xref: /netbsd-src/sys/arch/shark/ofw/ofw.c (revision 86811edb37e43f44504b192591c863c5d48f5e08)
1 /*	$NetBSD: ofw.c,v 1.35 2005/12/08 22:41:44 yamt Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37  *  Routines for interfacing between NetBSD and OFW.
38  *
39  *  Parts of this could be moved to an MI file in time. -JJK
40  *
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.35 2005/12/08 22:41:44 yamt Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include <dev/cons.h>
55 
56 #define	_ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62 
63 #include <dev/ofw/openfirm.h>
64 #include <machine/ofw.h>
65 
66 #include <netinet/in.h>
67 
68 #if	BOOT_FW_DHCP
69 #include <nfs/bootdata.h>
70 #endif
71 
72 #ifdef SHARK
73 #include "machine/pio.h"
74 #include "machine/isa_machdep.h"
75 #endif
76 
77 #include "pc.h"
78 #include "isadma.h"
79 
80 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
81 #define IO_VIRT_SIZE 0x01000000
82 
83 #define	KERNEL_IMG_PTS		2
84 #define	KERNEL_VMDATA_PTS	(KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
85 #define	KERNEL_OFW_PTS		4
86 #define	KERNEL_IO_PTS		4
87 
88 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
89 /*
90  * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
91  * OFW sits at 0xf7000000
92  */
93 #define	KERNEL_VM_SIZE		0x06000000
94 
95 /*
96  *  Imported variables
97  */
98 extern BootConfig bootconfig;	/* temporary, I hope */
99 
100 #ifdef	DIAGNOSTIC
101 /* NOTE: These variables will be removed, well some of them */
102 extern u_int spl_mask;
103 extern u_int current_mask;
104 #endif
105 
106 extern int ofw_handleticks;
107 
108 
109 /*
110  *  Imported routines
111  */
112 extern void dump_spl_masks  __P((void));
113 extern void dumpsys	    __P((void));
114 extern void dotickgrovelling __P((vaddr_t));
115 #if defined(SHARK) && (NPC > 0)
116 extern void shark_screen_cleanup __P((int));
117 #endif
118 
119 #define WriteWord(a, b) \
120 *((volatile unsigned int *)(a)) = (b)
121 
122 #define ReadWord(a) \
123 (*((volatile unsigned int *)(a)))
124 
125 
126 /*
127  *  Exported variables
128  */
129 /* These should all be in a meminfo structure. */
130 paddr_t physical_start;
131 paddr_t physical_freestart;
132 paddr_t physical_freeend;
133 paddr_t physical_end;
134 u_int free_pages;
135 int physmem;
136 pv_addr_t systempage;
137 #ifndef	OFWGENCFG
138 pv_addr_t irqstack;
139 #endif
140 pv_addr_t undstack;
141 pv_addr_t abtstack;
142 pv_addr_t kernelstack;
143 
144 paddr_t msgbufphys;
145 
146 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
147 static vaddr_t  virt_freeptr;
148 
149 int ofw_callbacks = 0;		/* debugging counter */
150 
151 /**************************************************************/
152 
153 
154 /*
155  *  Declarations and definitions private to this module
156  *
157  */
158 
159 struct mem_region {
160 	paddr_t start;
161 	psize_t size;
162 };
163 
164 struct mem_translation {
165 	vaddr_t virt;
166 	vsize_t size;
167 	paddr_t phys;
168 	unsigned int mode;
169 };
170 
171 struct isa_range {
172 	paddr_t isa_phys_hi;
173 	paddr_t isa_phys_lo;
174 	paddr_t parent_phys_start;
175 	psize_t isa_size;
176 };
177 
178 struct vl_range {
179 	paddr_t vl_phys_hi;
180 	paddr_t vl_phys_lo;
181 	paddr_t parent_phys_start;
182 	psize_t vl_size;
183 };
184 
185 struct vl_isa_range {
186 	paddr_t isa_phys_hi;
187 	paddr_t isa_phys_lo;
188 	paddr_t parent_phys_hi;
189 	paddr_t parent_phys_lo;
190 	psize_t isa_size;
191 };
192 
193 struct dma_range {
194 	paddr_t start;
195 	psize_t   size;
196 };
197 
198 struct ofw_cbargs {
199 	char *name;
200 	int nargs;
201 	int nreturns;
202 	int args_n_results[12];
203 };
204 
205 
206 /* Memory info */
207 static int nOFphysmem;
208 static struct mem_region *OFphysmem;
209 static int nOFphysavail;
210 static struct mem_region *OFphysavail;
211 static int nOFtranslations;
212 static struct mem_translation *OFtranslations;
213 static int nOFdmaranges;
214 static struct dma_range *OFdmaranges;
215 
216 /* The OFW client services handle. */
217 /* Initialized by ofw_init(). */
218 static ofw_handle_t ofw_client_services_handle;
219 
220 
221 static void ofw_callbackhandler __P((void *));
222 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
223 static void ofw_getphysmeminfo __P((void));
224 static void ofw_getvirttranslations __P((void));
225 static void *ofw_malloc(vsize_t size);
226 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
227 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
228 static int ofw_mem_ihandle  __P((void));
229 static int ofw_mmu_ihandle  __P((void));
230 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
231 #if 0
232 static paddr_t ofw_releasephys __P((paddr_t, psize_t));
233 #endif
234 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
235 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
236 static void ofw_initallocator __P((void));
237 static void ofw_configisaonly __P((paddr_t *, paddr_t *));
238 static void ofw_configvl __P((int, paddr_t *, paddr_t *));
239 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
240 
241 
242 /*
243  * DHCP hooks.  For a first cut, we look to see if there is a DHCP
244  * packet that was saved by the firmware.  If not, we proceed as before,
245  * getting hand-configured data from NVRAM.  If there is one, we get the
246  * packet, and extract the data from it.  For now, we hand that data up
247  * in the boot_args string as before.
248  */
249 
250 
251 /**************************************************************/
252 
253 
254 /*
255  *
256  *  Support routines for xxx_machdep.c
257  *
258  *  The intent is that all OFW-based configurations use the
259  *  exported routines in this file to do their business.  If
260  *  they need to override some function they are free to do so.
261  *
262  *  The exported routines are:
263  *
264  *    openfirmware
265  *    ofw_init
266  *    ofw_boot
267  *    ofw_getbootinfo
268  *    ofw_configmem
269  *    ofw_configisa
270  *    ofw_configisadma
271  *    ofw_gettranslation
272  *    ofw_map
273  *    ofw_getcleaninfo
274  */
275 
276 
277 int
278 openfirmware(args)
279 	void *args;
280 {
281 	int ofw_result;
282 	u_int saved_irq_state;
283 
284 	/* OFW is not re-entrant, so we wrap a mutex around the call. */
285 	saved_irq_state = disable_interrupts(I32_bit);
286 	ofw_result = ofw_client_services_handle(args);
287 	(void)restore_interrupts(saved_irq_state);
288 
289 	return(ofw_result);
290 }
291 
292 
293 void
294 ofw_init(ofw_handle)
295 	ofw_handle_t ofw_handle;
296 {
297 	ofw_client_services_handle = ofw_handle;
298 
299 	/*  Everything we allocate in the remainder of this block is
300 	 *  constrained to be in the "kernel-static" portion of the
301 	 *  virtual address space (i.e., 0xF0000000 - 0xF1000000).
302 	 *  This is because all such objects are expected to be in
303 	 *  that range by NetBSD, or the objects will be re-mapped
304 	 *  after the page-table-switch to other specific locations.
305 	 *  In the latter case, it's simplest if our pre-switch handles
306 	 *  on those objects are in regions that are already "well-
307 	 *  known."  (Otherwise, the cloning of the OFW-managed address-
308 	 *  space becomes more awkward.)  To minimize the number of L2
309 	 *  page tables that we use, we are further restricting the
310 	 *  remaining allocations in this block to the bottom quarter of
311 	 *  the legal range.  OFW will have loaded the kernel text+data+bss
312 	 *  starting at the bottom of the range, and we will allocate
313 	 *  objects from the top, moving downwards.  The two sub-regions
314 	 *  will collide if their total sizes hit 8MB.  The current total
315 	 *  is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
316 	 *  limit.  The variable virt-freeptr represents the next free va
317 	 *  (moving downwards).
318 	 */
319 	virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
320 }
321 
322 
323 void
324 ofw_boot(howto, bootstr)
325 	int howto;
326 	char *bootstr;
327 {
328 
329 #ifdef DIAGNOSTIC
330 	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
331 	printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
332 
333 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
334 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
335 	    irqmasks[IPL_VM]);
336 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
337 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
338 
339 	dump_spl_masks();
340 #endif
341 
342 	/*
343 	 * If we are still cold then hit the air brakes
344 	 * and crash to earth fast
345 	 */
346 	if (cold) {
347 		doshutdownhooks();
348 		printf("Halted while still in the ICE age.\n");
349 		printf("The operating system has halted.\n");
350 		goto ofw_exit;
351 		/*NOTREACHED*/
352 	}
353 
354 	/*
355 	 * If RB_NOSYNC was not specified sync the discs.
356 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
357 	 * It looks like syslogd is getting woken up only to find that it cannot
358 	 * page part of the binary in as the filesystem has been unmounted.
359 	 */
360 	if (!(howto & RB_NOSYNC))
361 		bootsync();
362 
363 	/* Say NO to interrupts */
364 	splhigh();
365 
366 	/* Do a dump if requested. */
367 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
368 		dumpsys();
369 
370 	/* Run any shutdown hooks */
371 	doshutdownhooks();
372 
373 	/* Make sure IRQ's are disabled */
374 	IRQdisable;
375 
376 	if (howto & RB_HALT) {
377 		printf("The operating system has halted.\n");
378 		goto ofw_exit;
379 	}
380 
381 	/* Tell the user we are booting */
382 	printf("rebooting...\n");
383 
384 	/* Jump into the OFW boot routine. */
385 	{
386 		static char str[256];
387 		char *ap = str, *ap1 = ap;
388 
389 		if (bootstr && *bootstr) {
390 			if (strlen(bootstr) > sizeof str - 5)
391 				printf("boot string too large, ignored\n");
392 			else {
393 				strcpy(str, bootstr);
394 				ap1 = ap = str + strlen(str);
395 				*ap++ = ' ';
396 			}
397 		}
398 		*ap++ = '-';
399 		if (howto & RB_SINGLE)
400 			*ap++ = 's';
401 		if (howto & RB_KDB)
402 			*ap++ = 'd';
403 		*ap++ = 0;
404 		if (ap[-2] == '-')
405 			*ap1 = 0;
406 #if defined(SHARK) && (NPC > 0)
407 		shark_screen_cleanup(0);
408 #endif
409 		OF_boot(str);
410 		/*NOTREACHED*/
411 	}
412 
413 ofw_exit:
414 	printf("Calling OF_exit...\n");
415 #if defined(SHARK) && (NPC > 0)
416 	shark_screen_cleanup(1);
417 #endif
418 	OF_exit();
419 	/*NOTREACHED*/
420 }
421 
422 
423 #if	BOOT_FW_DHCP
424 
425 extern	char	*ip2dotted	__P((struct in_addr));
426 
427 /*
428  * Get DHCP data from OFW
429  */
430 
431 void
432 get_fw_dhcp_data(bdp)
433 	struct bootdata *bdp;
434 {
435 	int chosen;
436 	int dhcplen;
437 
438 	bzero((char *)bdp, sizeof(*bdp));
439 	if ((chosen = OF_finddevice("/chosen")) == -1)
440 		panic("no /chosen from OFW");
441 	if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
442 		u_char *cp;
443 		int dhcp_type = 0;
444 		char *ip;
445 
446 		/*
447 		 * OFW saved a DHCP (or BOOTP) packet for us.
448 		 */
449 		if (dhcplen > sizeof(bdp->dhcp_packet))
450 			panic("DHCP packet too large");
451 		OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
452 		    sizeof(bdp->dhcp_packet));
453 		SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
454 		/*
455 		 * Collect the interesting data from DHCP into
456 		 * the bootdata structure.
457 		 */
458 		bdp->ip_address = bdp->dhcp_packet.yiaddr;
459 		ip = ip2dotted(bdp->ip_address);
460 		if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
461 			parse_dhcp_options(&bdp->dhcp_packet,
462 			    bdp->dhcp_packet.options + 4,
463 			    &bdp->dhcp_packet.options[dhcplen
464 			    - DHCP_FIXED_NON_UDP], bdp, ip);
465 		if (bdp->root_ip.s_addr == 0)
466 			bdp->root_ip = bdp->dhcp_packet.siaddr;
467 		if (bdp->swap_ip.s_addr == 0)
468 			bdp->swap_ip = bdp->dhcp_packet.siaddr;
469 	}
470 	/*
471 	 * If the DHCP packet did not contain all the necessary data,
472 	 * look in NVRAM for the missing parts.
473 	 */
474 	{
475 		int options;
476 		int proplen;
477 #define BOOTJUNKV_SIZE	256
478 		char bootjunkv[BOOTJUNKV_SIZE];	/* minimize stack usage */
479 
480 
481 		if ((options = OF_finddevice("/options")) == -1)
482 			panic("can't find /options");
483 		if (bdp->ip_address.s_addr == 0 &&
484 		    (proplen = OF_getprop(options, "ipaddr",
485 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
486 			bootjunkv[proplen] = '\0';
487 			if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
488 				bdp->ip_address.s_addr = 0;
489 		}
490 		if (bdp->ip_mask.s_addr == 0 &&
491 		    (proplen = OF_getprop(options, "netmask",
492 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
493 			bootjunkv[proplen] = '\0';
494 			if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
495 				bdp->ip_mask.s_addr = 0;
496 		}
497 		if (bdp->hostname[0] == '\0' &&
498 		    (proplen = OF_getprop(options, "hostname",
499 		    bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
500 			bdp->hostname[proplen] = '\0';
501 		}
502 		if (bdp->root[0] == '\0' &&
503 		    (proplen = OF_getprop(options, "rootfs",
504 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
505 			bootjunkv[proplen] = '\0';
506 			parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
507 		}
508 		if (bdp->swap[0] == '\0' &&
509 		    (proplen = OF_getprop(options, "swapfs",
510 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
511 			bootjunkv[proplen] = '\0';
512 			parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
513 		}
514 	}
515 }
516 
517 #endif	/* BOOT_FW_DHCP */
518 
519 void
520 ofw_getbootinfo(bp_pp, ba_pp)
521 	char **bp_pp;
522 	char **ba_pp;
523 {
524 	int chosen;
525 	int bp_len;
526 	int ba_len;
527 	char *bootpathv;
528 	char *bootargsv;
529 
530 	/* Read the bootpath and bootargs out of OFW. */
531 	/* XXX is bootpath still interesting?  --emg */
532 	if ((chosen = OF_finddevice("/chosen")) == -1)
533 		panic("no /chosen from OFW");
534 	bp_len = OF_getproplen(chosen, "bootpath");
535 	ba_len = OF_getproplen(chosen, "bootargs");
536 	if (bp_len < 0 || ba_len < 0)
537 		panic("can't get boot data from OFW");
538 
539 	bootpathv = (char *)ofw_malloc(bp_len);
540 	bootargsv = (char *)ofw_malloc(ba_len);
541 
542 	if (bp_len)
543 		OF_getprop(chosen, "bootpath", bootpathv, bp_len);
544 	else
545 		bootpathv[0] = '\0';
546 
547 	if (ba_len)
548 		OF_getprop(chosen, "bootargs", bootargsv, ba_len);
549 	else
550 		bootargsv[0] = '\0';
551 
552 	*bp_pp = bootpathv;
553 	*ba_pp = bootargsv;
554 #ifdef DIAGNOSTIC
555 	printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
556 #endif
557 }
558 
559 paddr_t
560 ofw_getcleaninfo(void)
561 {
562 	int cpu;
563 	vaddr_t vclean;
564 	paddr_t pclean;
565 
566 	if ((cpu = OF_finddevice("/cpu")) == -1)
567 		panic("no /cpu from OFW");
568 
569 	if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
570 	    sizeof(vclean))) != sizeof(vclean)) {
571 #ifdef DEBUG
572 		printf("no OFW d-cache-flush-address property\n");
573 #endif
574 		return -1;
575 	}
576 
577 	if ((pclean = ofw_gettranslation(
578 	    of_decode_int((unsigned char *)&vclean))) == -1)
579 	panic("OFW failed to translate cache flush address");
580 
581 	return pclean;
582 }
583 
584 void
585 ofw_configisa(pio, pmem)
586 	paddr_t *pio;
587 	paddr_t *pmem;
588 {
589 	int vl;
590 
591 	if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
592 		ofw_configisaonly(pio, pmem);
593 	else /* old style OFW dev info tree */
594 		ofw_configvl(vl, pio, pmem);
595 }
596 
597 static void
598 ofw_configisaonly(pio, pmem)
599 	paddr_t *pio;
600 	paddr_t *pmem;
601 {
602 	int isa;
603 	int rangeidx;
604 	int size;
605 	paddr_t hi, start;
606 	struct isa_range ranges[2];
607 
608 	if ((isa = OF_finddevice("/isa")) == -1)
609 	panic("OFW has no /isa device node");
610 
611 	/* expect to find two isa ranges: IO/data and memory/data */
612 	if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
613 	    != sizeof(ranges))
614 		panic("unexpected size of OFW /isa ranges property: %d", size);
615 
616 	*pio = *pmem = -1;
617 
618 	for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
619 		hi    = of_decode_int((unsigned char *)
620 		    &ranges[rangeidx].isa_phys_hi);
621 		start = of_decode_int((unsigned char *)
622 		    &ranges[rangeidx].parent_phys_start);
623 
624 	if (hi & 1) { /* then I/O space */
625 		*pio = start;
626 	} else {
627 		*pmem = start;
628 	}
629 	} /* END for */
630 
631 	if ((*pio == -1) || (*pmem == -1))
632 		panic("bad OFW /isa ranges property");
633 
634 }
635 
636 static void
637 ofw_configvl(vl, pio, pmem)
638 	int vl;
639 	paddr_t *pio;
640 	paddr_t *pmem;
641 {
642 	int isa;
643 	int ir, vr;
644 	int size;
645 	paddr_t hi, start;
646 	struct vl_isa_range isa_ranges[2];
647 	struct vl_range     vl_ranges[2];
648 
649 	if ((isa = OF_finddevice("/vlbus/isa")) == -1)
650 		panic("OFW has no /vlbus/isa device node");
651 
652 	/* expect to find two isa ranges: IO/data and memory/data */
653 	if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
654 	    != sizeof(isa_ranges))
655 		panic("unexpected size of OFW /vlbus/isa ranges property: %d",
656 		     size);
657 
658 	/* expect to find two vl ranges: IO/data and memory/data */
659 	if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
660 	    != sizeof(vl_ranges))
661 		panic("unexpected size of OFW /vlbus ranges property: %d", size);
662 
663 	*pio = -1;
664 	*pmem = -1;
665 
666 	for (ir = 0; ir < 2; ++ir) {
667 		for (vr = 0; vr < 2; ++vr) {
668 			if ((isa_ranges[ir].parent_phys_hi
669 			    == vl_ranges[vr].vl_phys_hi) &&
670 			    (isa_ranges[ir].parent_phys_lo
671 			    == vl_ranges[vr].vl_phys_lo)) {
672 				hi    = of_decode_int((unsigned char *)
673 				    &isa_ranges[ir].isa_phys_hi);
674 				start = of_decode_int((unsigned char *)
675 				    &vl_ranges[vr].parent_phys_start);
676 
677 				if (hi & 1) { /* then I/O space */
678 					*pio = start;
679 				} else {
680 					*pmem = start;
681 				}
682 			} /* END if */
683 		} /* END for */
684 	} /* END for */
685 
686 	if ((*pio == -1) || (*pmem == -1))
687 		panic("bad OFW /isa ranges property");
688 }
689 
690 #if NISADMA > 0
691 struct arm32_dma_range *shark_isa_dma_ranges;
692 int shark_isa_dma_nranges;
693 #endif
694 
695 void
696 ofw_configisadma(pdma)
697 	paddr_t *pdma;
698 {
699 	int root;
700 	int rangeidx;
701 	int size;
702 	struct dma_range *dr;
703 
704 	if ((root = OF_finddevice("/")) == -1 ||
705 	    (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
706 	    (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
707  	    OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
708 		panic("bad / dma-ranges property");
709 
710 	nOFdmaranges = size / sizeof(struct dma_range);
711 
712 #if NISADMA > 0
713 	/* Allocate storage for non-OFW representation of the range. */
714 	shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
715 	    sizeof(*shark_isa_dma_ranges));
716 	if (shark_isa_dma_ranges == NULL)
717 		panic("unable to allocate shark_isa_dma_ranges");
718 	shark_isa_dma_nranges = nOFdmaranges;
719 #endif
720 
721 	for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
722 	    ++rangeidx, ++dr) {
723 		dr->start = of_decode_int((unsigned char *)&dr->start);
724 		dr->size = of_decode_int((unsigned char *)&dr->size);
725 #if NISADMA > 0
726 		shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
727 		shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
728 		shark_isa_dma_ranges[rangeidx].dr_len  = dr->size;
729 #endif
730 	}
731 
732 #ifdef DEBUG
733 	printf("DMA ranges size = %d\n", size);
734 
735 	for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
736 		printf("%08lx %08lx\n",
737 		(u_long)OFdmaranges[rangeidx].start,
738 		(u_long)OFdmaranges[rangeidx].size);
739 	}
740 #endif
741 }
742 
743 /*
744  *  Memory configuration:
745  *
746  *  We start off running in the environment provided by OFW.
747  *  This has the MMU turned on, the kernel code and data
748  *  mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
749  *  data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
750  *  page0 mapped-in at 0x0.
751  *
752  *  The strategy is to set-up the address space for proc0 --
753  *  including the allocation of space for new page tables -- while
754  *  memory is still managed by OFW.  We then effectively create a
755  *  copy of the address space by dumping all of OFW's translations
756  *  and poking them into the new page tables.  We then notify OFW
757  *  that we are assuming control of memory-management by installing
758  *  our callback-handler, and switch to the NetBSD-managed page
759  *  tables with the setttb() call.
760  *
761  *  This scheme may cause some amount of memory to be wasted within
762  *  OFW as dead page tables, but it shouldn't be more than about
763  *  20-30KB.  (It's also possible that OFW will re-use the space.)
764  */
765 void
766 ofw_configmem(void)
767 {
768 	pv_addr_t proc0_ttbbase;
769 	int i;
770 
771 	/* Set-up proc0 address space. */
772 	ofw_construct_proc0_addrspace(&proc0_ttbbase);
773 
774 	/*
775 	 * Get a dump of OFW's picture of physical memory.
776 	 * This is used below to initialize a load of variables used by pmap.
777 	 * We get it now rather than later because we are about to
778 	 * tell OFW to stop managing memory.
779 	 */
780 	ofw_getphysmeminfo();
781 
782 	/* We are about to take control of memory-management from OFW.
783 	 * Establish callbacks for OFW to use for its future memory needs.
784 	 * This is required for us to keep using OFW services.
785 	 */
786 
787 	/* First initialize our callback memory allocator. */
788 	ofw_initallocator();
789 
790 	OF_set_callback(ofw_callbackhandler);
791 
792 	/* Switch to the proc0 pagetables. */
793 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
794 	setttb(proc0_ttbbase.pv_pa);
795 	cpu_tlb_flushID();
796 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
797 
798 	/*
799 	 * Moved from cpu_startup() as data_abort_handler() references
800 	 * this during uvm init
801 	 */
802 	{
803 		extern struct user *proc0paddr;
804 		proc0paddr = (struct user *)kernelstack.pv_va;
805 		lwp0.l_addr = proc0paddr;
806 	}
807 
808 	/* Aaaaaaaah, running in the proc0 address space! */
809 	/* I feel good... */
810 
811 	/* Set-up the various globals which describe physical memory for pmap. */
812 	{
813 		struct mem_region *mp;
814 		int totalcnt;
815 		int availcnt;
816 
817 		/* physmem, physical_start, physical_end */
818 		physmem = 0;
819 		for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
820 		    totalcnt++, mp++) {
821 #ifdef	OLDPRINTFS
822 			printf("physmem: %x, %x\n", mp->start, mp->size);
823 #endif
824 			physmem += btoc(mp->size);
825 		}
826 		physical_start = OFphysmem[0].start;
827 		mp--;
828 		physical_end = mp->start + mp->size;
829 
830 		/* free_pages, physical_freestart, physical_freeend */
831 		free_pages = 0;
832 		for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
833 		    availcnt++, mp++) {
834 #ifdef	OLDPRINTFS
835 			printf("physavail: %x, %x\n", mp->start, mp->size);
836 #endif
837 			free_pages += btoc(mp->size);
838 		}
839 		physical_freestart = OFphysavail[0].start;
840 		mp--;
841 		physical_freeend = mp->start + mp->size;
842 #ifdef	OLDPRINTFS
843 		printf("pmap_bootstrap:  physmem = %x, free_pages = %x\n",
844 		    physmem, free_pages);
845 #endif
846 
847 		/*
848 		 *  This is a hack to work with the existing pmap code.
849 		 *  That code depends on a RiscPC BootConfig structure
850 		 *  containing, among other things, an array describing
851 		 *  the regions of physical memory.  So, for now, we need
852 		 *  to stuff our OFW-derived physical memory info into a
853 		 *  "fake" BootConfig structure.
854 		 *
855 		 *  An added twist is that we initialize the BootConfig
856 		 *  structure with our "available" physical memory regions
857 		 *  rather than the "total" physical memory regions.  Why?
858 		 *  Because:
859 		 *
860 		 *   (a) the VM code requires that the "free" pages it is
861 		 *       initialized with have consecutive indices.  This
862 		 *       allows it to use more efficient data structures
863 		 *       (presumably).
864 		 *   (b) the current pmap routines which report the initial
865 		 *       set of free page indices (pmap_next_page) and
866 		 *       which map addresses to indices (pmap_page_index)
867 		 *       assume that the free pages are consecutive across
868 		 *       memory region boundaries.
869 		 *
870 		 *  This means that memory which is "stolen" at startup time
871 		 *  (say, for page descriptors) MUST come from either the
872 		 *  bottom of the first region or the top of the last.
873 		 *
874 		 *  This requirement doesn't mesh well with OFW (or at least
875 		 *  our use of it).  We can get around it for the time being
876 		 *  by pretending that our "available" region array describes
877 		 *  all of our physical memory.  This may cause some important
878 		 *  information to be excluded from a dump file, but so far
879 		 *  I haven't come across any other negative effects.
880 		 *
881 		 *  In the long-run we should fix the index
882 		 *  generation/translation code in the pmap module.
883 		 */
884 
885 		if (DRAM_BLOCKS < (availcnt + 1))
886 			panic("more ofw memory regions than bootconfig blocks");
887 
888 		for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
889 			bootconfig.dram[i].address = mp->start;
890 			bootconfig.dram[i].pages = btoc(mp->size);
891 		}
892 		bootconfig.dramblocks = availcnt;
893 	}
894 
895 	/* Load memory into UVM. */
896 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
897 
898 	/* XXX Please kill this code dead. */
899 	for (i = 0; i < bootconfig.dramblocks; i++) {
900 		paddr_t start = (paddr_t)bootconfig.dram[i].address;
901 		paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
902 #if NISADMA > 0
903 		paddr_t istart, isize;
904 #endif
905 
906 		if (start < physical_freestart)
907 			start = physical_freestart;
908 		if (end > physical_freeend)
909 			end = physical_freeend;
910 
911 #if 0
912 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
913 #endif
914 
915 #if NISADMA > 0
916 		if (arm32_dma_range_intersect(shark_isa_dma_ranges,
917 					      shark_isa_dma_nranges,
918 					      start, end - start,
919 					      &istart, &isize)) {
920 			/*
921 			 * Place the pages that intersect with the
922 			 * ISA DMA range onto the ISA DMA free list.
923 			 */
924 #if 0
925 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
926 			    istart + isize - 1);
927 #endif
928 			uvm_page_physload(atop(istart),
929 			    atop(istart + isize), atop(istart),
930 			    atop(istart + isize), VM_FREELIST_ISADMA);
931 
932 			/*
933 			 * Load the pieces that come before the
934 			 * intersection onto the default free list.
935 			 */
936 			if (start < istart) {
937 #if 0
938 				printf("    BEFORE 0x%lx -> 0x%lx\n",
939 				    start, istart - 1);
940 #endif
941 				uvm_page_physload(atop(start),
942 				    atop(istart), atop(start),
943 				    atop(istart), VM_FREELIST_DEFAULT);
944 			}
945 
946 			/*
947 			 * Load the pieces that come after the
948 			 * intersection onto the default free list.
949 			 */
950 			if ((istart + isize) < end) {
951 #if 0
952 				printf("     AFTER 0x%lx -> 0x%lx\n",
953 				    (istart + isize), end - 1);
954 #endif
955 				uvm_page_physload(atop(istart + isize),
956 				    atop(end), atop(istart + isize),
957 				    atop(end), VM_FREELIST_DEFAULT);
958 			}
959 		} else {
960 			uvm_page_physload(atop(start), atop(end),
961 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
962 		}
963 #else /* NISADMA > 0 */
964 		uvm_page_physload(atop(start), atop(end),
965 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
966 #endif /* NISADMA > 0 */
967 	}
968 
969 	/* Initialize pmap module. */
970 	pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
971 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
972 }
973 
974 
975 /*
976  ************************************************************
977 
978   Routines private to this module
979 
980  ************************************************************
981  */
982 
983 /* N.B.  Not supposed to call printf in callback-handler!  Could deadlock! */
984 static void
985 ofw_callbackhandler(v)
986 	void *v;
987 {
988 	struct ofw_cbargs *args = v;
989 	char *name = args->name;
990 	int nargs = args->nargs;
991 	int nreturns = args->nreturns;
992 	int *args_n_results = args->args_n_results;
993 
994 	ofw_callbacks++;
995 
996 #if defined(OFWGENCFG)
997 	/* Check this first, so that we don't waste IRQ time parsing. */
998 	if (strcmp(name, "tick") == 0) {
999 		vaddr_t frame;
1000 
1001 		/* Check format. */
1002 		if (nargs != 1 || nreturns < 1) {
1003 			args_n_results[nargs] = -1;
1004 			args->nreturns = 1;
1005 			return;
1006 		}
1007 		args_n_results[nargs] =	0;	/* properly formatted request */
1008 
1009 		/*
1010 		 *  Note that we are running in the IRQ frame, with interrupts
1011 		 *  disabled.
1012 		 *
1013 		 *  We need to do two things here:
1014 		 *    - copy a few words out of the input frame into a global
1015 		 *      area, for later use by our real tick-handling code
1016 		 *    - patch a few words in the frame so that when OFW returns
1017 		 *      from the interrupt it will resume with our handler
1018 		 *      rather than the code that was actually interrupted.
1019 		 *      Our handler will resume when it finishes with the code
1020 		 *      that was actually interrupted.
1021 		 *
1022 		 *  It's simplest to do this in assembler, since it requires
1023 		 *  switching frames and grovelling about with registers.
1024 		 */
1025 		frame = (vaddr_t)args_n_results[0];
1026 		if (ofw_handleticks)
1027 			dotickgrovelling(frame);
1028 		args_n_results[nargs + 1] = frame;
1029 		args->nreturns = 1;
1030 	} else
1031 #endif
1032 
1033 	if (strcmp(name, "map") == 0) {
1034 		vaddr_t va;
1035 		paddr_t pa;
1036 		vsize_t size;
1037 		int mode;
1038 		int ap_bits;
1039 		int dom_bits;
1040 		int cb_bits;
1041 
1042 		/* Check format. */
1043 		if (nargs != 4 || nreturns < 2) {
1044 			args_n_results[nargs] = -1;
1045 			args->nreturns = 1;
1046 			return;
1047 		}
1048 		args_n_results[nargs] =	0;	/* properly formatted request */
1049 
1050 		pa = (paddr_t)args_n_results[0];
1051 		va = (vaddr_t)args_n_results[1];
1052 		size = (vsize_t)args_n_results[2];
1053 		mode = args_n_results[3];
1054 		ap_bits =  (mode & 0x00000C00);
1055 		dom_bits = (mode & 0x000001E0);
1056 		cb_bits =  (mode & 0x000000C0);
1057 
1058 		/* Sanity checks. */
1059 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1060 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1061 		    (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1062 		    size == 0 || (dom_bits >> 5) != 0) {
1063 			args_n_results[nargs + 1] = -1;
1064 			args->nreturns = 1;
1065 			return;
1066 		}
1067 
1068 		/* Write-back anything stuck in the cache. */
1069 		cpu_idcache_wbinv_all();
1070 
1071 		/* Install new mappings. */
1072 		{
1073 			pt_entry_t *pte = vtopte(va);
1074 			int npages = size >> PGSHIFT;
1075 
1076 			ap_bits >>= 10;
1077 			for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1078 				*pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1079 				    cb_bits);
1080 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1081 		}
1082 
1083 		/* Clean out tlb. */
1084 		tlb_flush();
1085 
1086 		args_n_results[nargs + 1] = 0;
1087 		args->nreturns = 2;
1088 	} else if (strcmp(name, "unmap") == 0) {
1089 		vaddr_t va;
1090 		vsize_t size;
1091 
1092 		/* Check format. */
1093 		if (nargs != 2 || nreturns < 1) {
1094 			args_n_results[nargs] = -1;
1095 			args->nreturns = 1;
1096 			return;
1097 		}
1098 		args_n_results[nargs] =	0;	/* properly formatted request */
1099 
1100 		va = (vaddr_t)args_n_results[0];
1101 		size = (vsize_t)args_n_results[1];
1102 
1103 		/* Sanity checks. */
1104 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1105 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1106 		    (size & PGOFSET) != 0 || size == 0) {
1107 			args_n_results[nargs + 1] = -1;
1108 			args->nreturns = 1;
1109 			return;
1110 		}
1111 
1112 		/* Write-back anything stuck in the cache. */
1113 		cpu_idcache_wbinv_all();
1114 
1115 		/* Zero the mappings. */
1116 		{
1117 			pt_entry_t *pte = vtopte(va);
1118 			int npages = size >> PGSHIFT;
1119 
1120 			for (; npages > 0; pte++, npages--)
1121 				*pte = 0;
1122 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1123 		}
1124 
1125 		/* Clean out tlb. */
1126 		tlb_flush();
1127 
1128 		args->nreturns = 1;
1129 	} else if (strcmp(name, "translate") == 0) {
1130 		vaddr_t va;
1131 		paddr_t pa;
1132 		int mode;
1133 		pt_entry_t pte;
1134 
1135 		/* Check format. */
1136 		if (nargs != 1 || nreturns < 4) {
1137 			args_n_results[nargs] = -1;
1138 			args->nreturns = 1;
1139 			return;
1140 		}
1141 		args_n_results[nargs] =	0;	/* properly formatted request */
1142 
1143 		va = (vaddr_t)args_n_results[0];
1144 
1145 		/* Sanity checks.
1146 		 * For now, I am only willing to translate va's in the
1147 		 * "ofw range." Eventually, I may be more generous. -JJK
1148 		 */
1149 		if ((va & PGOFSET) != 0 ||  va < OFW_VIRT_BASE ||
1150 		    va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1151 			args_n_results[nargs + 1] = -1;
1152 			args->nreturns = 1;
1153 			return;
1154 		}
1155 
1156 		/* Lookup mapping. */
1157 		pte = *vtopte(va);
1158 		if (pte == 0) {
1159 			/* No mapping. */
1160 			args_n_results[nargs + 1] = -1;
1161 			args->nreturns = 2;
1162 		} else {
1163 			/* Existing mapping. */
1164 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1165 			mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C);	/* AP | DOM | CB */
1166 
1167 			args_n_results[nargs + 1] = 0;
1168 			args_n_results[nargs + 2] = pa;
1169 			args_n_results[nargs + 3] =	mode;
1170 			args->nreturns = 4;
1171 		}
1172 	} else if (strcmp(name, "claim-phys") == 0) {
1173 		struct pglist alloclist;
1174 		paddr_t low, high, align;
1175 		psize_t size;
1176 
1177 		/*
1178 		 * XXX
1179 		 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1180 		 * XXX
1181 		 */
1182 
1183 		/* Check format. */
1184 		if (nargs != 4 || nreturns < 3) {
1185 			args_n_results[nargs] = -1;
1186 			args->nreturns = 1;
1187 			return;
1188 		}
1189 		args_n_results[nargs] =	0;	/* properly formatted request */
1190 
1191 		low = args_n_results[0];
1192 		size = args_n_results[2];
1193 		align = args_n_results[3];
1194 		high = args_n_results[1] + size;
1195 
1196 #if 0
1197 		printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1198 		    low, size, align, high);
1199 		align = size;
1200 		printf("forcing align to be 0x%x\n", align);
1201 #endif
1202 
1203 		args_n_results[nargs + 1] =
1204 		uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1205 #if 0
1206 		printf(" -> 0x%lx", args_n_results[nargs + 1]);
1207 #endif
1208 		if (args_n_results[nargs + 1] != 0) {
1209 #if 0
1210 			printf("(failed)\n");
1211 #endif
1212 			args_n_results[nargs + 1] = -1;
1213 			args->nreturns = 2;
1214 			return;
1215 		}
1216 		args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1217 #if 0
1218 		printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1219 #endif
1220 		args->nreturns = 3;
1221 
1222 	} else if (strcmp(name, "release-phys") == 0) {
1223 		printf("unimplemented ofw callback - %s\n", name);
1224 		args_n_results[nargs] = -1;
1225 		args->nreturns = 1;
1226 	} else if (strcmp(name, "claim-virt") == 0) {
1227 		vaddr_t va;
1228 		vsize_t size;
1229 		vaddr_t align;
1230 
1231 		/* XXX - notyet */
1232 /*		printf("unimplemented ofw callback - %s\n", name);*/
1233 		args_n_results[nargs] = -1;
1234 		args->nreturns = 1;
1235 		return;
1236 
1237 		/* Check format. */
1238 		if (nargs != 2 || nreturns < 3) {
1239 		    args_n_results[nargs] = -1;
1240 		    args->nreturns = 1;
1241 		    return;
1242 		}
1243 		args_n_results[nargs] =	0;	/* properly formatted request */
1244 
1245 		/* Allocate size bytes with specified alignment. */
1246 		size = (vsize_t)args_n_results[0];
1247 		align = (vaddr_t)args_n_results[1];
1248 		if (align % PAGE_SIZE != 0) {
1249 			args_n_results[nargs + 1] = -1;
1250 			args->nreturns = 2;
1251 			return;
1252 		}
1253 
1254 		if (va == 0) {
1255 			/* Couldn't allocate. */
1256 			args_n_results[nargs + 1] = -1;
1257 			args->nreturns = 2;
1258 		} else {
1259 			/* Successful allocation. */
1260 			args_n_results[nargs + 1] = 0;
1261 			args_n_results[nargs + 2] = va;
1262 			args->nreturns = 3;
1263 		}
1264 	} else if (strcmp(name, "release-virt") == 0) {
1265 		vaddr_t va;
1266 		vsize_t size;
1267 
1268 		/* XXX - notyet */
1269 		printf("unimplemented ofw callback - %s\n", name);
1270 		args_n_results[nargs] = -1;
1271 		args->nreturns = 1;
1272 		return;
1273 
1274 		/* Check format. */
1275 		if (nargs != 2 || nreturns < 1) {
1276 			args_n_results[nargs] = -1;
1277 			args->nreturns = 1;
1278 			return;
1279 		}
1280 		args_n_results[nargs] =	0;	/* properly formatted request */
1281 
1282 		/* Release bytes. */
1283 		va = (vaddr_t)args_n_results[0];
1284 		size = (vsize_t)args_n_results[1];
1285 
1286 		args->nreturns = 1;
1287 	} else {
1288 		args_n_results[nargs] = -1;
1289 		args->nreturns = 1;
1290 	}
1291 }
1292 
1293 static void
1294 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1295 {
1296 	int i, oft;
1297 	static pv_addr_t proc0_pagedir;
1298 	static pv_addr_t proc0_pt_sys;
1299 	static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1300 	static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1301 	static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1302 	static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1303 	static pv_addr_t msgbuf;
1304 	vaddr_t L1pagetable;
1305 	struct mem_translation *tp;
1306 
1307 	/* Set-up the system page. */
1308 	KASSERT(vector_page == 0);	/* XXX for now */
1309 	systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1310 	if (systempage.pv_va == -1) {
1311 		/* Something was already mapped to vector_page's VA. */
1312 		systempage.pv_va = vector_page;
1313 		systempage.pv_pa = ofw_gettranslation(vector_page);
1314 		if (systempage.pv_pa == -1)
1315 			panic("bogus result from gettranslation(vector_page)");
1316 	} else {
1317 		/* We were just allocated the page-length range at VA 0. */
1318 		if (systempage.pv_va != vector_page)
1319 			panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1320 
1321 		/* Now allocate a physical page, and establish the mapping. */
1322 		systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1323 		if (systempage.pv_pa == -1)
1324 			panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1325 		ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1326 		    PAGE_SIZE, -1);	/* XXX - mode? -JJK */
1327 
1328 		/* Zero the memory. */
1329 		bzero((char *)systempage.pv_va, PAGE_SIZE);
1330 	}
1331 
1332 	/* Allocate/initialize space for the proc0, NetBSD-managed */
1333 	/* page tables that we will be switching to soon. */
1334 	ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1335 	ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1336 	for (i = 0; i < KERNEL_IMG_PTS; i++)
1337 		ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1338 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1339 		ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1340 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1341 		ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1342 	for (i = 0; i < KERNEL_IO_PTS; i++)
1343 		ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1344 
1345 	/* Allocate/initialize space for stacks. */
1346 #ifndef	OFWGENCFG
1347 	ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1348 #endif
1349 	ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1350 	ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1351 	ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1352 
1353 	/* Allocate/initialize space for msgbuf area. */
1354 	ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1355 	msgbufphys = msgbuf.pv_pa;
1356 
1357 	/* Construct the proc0 L1 pagetable. */
1358 	L1pagetable = proc0_pagedir.pv_va;
1359 
1360 	pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1361 	for (i = 0; i < KERNEL_IMG_PTS; i++)
1362 		pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1363 		    &proc0_pt_kernel[i]);
1364 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1365 		pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1366 		    &proc0_pt_vmdata[i]);
1367 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1368 		pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1369 		    &proc0_pt_ofw[i]);
1370 	for (i = 0; i < KERNEL_IO_PTS; i++)
1371 		pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1372 		    &proc0_pt_io[i]);
1373 
1374 	/*
1375 	 * OK, we're done allocating.
1376 	 * Get a dump of OFW's translations, and make the appropriate
1377 	 * entries in the L2 pagetables that we just allocated.
1378 	 */
1379 
1380 	ofw_getvirttranslations();
1381 
1382 	for (oft = 0,  tp = OFtranslations; oft < nOFtranslations;
1383 	    oft++, tp++) {
1384 
1385 		vaddr_t va;
1386 		paddr_t pa;
1387 		int npages = tp->size / PAGE_SIZE;
1388 
1389 		/* Size must be an integral number of pages. */
1390 		if (npages == 0 || tp->size % PAGE_SIZE != 0)
1391 			panic("illegal ofw translation (size)");
1392 
1393 		/* Make an entry for each page in the appropriate table. */
1394 		for (va = tp->virt, pa = tp->phys; npages > 0;
1395 		    va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1396 			/*
1397 			 * Map the top bits to the appropriate L2 pagetable.
1398 			 * The only allowable regions are page0, the
1399 			 * kernel-static area, and the ofw area.
1400 			 */
1401 			switch (va >> (L1_S_SHIFT + 2)) {
1402 			case 0:
1403 				/* page0 */
1404 				break;
1405 
1406 #if KERNEL_IMG_PTS != 2
1407 #error "Update ofw translation range list"
1408 #endif
1409 			case ( KERNEL_BASE                 >> (L1_S_SHIFT + 2)):
1410 			case ((KERNEL_BASE   + 0x00400000) >> (L1_S_SHIFT + 2)):
1411 				/* kernel static area */
1412 				break;
1413 
1414 			case ( OFW_VIRT_BASE               >> (L1_S_SHIFT + 2)):
1415 			case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1416 			case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1417 			case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1418 				/* ofw area */
1419 				break;
1420 
1421 			case ( IO_VIRT_BASE               >> (L1_S_SHIFT + 2)):
1422 			case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1423 			case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1424 			case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1425 				/* io area */
1426 				break;
1427 
1428 			default:
1429 				/* illegal */
1430 				panic("illegal ofw translation (addr) %#lx",
1431 				    va);
1432 			}
1433 
1434 			/* Make the entry. */
1435 			pmap_map_entry(L1pagetable, va, pa,
1436 			    VM_PROT_READ|VM_PROT_WRITE,
1437 			    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1438 						    : PTE_NOCACHE);
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * We don't actually want some of the mappings that we just
1444 	 * set up to appear in proc0's address space.  In particular,
1445 	 * we don't want aliases to physical addresses that the kernel
1446 	 * has-mapped/will-map elsewhere.
1447 	 */
1448 	ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1449 	    msgbuf.pv_va, MSGBUFSIZE);
1450 
1451 	/* update the top of the kernel VM */
1452 	pmap_curmaxkvaddr =
1453 	    KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1454 
1455 	/*
1456          * gross hack for the sake of not thrashing the TLB and making
1457 	 * cache flush more efficient: blast l1 ptes for sections.
1458          */
1459 	for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1460 		vaddr_t va = tp->virt;
1461 		paddr_t pa = tp->phys;
1462 
1463 		if (((va | pa) & L1_S_OFFSET) == 0) {
1464 			int nsections = tp->size / L1_S_SIZE;
1465 
1466 			while (nsections--) {
1467 				/* XXXJRT prot?? */
1468 				pmap_map_section(L1pagetable, va, pa,
1469 				    VM_PROT_READ|VM_PROT_WRITE,
1470 				    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1471 							    : PTE_NOCACHE);
1472 				va += L1_S_SIZE;
1473 				pa += L1_S_SIZE;
1474 			}
1475 		}
1476 	}
1477 
1478 	/* OUT parameters are the new ttbbase and the pt which maps pts. */
1479 	*proc0_ttbbase = proc0_pagedir;
1480 }
1481 
1482 
1483 static void
1484 ofw_getphysmeminfo()
1485 {
1486 	int phandle;
1487 	int mem_len;
1488 	int avail_len;
1489 	int i;
1490 
1491 	if ((phandle = OF_finddevice("/memory")) == -1 ||
1492 	    (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1493 	    (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1494 	    OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1495 	    (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1496  	    (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1497 	    OF_getprop(phandle, "available", OFphysavail, avail_len)
1498 	    != avail_len)
1499 		panic("can't get physmeminfo from OFW");
1500 
1501 	nOFphysmem = mem_len / sizeof(struct mem_region);
1502 	nOFphysavail = avail_len / sizeof(struct mem_region);
1503 
1504 	/*
1505 	 * Sort the blocks in each array into ascending address order.
1506 	 * Also, page-align all blocks.
1507 	 */
1508 	for (i = 0; i < 2; i++) {
1509 		struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1510 		struct mem_region *mp;
1511 		int cnt =  (i == 0) ? nOFphysmem : nOFphysavail;
1512 		int j;
1513 
1514 #ifdef	OLDPRINTFS
1515 		printf("ofw_getphysmeminfo:  %d blocks\n", cnt);
1516 #endif
1517 
1518 		/* XXX - Convert all the values to host order. -JJK */
1519 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1520 			mp->start = of_decode_int((unsigned char *)&mp->start);
1521 			mp->size = of_decode_int((unsigned char *)&mp->size);
1522 		}
1523 
1524 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1525 			u_int s, sz;
1526 			struct mem_region *mp1;
1527 
1528 			/* Page-align start of the block. */
1529 			s = mp->start % PAGE_SIZE;
1530 			if (s != 0) {
1531 				s = (PAGE_SIZE - s);
1532 
1533 				if (mp->size >= s) {
1534 					mp->start += s;
1535 					mp->size -= s;
1536 				}
1537 			}
1538 
1539 			/* Page-align the size. */
1540 			mp->size -= mp->size % PAGE_SIZE;
1541 
1542 			/* Handle empty block. */
1543 			if (mp->size == 0) {
1544 				memmove(mp, mp + 1, (cnt - (mp - tmp))
1545 				    * sizeof(struct mem_region));
1546 				cnt--;
1547 				mp--;
1548 				continue;
1549 			}
1550 
1551 			/* Bubble sort. */
1552 			s = mp->start;
1553 			sz = mp->size;
1554 			for (mp1 = tmp; mp1 < mp; mp1++)
1555 				if (s < mp1->start)
1556 					break;
1557 			if (mp1 < mp) {
1558 				memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1559 				mp1->start = s;
1560 				mp1->size = sz;
1561 			}
1562 		}
1563 
1564 #ifdef	OLDPRINTFS
1565 		for (mp = tmp; mp->size; mp++) {
1566 			printf("%x, %x\n", mp->start, mp->size);
1567 		}
1568 #endif
1569 	}
1570 }
1571 
1572 
1573 static void
1574 ofw_getvirttranslations(void)
1575 {
1576 	int mmu_phandle;
1577 	int mmu_ihandle;
1578 	int trans_len;
1579 	int over, len;
1580 	int i;
1581 	struct mem_translation *tp;
1582 
1583 	mmu_ihandle = ofw_mmu_ihandle();
1584 
1585 	/* overallocate to avoid increases during allocation */
1586 	over = 4 * sizeof(struct mem_translation);
1587 	if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1588 	    (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1589 	    (OFtranslations = ofw_malloc(len + over)) == 0 ||
1590 	    (trans_len = OF_getprop(mmu_phandle, "translations",
1591 	    OFtranslations, len + over)) > (len + over))
1592 		panic("can't get virttranslations from OFW");
1593 
1594 	/* XXX - Convert all the values to host order. -JJK */
1595 	nOFtranslations = trans_len / sizeof(struct mem_translation);
1596 #ifdef	OLDPRINTFS
1597 	printf("ofw_getvirtmeminfo:  %d blocks\n", nOFtranslations);
1598 #endif
1599 	for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1600 		tp->virt = of_decode_int((unsigned char *)&tp->virt);
1601 		tp->size = of_decode_int((unsigned char *)&tp->size);
1602 		tp->phys = of_decode_int((unsigned char *)&tp->phys);
1603 		tp->mode = of_decode_int((unsigned char *)&tp->mode);
1604 	}
1605 }
1606 
1607 /*
1608  * ofw_valloc: allocate blocks of VM for IO and other special purposes
1609  */
1610 typedef struct _vfree {
1611 	struct _vfree *pNext;
1612 	vaddr_t start;
1613 	vsize_t size;
1614 } VFREE, *PVFREE;
1615 
1616 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1617 
1618 static PVFREE vflist = &vfinitial;
1619 
1620 static vaddr_t
1621 ofw_valloc(size, align)
1622 	vsize_t size;
1623 	vaddr_t align;
1624 {
1625 	PVFREE        *ppvf;
1626 	PVFREE        pNew;
1627 	vaddr_t       new;
1628 	vaddr_t       lead;
1629 
1630 	for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1631 		if (align == 0) {
1632 			new = (*ppvf)->start;
1633 			lead = 0;
1634 		} else {
1635 			new  = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1636 			lead = new - (*ppvf)->start;
1637 		}
1638 
1639 		if (((*ppvf)->size - lead) >= size) {
1640  			if (lead == 0) {
1641 				/* using whole block */
1642 				if (size == (*ppvf)->size) {
1643 					/* splice out of list */
1644 					(*ppvf) = (*ppvf)->pNext;
1645 				} else { /* tail of block is free */
1646 					(*ppvf)->start = new + size;
1647 					(*ppvf)->size -= size;
1648 				}
1649 			} else {
1650 				vsize_t tail = ((*ppvf)->start
1651 				    + (*ppvf)->size) - (new + size);
1652 				/* free space at beginning */
1653 				(*ppvf)->size = lead;
1654 
1655 				if (tail != 0) {
1656 					/* free space at tail */
1657 					pNew = ofw_malloc(sizeof(VFREE));
1658 					pNew->pNext  = (*ppvf)->pNext;
1659 					(*ppvf)->pNext = pNew;
1660 					pNew->start  = new + size;
1661 					pNew->size   = tail;
1662 				}
1663 			}
1664 			return new;
1665 		} /* END if */
1666 	} /* END for */
1667 
1668 	return -1;
1669 }
1670 
1671 vaddr_t
1672 ofw_map(pa, size, cb_bits)
1673 	paddr_t pa;
1674 	vsize_t size;
1675 	int cb_bits;
1676 {
1677 	vaddr_t va;
1678 
1679 	if ((va = ofw_valloc(size, size)) == -1)
1680 		panic("cannot alloc virtual memory for %#lx", pa);
1681 
1682 	ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1683 
1684 	ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1685 
1686 	return va;
1687 }
1688 
1689 static int
1690 ofw_mem_ihandle(void)
1691 {
1692 	static int mem_ihandle = 0;
1693 	int chosen;
1694 
1695 	if (mem_ihandle != 0)
1696 		return(mem_ihandle);
1697 
1698 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1699 	    OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1700 		panic("ofw_mem_ihandle");
1701 
1702 	mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1703 
1704 	return(mem_ihandle);
1705 }
1706 
1707 
1708 static int
1709 ofw_mmu_ihandle(void)
1710 {
1711 	static int mmu_ihandle = 0;
1712 	int chosen;
1713 
1714 	if (mmu_ihandle != 0)
1715 		return(mmu_ihandle);
1716 
1717 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1718 	    OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1719 		panic("ofw_mmu_ihandle");
1720 
1721 	mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1722 
1723 	return(mmu_ihandle);
1724 }
1725 
1726 
1727 /* Return -1 on failure. */
1728 static paddr_t
1729 ofw_claimphys(pa, size, align)
1730 	paddr_t pa;
1731 	psize_t size;
1732 	paddr_t align;
1733 {
1734 	int mem_ihandle = ofw_mem_ihandle();
1735 
1736 /*	printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1737 	if (align == 0) {
1738 		/* Allocate at specified base; alignment is ignored. */
1739 		pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1740 	} else {
1741 		/* Allocate anywhere, with specified alignment. */
1742 		pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1743 	}
1744 
1745 /*	printf("%x\n", pa);*/
1746 	return(pa);
1747 }
1748 
1749 
1750 #if 0
1751 /* Return -1 on failure. */
1752 static paddr_t
1753 ofw_releasephys(pa, size)
1754 	paddr_t pa;
1755 	psize_t size;
1756 {
1757 	int mem_ihandle = ofw_mem_ihandle();
1758 
1759 /*	printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1760 
1761 	return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1762 }
1763 #endif
1764 
1765 /* Return -1 on failure. */
1766 static vaddr_t
1767 ofw_claimvirt(va, size, align)
1768 	vaddr_t va;
1769 	vsize_t size;
1770 	vaddr_t align;
1771 {
1772 	int mmu_ihandle = ofw_mmu_ihandle();
1773 
1774 	/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1775 	if (align == 0) {
1776 		/* Allocate at specified base; alignment is ignored. */
1777 		va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1778 	} else {
1779 		/* Allocate anywhere, with specified alignment. */
1780 		va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1781 	}
1782 
1783 	/*printf("%x\n", va);*/
1784 	return(va);
1785 }
1786 
1787 
1788 /* Return -1 if no mapping. */
1789 paddr_t
1790 ofw_gettranslation(va)
1791 	vaddr_t va;
1792 {
1793 	int mmu_ihandle = ofw_mmu_ihandle();
1794 	paddr_t pa;
1795 	int mode;
1796 	int exists;
1797 
1798 	/*printf("ofw_gettranslation (%x) --> ", va);*/
1799 	exists = 0;	    /* gets set to true if translation exists */
1800 	if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1801 	    &exists) != 0)
1802 		return(-1);
1803 
1804 	/*printf("%x\n", exists ? pa : -1);*/
1805 	return(exists ? pa : -1);
1806 }
1807 
1808 
1809 static void
1810 ofw_settranslation(va, pa, size, mode)
1811 	vaddr_t va;
1812 	paddr_t pa;
1813 	vsize_t size;
1814 	int mode;
1815 {
1816 	int mmu_ihandle = ofw_mmu_ihandle();
1817 
1818 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1819 	if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1820 		panic("ofw_settranslation failed");
1821 }
1822 
1823 /*
1824  *  Allocation routine used before the kernel takes over memory.
1825  *  Use this for efficient storage for things that aren't rounded to
1826  *  page size.
1827  *
1828  *  The point here is not necessarily to be very efficient (even though
1829  *  that's sort of nice), but to do proper dynamic allocation to avoid
1830  *  size-limitation errors.
1831  *
1832  */
1833 
1834 typedef struct _leftover {
1835 	struct _leftover *pNext;
1836 	vsize_t size;
1837 } LEFTOVER, *PLEFTOVER;
1838 
1839 /* leftover bits of pages.  first word is pointer to next.
1840    second word is size of leftover */
1841 static PLEFTOVER leftovers = NULL;
1842 
1843 static void *
1844 ofw_malloc(size)
1845 	vsize_t size;
1846 {
1847 	PLEFTOVER   *ppLeftover;
1848 	PLEFTOVER   pLeft;
1849 	pv_addr_t   new;
1850 	vsize_t   newSize, claim_size;
1851 
1852 	/* round and set minimum size */
1853 	size = max(sizeof(LEFTOVER),
1854 	    ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1855 
1856 	for (ppLeftover = &leftovers; *ppLeftover;
1857 	    ppLeftover = &((*ppLeftover)->pNext))
1858 		if ((*ppLeftover)->size >= size)
1859 			break;
1860 
1861 	if (*ppLeftover) { /* have a leftover of the right size */
1862 		/* remember the leftover */
1863 		new.pv_va = (vaddr_t)*ppLeftover;
1864 		if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1865 			/* splice out of chain */
1866 			*ppLeftover = (*ppLeftover)->pNext;
1867 		} else {
1868 			/* remember the next pointer */
1869 			pLeft = (*ppLeftover)->pNext;
1870 			newSize = (*ppLeftover)->size - size; /* reduce size */
1871 			/* move pointer */
1872 			*ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1873 			    + size);
1874 			(*ppLeftover)->pNext = pLeft;
1875 			(*ppLeftover)->size  = newSize;
1876 		}
1877 	} else {
1878 		claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1879 		ofw_claimpages(&virt_freeptr, &new, claim_size);
1880 		if ((size + sizeof(LEFTOVER)) <= claim_size) {
1881 			pLeft = (PLEFTOVER)(new.pv_va + size);
1882 			pLeft->pNext = leftovers;
1883 			pLeft->size = claim_size - size;
1884 			leftovers = pLeft;
1885 		}
1886 	}
1887 
1888 	return (void *)(new.pv_va);
1889 }
1890 
1891 /*
1892  *  Here is a really, really sleazy free.  It's not used right now,
1893  *  because it's not worth the extra complexity for just a few bytes.
1894  *
1895  */
1896 #if 0
1897 static void
1898 ofw_free(addr, size)
1899 	vaddr_t addr;
1900 	vsize_t size;
1901 {
1902 	PLEFTOVER pLeftover = (PLEFTOVER)addr;
1903 
1904 	/* splice right into list without checks or compaction */
1905 	pLeftover->pNext = leftovers;
1906 	pLeftover->size  = size;
1907 	leftovers        = pLeftover;
1908 }
1909 #endif
1910 
1911 /*
1912  *  Allocate and zero round(size)/PAGE_SIZE pages of memory.
1913  *  We guarantee that the allocated memory will be
1914  *  aligned to a boundary equal to the smallest power of
1915  *  2 greater than or equal to size.
1916  *  free_pp is an IN/OUT parameter which points to the
1917  *  last allocated virtual address in an allocate-downwards
1918  *  stack.  pv_p is an OUT parameter which contains the
1919  *  virtual and physical base addresses of the allocated
1920  *  memory.
1921  */
1922 static void
1923 ofw_claimpages(free_pp, pv_p, size)
1924 	vaddr_t *free_pp;
1925 	pv_addr_t *pv_p;
1926 	vsize_t size;
1927 {
1928 	/* round-up to page boundary */
1929 	vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1930 	vsize_t aligned_size;
1931 	vaddr_t va;
1932 	paddr_t pa;
1933 
1934 	if (alloc_size == 0)
1935 		panic("ofw_claimpages zero");
1936 
1937 	for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1938 		;
1939 
1940 	/*  The only way to provide the alignment guarantees is to
1941 	 *  allocate the virtual and physical ranges separately,
1942 	 *  then do an explicit map call.
1943 	 */
1944 	va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1945 	if (ofw_claimvirt(va, alloc_size, 0) != va)
1946 		panic("ofw_claimpages va alloc");
1947 	pa = ofw_claimphys(0, alloc_size, aligned_size);
1948 	if (pa == -1)
1949 		panic("ofw_claimpages pa alloc");
1950 	/* XXX - what mode? -JJK */
1951 	ofw_settranslation(va, pa, alloc_size, -1);
1952 
1953 	/* The memory's mapped-in now, so we can zero it. */
1954 	bzero((char *)va, alloc_size);
1955 
1956 	/* Set OUT parameters. */
1957 	*free_pp = va;
1958 	pv_p->pv_va = va;
1959 	pv_p->pv_pa = pa;
1960 }
1961 
1962 
1963 static void
1964 ofw_discardmappings(L2pagetable, va, size)
1965 	vaddr_t L2pagetable;
1966 	vaddr_t va;
1967 	vsize_t size;
1968 {
1969 	/* round-up to page boundary */
1970 	vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1971 	int npages = alloc_size / PAGE_SIZE;
1972 
1973 	if (npages == 0)
1974 		panic("ofw_discardmappings zero");
1975 
1976 	/* Discard each mapping. */
1977 	for (; npages > 0; va += PAGE_SIZE, npages--) {
1978 		/* Sanity. The current entry should be non-null. */
1979 		if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1980 			panic("ofw_discardmappings zero entry");
1981 
1982 		/* Clear the entry. */
1983 		WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1984 	}
1985 }
1986 
1987 
1988 static void
1989 ofw_initallocator(void)
1990 {
1991 
1992 }
1993