OFphysavail, avail_len) 1498 != avail_len) 1499 panic("can't get physmeminfo from OFW"); 1500 1501 nOFphysmem = mem_len / sizeof(struct mem_region); 1502 nOFphysavail = avail_len / sizeof(struct mem_region); 1503 1504 /* 1505 * Sort the blocks in each array into ascending address order. 1506 * Also, page-align all blocks. 1507 */ 1508 for (i = 0; i < 2; i++) { 1509 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail; 1510 struct mem_region *mp; 1511 int cnt = (i == 0) ? nOFphysmem : nOFphysavail; 1512 int j; 1513 1514 #ifdef OLDPRINTFS 1515 printf("ofw_getphysmeminfo: %d blocks\n", cnt); 1516 #endif 1517 1518 /* XXX - Convert all the values to host order. -JJK */ 1519 for (j = 0, mp = tmp; j < cnt; j++, mp++) { 1520 mp->start = of_decode_int((unsigned char *)&mp->start); 1521 mp->size = of_decode_int((unsigned char *)&mp->size); 1522 } 1523 1524 for (j = 0, mp = tmp; j < cnt; j++, mp++) { 1525 u_int s, sz; 1526 struct mem_region *mp1; 1527 1528 /* Page-align start of the block. */ 1529 s = mp->start % PAGE_SIZE; 1530 if (s != 0) { 1531 s = (PAGE_SIZE - s); 1532 1533 if (mp->size >= s) { 1534 mp->start += s; 1535 mp->size -= s; 1536 } 1537 } 1538 1539 /* Page-align the size. */ 1540 mp->size -= mp->size % PAGE_SIZE; 1541 1542 /* Handle empty block. */ 1543 if (mp->size == 0) { 1544 memmove(mp, mp + 1, (cnt - (mp - tmp)) 1545 * sizeof(struct mem_region)); 1546 cnt--; 1547 mp--; 1548 continue; 1549 } 1550 1551 /* Bubble sort. */ 1552 s = mp->start; 1553 sz = mp->size; 1554 for (mp1 = tmp; mp1 < mp; mp1++) 1555 if (s < mp1->start) 1556 break; 1557 if (mp1 < mp) { 1558 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1559 mp1->start = s; 1560 mp1->size = sz; 1561 } 1562 } 1563 1564 #ifdef OLDPRINTFS 1565 for (mp = tmp; mp->size; mp++) { 1566 printf("%x, %x\n", mp->start, mp->size); 1567 } 1568 #endif 1569 } 1570 } 1571 1572 1573 static void 1574 ofw_getvirttranslations(void) 1575 { 1576 int mmu_phandle; 1577 int mmu_ihandle; 1578 int trans_len; 1579 int over, len; 1580 int i; 1581 struct mem_translation *tp; 1582 1583 mmu_ihandle = ofw_mmu_ihandle(); 1584 1585 /* overallocate to avoid increases during allocation */ 1586 over = 4 * sizeof(struct mem_translation); 1587 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 || 1588 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 || 1589 (OFtranslations = ofw_malloc(len + over)) == 0 || 1590 (trans_len = OF_getprop(mmu_phandle, "translations", 1591 OFtranslations, len + over)) > (len + over)) 1592 panic("can't get virttranslations from OFW"); 1593 1594 /* XXX - Convert all the values to host order. -JJK */ 1595 nOFtranslations = trans_len / sizeof(struct mem_translation); 1596 #ifdef OLDPRINTFS 1597 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations); 1598 #endif 1599 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) { 1600 tp->virt = of_decode_int((unsigned char *)&tp->virt); 1601 tp->size = of_decode_int((unsigned char *)&tp->size); 1602 tp->phys = of_decode_int((unsigned char *)&tp->phys); 1603 tp->mode = of_decode_int((unsigned char *)&tp->mode); 1604 } 1605 } 1606 1607 /* 1608 * ofw_valloc: allocate blocks of VM for IO and other special purposes 1609 */ 1610 typedef struct _vfree { 1611 struct _vfree *pNext; 1612 vaddr_t start; 1613 vsize_t size; 1614 } VFREE, *PVFREE; 1615 1616 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE }; 1617 1618 static PVFREE vflist = &vfinitial; 1619 1620 static vaddr_t 1621 ofw_valloc(size, align) 1622 vsize_t size; 1623 vaddr_t align; 1624 { 1625 PVFREE *ppvf; 1626 PVFREE pNew; 1627 vaddr_t new; 1628 vaddr_t lead; 1629 1630 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) { 1631 if (align == 0) { 1632 new = (*ppvf)->start; 1633 lead = 0; 1634 } else { 1635 new = ((*ppvf)->start + (align - 1)) & ~(align - 1); 1636 lead = new - (*ppvf)->start; 1637 } 1638 1639 if (((*ppvf)->size - lead) >= size) { 1640 if (lead == 0) { 1641 /* using whole block */ 1642 if (size == (*ppvf)->size) { 1643 /* splice out of list */ 1644 (*ppvf) = (*ppvf)->pNext; 1645 } else { /* tail of block is free */ 1646 (*ppvf)->start = new + size; 1647 (*ppvf)->size -= size; 1648 } 1649 } else { 1650 vsize_t tail = ((*ppvf)->start 1651 + (*ppvf)->size) - (new + size); 1652 /* free space at beginning */ 1653 (*ppvf)->size = lead; 1654 1655 if (tail != 0) { 1656 /* free space at tail */ 1657 pNew = ofw_malloc(sizeof(VFREE)); 1658 pNew->pNext = (*ppvf)->pNext; 1659 (*ppvf)->pNext = pNew; 1660 pNew->start = new + size; 1661 pNew->size = tail; 1662 } 1663 } 1664 return new; 1665 } /* END if */ 1666 } /* END for */ 1667 1668 return -1; 1669 } 1670 1671 vaddr_t 1672 ofw_map(pa, size, cb_bits) 1673 paddr_t pa; 1674 vsize_t size; 1675 int cb_bits; 1676 { 1677 vaddr_t va; 1678 1679 if ((va = ofw_valloc(size, size)) == -1) 1680 panic("cannot alloc virtual memory for %#lx", pa); 1681 1682 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */ 1683 1684 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits); 1685 1686 return va; 1687 } 1688 1689 static int 1690 ofw_mem_ihandle(void) 1691 { 1692 static int mem_ihandle = 0; 1693 int chosen; 1694 1695 if (mem_ihandle != 0) 1696 return(mem_ihandle); 1697 1698 if ((chosen = OF_finddevice("/chosen")) == -1 || 1699 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0) 1700 panic("ofw_mem_ihandle"); 1701 1702 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle); 1703 1704 return(mem_ihandle); 1705 } 1706 1707 1708 static int 1709 ofw_mmu_ihandle(void) 1710 { 1711 static int mmu_ihandle = 0; 1712 int chosen; 1713 1714 if (mmu_ihandle != 0) 1715 return(mmu_ihandle); 1716 1717 if ((chosen = OF_finddevice("/chosen")) == -1 || 1718 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0) 1719 panic("ofw_mmu_ihandle"); 1720 1721 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle); 1722 1723 return(mmu_ihandle); 1724 } 1725 1726 1727 /* Return -1 on failure. */ 1728 static paddr_t 1729 ofw_claimphys(pa, size, align) 1730 paddr_t pa; 1731 psize_t size; 1732 paddr_t align; 1733 { 1734 int mem_ihandle = ofw_mem_ihandle(); 1735 1736 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/ 1737 if (align == 0) { 1738 /* Allocate at specified base; alignment is ignored. */ 1739 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align); 1740 } else { 1741 /* Allocate anywhere, with specified alignment. */ 1742 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align); 1743 } 1744 1745 /* printf("%x\n", pa);*/ 1746 return(pa); 1747 } 1748 1749 1750 #if 0 1751 /* Return -1 on failure. */ 1752 static paddr_t 1753 ofw_releasephys(pa, size) 1754 paddr_t pa; 1755 psize_t size; 1756 { 1757 int mem_ihandle = ofw_mem_ihandle(); 1758 1759 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/ 1760 1761 return (OF_call_method_1("release", mem_ihandle, 2, pa, size)); 1762 } 1763 #endif 1764 1765 /* Return -1 on failure. */ 1766 static vaddr_t 1767 ofw_claimvirt(va, size, align) 1768 vaddr_t va; 1769 vsize_t size; 1770 vaddr_t align; 1771 { 1772 int mmu_ihandle = ofw_mmu_ihandle(); 1773 1774 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/ 1775 if (align == 0) { 1776 /* Allocate at specified base; alignment is ignored. */ 1777 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align); 1778 } else { 1779 /* Allocate anywhere, with specified alignment. */ 1780 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align); 1781 } 1782 1783 /*printf("%x\n", va);*/ 1784 return(va); 1785 } 1786 1787 1788 /* Return -1 if no mapping. */ 1789 paddr_t 1790 ofw_gettranslation(va) 1791 vaddr_t va; 1792 { 1793 int mmu_ihandle = ofw_mmu_ihandle(); 1794 paddr_t pa; 1795 int mode; 1796 int exists; 1797 1798 /*printf("ofw_gettranslation (%x) --> ", va);*/ 1799 exists = 0; /* gets set to true if translation exists */ 1800 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode, 1801 &exists) != 0) 1802 return(-1); 1803 1804 /*printf("%x\n", exists ? pa : -1);*/ 1805 return(exists ? pa : -1); 1806 } 1807 1808 1809 static void 1810 ofw_settranslation(va, pa, size, mode) 1811 vaddr_t va; 1812 paddr_t pa; 1813 vsize_t size; 1814 int mode; 1815 { 1816 int mmu_ihandle = ofw_mmu_ihandle(); 1817 1818 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/ 1819 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0) 1820 panic("ofw_settranslation failed"); 1821 } 1822 1823 /* 1824 * Allocation routine used before the kernel takes over memory. 1825 * Use this for efficient storage for things that aren't rounded to 1826 * page size. 1827 * 1828 * The point here is not necessarily to be very efficient (even though 1829 * that's sort of nice), but to do proper dynamic allocation to avoid 1830 * size-limitation errors. 1831 * 1832 */ 1833 1834 typedef struct _leftover { 1835 struct _leftover *pNext; 1836 vsize_t size; 1837 } LEFTOVER, *PLEFTOVER; 1838 1839 /* leftover bits of pages. first word is pointer to next. 1840 second word is size of leftover */ 1841 static PLEFTOVER leftovers = NULL; 1842 1843 static void * 1844 ofw_malloc(size) 1845 vsize_t size; 1846 { 1847 PLEFTOVER *ppLeftover; 1848 PLEFTOVER pLeft; 1849 pv_addr_t new; 1850 vsize_t newSize, claim_size; 1851 1852 /* round and set minimum size */ 1853 size = max(sizeof(LEFTOVER), 1854 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1))); 1855 1856 for (ppLeftover = &leftovers; *ppLeftover; 1857 ppLeftover = &((*ppLeftover)->pNext)) 1858 if ((*ppLeftover)->size >= size) 1859 break; 1860 1861 if (*ppLeftover) { /* have a leftover of the right size */ 1862 /* remember the leftover */ 1863 new.pv_va = (vaddr_t)*ppLeftover; 1864 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) { 1865 /* splice out of chain */ 1866 *ppLeftover = (*ppLeftover)->pNext; 1867 } else { 1868 /* remember the next pointer */ 1869 pLeft = (*ppLeftover)->pNext; 1870 newSize = (*ppLeftover)->size - size; /* reduce size */ 1871 /* move pointer */ 1872 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover) 1873 + size); 1874 (*ppLeftover)->pNext = pLeft; 1875 (*ppLeftover)->size = newSize; 1876 } 1877 } else { 1878 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1879 ofw_claimpages(&virt_freeptr, &new, claim_size); 1880 if ((size + sizeof(LEFTOVER)) <= claim_size) { 1881 pLeft = (PLEFTOVER)(new.pv_va + size); 1882 pLeft->pNext = leftovers; 1883 pLeft->size = claim_size - size; 1884 leftovers = pLeft; 1885 } 1886 } 1887 1888 return (void *)(new.pv_va); 1889 } 1890 1891 /* 1892 * Here is a really, really sleazy free. It's not used right now, 1893 * because it's not worth the extra complexity for just a few bytes. 1894 * 1895 */ 1896 #if 0 1897 static void 1898 ofw_free(addr, size) 1899 vaddr_t addr; 1900 vsize_t size; 1901 { 1902 PLEFTOVER pLeftover = (PLEFTOVER)addr; 1903 1904 /* splice right into list without checks or compaction */ 1905 pLeftover->pNext = leftovers; 1906 pLeftover->size = size; 1907 leftovers = pLeftover; 1908 } 1909 #endif 1910 1911 /* 1912 * Allocate and zero round(size)/PAGE_SIZE pages of memory. 1913 * We guarantee that the allocated memory will be 1914 * aligned to a boundary equal to the smallest power of 1915 * 2 greater than or equal to size. 1916 * free_pp is an IN/OUT parameter which points to the 1917 * last allocated virtual address in an allocate-downwards 1918 * stack. pv_p is an OUT parameter which contains the 1919 * virtual and physical base addresses of the allocated 1920 * memory. 1921 */ 1922 static void 1923 ofw_claimpages(free_pp, pv_p, size) 1924 vaddr_t *free_pp; 1925 pv_addr_t *pv_p; 1926 vsize_t size; 1927 { 1928 /* round-up to page boundary */ 1929 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1930 vsize_t aligned_size; 1931 vaddr_t va; 1932 paddr_t pa; 1933 1934 if (alloc_size == 0) 1935 panic("ofw_claimpages zero"); 1936 1937 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1) 1938 ; 1939 1940 /* The only way to provide the alignment guarantees is to 1941 * allocate the virtual and physical ranges separately, 1942 * then do an explicit map call. 1943 */ 1944 va = (*free_pp & ~(aligned_size - 1)) - aligned_size; 1945 if (ofw_claimvirt(va, alloc_size, 0) != va) 1946 panic("ofw_claimpages va alloc"); 1947 pa = ofw_claimphys(0, alloc_size, aligned_size); 1948 if (pa == -1) 1949 panic("ofw_claimpages pa alloc"); 1950 /* XXX - what mode? -JJK */ 1951 ofw_settranslation(va, pa, alloc_size, -1); 1952 1953 /* The memory's mapped-in now, so we can zero it. */ 1954 bzero((char *)va, alloc_size); 1955 1956 /* Set OUT parameters. */ 1957 *free_pp = va; 1958 pv_p->pv_va = va; 1959 pv_p->pv_pa = pa; 1960 } 1961 1962 1963 static void 1964 ofw_discardmappings(L2pagetable, va, size) 1965 vaddr_t L2pagetable; 1966 vaddr_t va; 1967 vsize_t size; 1968 { 1969 /* round-up to page boundary */ 1970 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1971 int npages = alloc_size / PAGE_SIZE; 1972 1973 if (npages == 0) 1974 panic("ofw_discardmappings zero"); 1975 1976 /* Discard each mapping. */ 1977 for (; npages > 0; va += PAGE_SIZE, npages--) { 1978 /* Sanity. The current entry should be non-null. */ 1979 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0) 1980 panic("ofw_discardmappings zero entry"); 1981 1982 /* Clear the entry. */ 1983 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0); 1984 } 1985 } 1986 1987 1988 static void 1989 ofw_initallocator(void) 1990 { 1991 1992 } 1993